
PiCasso: Enabling Information-Centric Multi-tenancy at the Edge of
Community Mesh Networks

Mennan Selimia,e, Adisorn Lertsinsrubtaveeb,d, Arjuna Sathiaseelanc, Llorenç Cerdà-Alaberna, Leandro Navarroa

aUniversitat Politècnica de Catalunya, BarcelonaTech, Spain
{mselimi, llorenc, leandro}@ac.upc.edu

bUniversity of Cambridge, UK
{mennan.selimi, adisorn.leetsinsrubtavee}cl.cam.ac.uk

cAmmbr Research Labs, Cambridge, UK
{arjuna}@ammbrtech.com

dAsian Institute of Technology, Thailand
{adisorn}@ait.asia

eMax van der Stoel Institute, South East European University, North Macedonia
{m.selimi}@seeu.edu.mk

Abstract

Edge computing is radically shaping the way Internet services are run by enabling computations to be available
close to the users - thus mitigating the latency and performance challenges faced in today’s Internet infrastructure.
Emerging markets, rural and remote communities are further away from the cloud and edge computing has indeed
become an essential panacea. Many solutions have been recently proposed to facilitate efficient service delivery in
edge data centers. However, we argue that those solutions cannot fully support the operations in Community Mesh
Networks (CMNs) since the network connection may be less reliable and exhibit variable performance. In this paper,
we propose to leverage lightweight virtualisation, Information-Centric Networking (ICN), and service deployment
algorithms to overcome these limitations. The proposal is implemented in the PiCasso system, which utilises in-
network caching and name based routing of ICN, combined with our HANET (HArdware and NETwork Resources)
service deployment heuristic, to optimise the forwarding path of service delivery in a network zone. We analyse the
data collected from the Guifi.net Sants network zone, to develop a smart heuristic for the service deployment in that
zone. Through a real deployment in Guifi.net, we show that HANET improves the response time up to 53% and
28.7% for stateless and stateful services respectively. PiCasso achieves 43% traffic reduction on service delivery in
our real deployment, compared to the traditional host-centric communication. The overall effect of our ICN platform
is that most content and service delivery requests can be satisfied very close to the client device, many times just one
hop away, decoupling QoS from intra-network traffic and origin server load.

Key words: Information-centric networking; community networks; mesh networks; edge computing; common-pool
resources.

1. Introduction

Computer networks deliver content and services to users worldwide, but these networks can develop and grow
under very diverse conditions. Network infrastructures can range from carefully planned and centrally managed
operator networks that can show uniform performance and balanced capacity according to demand. In the other
end there are decentralized mesh networks built by citizens with little or no planning of their demand, capacity and
locations, that get connected in an open and self-organized manner. These community networks, built as wireless
mesh networks, defined as Community Mesh Networks (CMNs) are based on the principle of reciprocal sharing of
network bandwidth. Their main purpose is both to satisfy community’s demand for Internet access and to provide
services of local interest.

As participation in these networks is open, they grow organically, since new links are created every time a host is
added. Because of this, the network presents a high degree of heterogeneity with respect to the devices and links used

Preprint submitted to Elsevier October 3, 2019

in the infrastructure and its management. This unique characteristic makes CMNs different from the conventional ISP
(Internet Service Provider) networks as the topology is dynamically changing. Hence, the current architectures and
platforms in CMNs are failing to capture the dynamics of the network and therefore they fail to deliver the satisfying
QoS [1] [2]. The challenges mentioned bring a lot of attention to CMNs to build infrastructures that better suited to
today’s use (in particular, content distribution and mobility) and more resilient to disruptions and failures.

The latest advances in lightweight virtualisation technologies (e.g., Docker, Unikernel), allows many developers to
build local edge computing platform that could be used to deliver services within CMNs [3]. Despite delivering these
lightweight services within a data centre is trivial, delivering them across intermittent connectivity of CMNs has a lot
of challenges. As a matter of fact, most of the edge computing platforms still rely on the host-centric communication
that binds the connection to the fixed entity. This approach could struggle for service delivery to transport the service
instances to the network edge as the connectivity would fail at any time. In addition to that, those platforms do
not have specific strategies on the service deployment in CMN environments. This raises several questions: Which
services should be delivered? When should they be delivered? What are the suitable criteria for node selection to host
the service? Is network-aware placement enough to deliver satisfactory performance to CMN users? However, this is
not trivial and requires an effective strategy to manage the service delivery in CMNs.

On the other hand, Information-Centric Networking (ICN) has recently emerged as a potential solution for deliv-
ering named contents. The ICN leverages in-network storage for caching, multi-party communication for replication
and interaction models that decouple senders and receivers. Instead of using IP address for communication, ICN iden-
tifies a content by name and forwards a user request through name-based routing. This decouples the content from its
origin address, where the content can be delivered from any host that currently has the content in its storage. Although
ICN brings a lot of flexibilities in terms of content delivery, the current ICN implementations are rather focused on the
simple static content (e.g., short message, video file). In this regard, we argue that ICN should be extended to better
support transporting at the service layer.

This paper extends our previous work [4] and [5] by focusing on two main interrelated research problems: service
delivery and service deployment. The former refers to the process of delivery and instantiate a service instance (e.g.,
web server) from the service provider to the edge computing node. The latter is the logic that decides where and
when to deploy the service instance regarding the service requirements, network status and available resources (e.g.,
CPU load, memory). In this context, we propose PiCasso, a lightweight edge computing platform that combines the
lightweight virtualisation technologies and a novel Information-Centric Networking (ICN) to facilitate both service
delivery and service deployment in challenging environment such as CMNs. We underpin PiCasso with Docker
container-based service that can be seamlessly delivered, cached and deployed at the network edge. The core of the
PiCasso platform is the decision engine making a decision on where and when to deploy a service instance to satisfy
the service requirements while considering the network status and available hardware resources. PiCasso introduces a
new service abstraction layer using ICN to enable more flexibility in service delivery. Instead of hosting services in the
fixed centralised location (e.g., service repository), PiCasso allows the edge devices obtaining service instance from
the nearest caches by utilising inherent name-based routing and in-network caching capabilities of ICN. Furthermore,
PiCasso is also integrated with a service controller and a full functional monitoring system to optimise the service
deployment decision in CMNs. Specifically, our key contributions are summarized as follows:

• First, we characterize the performance of a real production mesh network such as Guifi.net (Guifi-Sants) and
identify the bottlenecks affecting the service performance. This is achieved by monitoring the network for two
months period and taking measurements regarding network status and available resources.

• Second, based on the measurements in the Guifi.net, we design PiCasso, a multi-access edge computing plat-
form which deploys QoS-sensitive services at the network edge. We design the decision engine of Picasso,
which selects the appropriate nodes for service instantiation based on constraints observed in our Guifi.net mea-
surements (network bandwidth, available hardware resources and network topology) in a network zone. The
HANET decision engine algorithm uses the state of the underlying network to optimize the service deployment
in that zone.

• Third, we utilise the ICN principles in the architecture of PiCasso in order to enable more flexibility in the
delivery of named data objects. To our best of knowledge this is the first ICN deployment in a production CMN
such as Guifi.net.

2

Antenna

(Ubiquiti NanoStation M5)

Point-to-Point links

Edge-cloud resources

(Raspberry Pi, home gateway)

Figure 1: Outdoor Devices in Guifi-Sants Mesh Network.
NanoStation M5 and Sectorial antennas are used to build

point-to-point links.

0.0

0.5

1.0

1.5

2.0

0 2 4
x (km)

y(
km

)

2
1
6

9
4

5
8
3

7UPC Campus Nord
SEG

Figure 2: Guifi-Sants Network Topology (Barcelona). The location of
the ORs and RPI boards in the network is shown.

The rest of the paper is organized as follows. In Section 2 we describe and characterize the performance of the
Guifi-Sants mesh network. In Section 3 we present the PiCasso’s architecture together with our HANET heuristic.
In Section 4 the performance of the PiCasso platform is presented. Section 5 discusses our main findings. Section 6
describes related work and section 7 concludes and discusses future research directions.

2. Case Study: Guifi-Sants Mesh Network

Guifi-Sants is a subset of Guifi.net CMN, which started to operate in 2009 in a quarter of Barcelona (Catalo-
nia, Spain) called Sants as part of the Quick Mesh Project (qMp) 1. The main objective of the qMp project in the
Guifi-Sants mesh network is to bring quick and easy WiFi networks into large, crowded events (such as concerts,
demonstrations, public events, etc.) by leveraging ad-hoc and dynamic routing technologies. This is achieved by pro-
viding its own firmware for embedded network devices based on OpenWRT Linux operating system. This firmware
provides an easy way to set up mesh networks - wired or wireless (WiFi) or a mix of both and allows fast and reliable
way to extend an Internet up-link to end-users.

Currently (i.e., at the time of writing), the Guifi-Sants network has 80 nodes (with more than 300 active users)
and continues to grow day by day. In terms of devices used, the Guifi-Sants users have an outdoor router (OR) with a
Wi-fi interface on the roof as show in Figure 1. The ORs are used to build P2P (point-to-point) links in the network.
They are connected through Ethernet to an indoor AP (access point) as a premises network where the edge services
are running (e.g., on Raspberry Pi’s, home gateways etc). The most common OR in Guifi-Sants is the NanoStation M5
(shown in Figure 1). Some strategic locations have several NanoStations, that provide larger coverage. In addition,
some links of several kilometers are set up with parabolic antennas (NanoBridges). ORs in Guifi-Sants are using
BMX6 as the mesh routing protocol [6] [7]. Further, in the network there are 3 gateways (proxies) distributed that
connect the Guifi-Sants mesh network to the rest of Guifi.net CMN and Internet.

For our experimental cases, we deploy 10 Raspberry Pi 3 (RPI3) boards in the ORs of the network and use them
as servers. Figure 2 depicts the topology of the Guifi-Sants network and the location of the RPI3 boards.

Data collection: In order to monitor the network for longer periods, we used our live monitoring system which is
operational and can be seen in the following link2. The data is collected by connecting to each Guifi-Sants OR and
running basic system commands available in the qMp distribution. This method has the advantage that no changes
or additional software need to be installed in the nodes. Live measurements have been taken hourly during the entire
month of September 2017 and September 2018. The collected data is publicly available in the Internet. We use this
data to analyse the main aspects of the Guifi-Sants network zone.

1
http://qmp.cat/

2
http://dsg.ac.upc.edu/qmpsu/index.php

3

http://qmp.cat/
http://dsg.ac.upc.edu/qmpsu/index.php

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50 60 70 80 90 100

Availability (%)

E
C

D
F 10% of the nodes < 90% availability

0.0

0.2

0.4

0.6

0.8

1.0

1 10 100

Link throughput [Mbps] (log10 scale)

EC
DF

min/mean/max: 0.02/11.7/91.6

Average bandwidth: 11.7 Mbps

0.0

0.2

0.4

0.6

0.8

1.0

1 3 5 7 9 11 13 15 17 19 21

out degree

E
C

D
F

min/mean/max: 1.0/6.9/22.0

Average node out-degree: 6.9

Figure 3: Availability of the nodes (Guifi-Sants network)

0.0

0.2

0.4

0.6

0.8

1.0

1 10 100

Link throughput [Mbps] (log10 scale)

E
C

D
F

Figure 4: Link bandwidth distribution (Guifi-Sants network)

0

10

20

30

40

0 10 20 30 40

Throughput [Mbps]

Th
ro

ug
hp

ut
[M

bp
s]

0

10

20

30

40

50

60

70

80

90

100

Deviation

%

Figure 5: Link bandwidth asymmetry (Guifi-Sants network)

upload
download

0.60

0.25

0.57

0.26

0.58

0.08

BcnGranVia146-b233/BCNJardiBotanicSants186-ba35

BCNcrdnyl9Rd2-acae/BCNSants186Rd2-996c

BCNmasnou24Rd2-8416/GSgranVia255-db37

0 2 4 6 8 10 12 14 16 18 20 22 24

0.3

0.6

0.9

1.2

0.25

0.50

0.75

1.00

1.25

0.0

0.5

1.0

Hour of the day

Li
nk

tra
ffi

c[
M

bp
s]

Figure 6: Traffic in 3 busiest links (Guifi-Sants network)

2.1. Guifi-Sants Network Characterization

Network and user-focused services: One possible reason for the absence of the local community-owned services
in Guifi-Sants and Guifi.net was because of the difficulty to deploy such services and the shortage or individuals,
companies and organizations interested in the commercial operation of these services. To overcome these issues, one
solution for CMN enthusiasts was to design community network micro-cloud distributions such as Cloudy [8], Guinux
[9] etc., where users were able to deploy their preferred services and share with the others in community networks.
Micro-clouds were open user-driven clouds formed by community-managed computing resources which were able to
run different open source distributions (e.g., operating systems) installed by the users. Key characteristics of these
distributions were a set of scripts that automated the configuration process of services. However, there was not a
logic behind the service deployment. The service deployment heuristics were agnostic to the state of the underlying
network and this could lead to important inefficiencies in terms of latency, performance, cost, availability etc.

There are two type of services in the network: network-focused (network graph-servers that collect network moni-
toring data and provide graphs, DNS Servers, NTP servers etc) and user-focused services (proxy servers, VoIP, video,
instant messaging etc). Considering that network management is of interest to all users in the network (i.e., to keep
the network up and running), services related to the network operation outnumber the local services intended for end-
users [2]. Moreover, the most frequent of all the services offered, whether user-focused or network-focused, are the
proxy services [10]. Proxies act as free gateways to the Internet for the community network users.

Network Topology: The network topology of the Guifi-Sants networks and Guifi.net CMN in general, is different

4

with respect to conventional Internet Service Provider (ISP) networks. Guifi.net is composed of numerous distributed
CMNs and they represent different types of network topologies. The overall topology can change and there is no
fixed topology as in the data center (DC) environment. The network has a mesh topology in the backbone, and each
node of the backbone (i.e., super-node) provides access to the client nodes [11]. The backbone interconnects different
super-nodes by point to point links, local networks provide access to the client nodes. Figure 2 depicts the topology of
the Guifi-Sants network in Barcelona. Guifi-Sants network shows some typical patterns from the urban networks (i.e.,
mesh networks) combined with an unusual deployment, that does not completely fit either with organically grown
networks or with planned networks. On average, around 90% of the nodes in the network have more than 2 links and
around 40% of the nodes have at least 5 links with an overall average degree of 6.9. This shows that the network is
well connected.

Node and Link Characteristics: Figure 3 shows the Empirical Cumulative Distribution Function (ECDF) of
the node availability collected for a period of one month. We define the availability of a node as the percentage of
times that the node appears in a capture, counted since the node shows up for the first time. A capture is an hourly
network snapshot that we take from the Guifi-Sants network (i.e., we took 744 captures in total). Figure 3 reveals that
10% of the nodes have availability lower than 90% and others nodes left have availability between 90− 100%. In a
mesh network such as Guifi-Sants, users do not tend to deliberately reboot the device unless they have to perform an
upgrade, which is not very common. Hence, the percentage of times that node appears in a capture is a relatively good
measure of the node availability due to random failures.

Figure 4 depicts the average bandwidth distribution of all the links in the network. The average bandwidth ob-
served in the network is 11.7 Mbps. Further, Figure 4 reveals that the 60% of the nodes have 10 Mbps or less
throughput. The average bandwidth of 11.7 Mbps obtained in the network can be attributed to the 802.11a/n devices
used in the network. In order to measure the link asymmetry, Figure 5 shows the bandwidth measured in each di-
rection of the link. A boxplot of the absolute value of the deviation over the mean bandwidth of every link in both
directions is also depicted on the right. The figure shows that around 25% of the links have a deviation higher than
40%. At the same time, only 25% of the links have a deviation lower than 10%. After performing some measurements
regarding the signaling power of the devices, we discovered that the main reason of this significant asymmetry is that
some of the community members have re-tuned the radios of their devices (e.g., transmission power, channel and
other parameters), trying to achieve better performance, thus, changing the characteristics of the links.

Figure 6 shows the average traffic of three representative end nodes. The measurements correspond to the links
used by three users to access the mesh. Averages have been taken in both directions (download and upload) over each
hour of the day. As expected, Figure 6 shows a strong asymmetry between download and upload traffic: the download
daily average is around 0.6 Mbps for all users, while the upload is only around 0.25 Mbps or less. The figure also
shows a significant difference of traffic during the day, reaching in all cases more than 1.2 Mbps in the busiest hour.

2.2. Key Observations

Here are some observations that we have derived from the measurements in the Guifi-Sants mesh network:
A lack of smart service platforms: Despite achieving the sharing of bandwidth, Guifi-Sants and Guifi.net in

general, have not been able to widely extend the sharing of local alternatives to popular cloud services, such as private
data storage and backup, instant messaging, media sharing, social networks etc., which is a common practice in today’s
Internet through cloud computing. There have been efforts to develop and promote different services and applications
from within community networks through community network micro-clouds [8] but without major adoption. Further,
a growing number of micro-cloud services desire computational tasks to be located nearby users. They include needs
for lower latency, a better-user experience and efficient use of network bandwidth. Currently, there is no open source
platform to bootstrap and manage decentralized community services. Open and self-managing solutions with smart
decision making algorithms can definitely boost the adoption of local services in the network.

Variability in topology and change in capacity load: The Guifi-Sants network is highly dynamic and diverse
due to many reasons, e.g., its community nature in an urban area; its decentralized organic growth with extensive
diversity in the technological choices for hardware, wireless media, link protocols, channels, routing protocols etc.;
its mesh topology etc. The current network deployment model is based on geographic singularities rather than QoS.
The network is not scale-free. The topology is organic and different with respect to conventional ISP networks. This
implies that a solution (i.e., algorithm) that works in a certain topology might not work in another one. There is a need

5

for a fast, adaptive and effective heuristics that are not agnostic to the state of the underlying network, and heuristics
that can cope with the topology dynamics.

Non-uniform resource distribution: The resources are not uniformly distributed in the network. Wireless links
are with asymmetric quality for services (25% of the links have a deviation higher than 40%). There is a highly skewed
bandwidth, traffic and latency distribution. The symmetry of the links, an assumption often used in the literature of
wireless mesh networks, is not very realistic for our case and algorithms (heuristics) unquestionably need to take
this into account. Currently, services in the Guifi-Sants and Guifi.net in general, are placed in specific servers where
operators have access. This manual and centralized model is quite ineffective, failing to capture the dynamics of the
network, take into consideration the location of clients, and therefore it can easily fail to deliver a satisfying QoS for
most users.

From above observations, we define the edge computing for community networks as a capability to move the
operating services in the cloud to the edge of the network while considering the resource constraint environment. Op-
timisation can be achieved on the basis of the universality of the devices and lightweight virtualisation technologies.
Universality allows them to host any kind of service whereas lightweight virtualisation allows quick and seamless de-
ployment, re-allocation, replication and aggregation of lightweight virtual machines. The implementation of resource
constrained clouds at the edge, raises several limitations. For instance, services running on the edge devices are sup-
posed to be less complex and static such as web service or lightweight video streaming server, the centralised cloud
computing with Internet connect is still needed . However, those simple services are commonly used in the commu-
nity networks as already mentioned in previous subsection. From these insights, we design PiCasso, a low-cost edge
computing platform that operates at the ”extreme” edge of community network. We present a system architecture
and fully implement it on a real hardware (discussed in Section 3). We showcase the efficiency and effectiveness of
PiCasso by focusing on its core features. First, we show how PiCasso achieves a better end-user experience (e.g.,
low latency, great responsiveness) using the HANET heuristic (discussed in Section 3.3.2) in a network zone. Then,
we show how PiCasso achieves more efficient use of network bandwidth at low network cost in Guifi-Sants network
using its ICN capabilities (discussed in Section 4.2).

3. PiCasso: Multi-Access Lightweight Edge Computing Platform

PiCasso3 is implemented based on the service and access abstraction where lightweight virtualisation services are
delivered through the Information Centric Networking (ICN). There are several ICN implementations [12, 13, 14, 15,
16] that have been proposed during the past decade. Among those implementations, Named Data Networking4 (NDN)
is the most suitable candidate for PiCasso as it uses a simple stateful forwarding plane to utilise the distributed in-
network caching without any control entity. Thus, we developed PiCasso that extends NDN protocol stack to support
service delivery and service deployment in CMNs.

3.1. Platform Overview
PiCasso is a lightweight edge platform that can rapidly deliver services to end users at the edge, in a given network

zone, even though the network connectivity is intermittent. PiCasso relies on service and access abstraction where
lightweight virtualisation services are delivered through the ICN. This approach that does not rely on underlying host-
centric networking model, decouples the service from it’s physical location by taking advantage of the naming and
content caching that could be used to make intelligent forwarding decisions and publish/subscribe communication
primitives that allow asynchronous communications etc.

The overview of PiCasso platform is presented in Figure 7. The key entity of PiCasso is referred to Service
Controller (SC) that periodically observes (i.e., monitors) the network topology and resource consumption of potential
nodes for the service deployment in a given network area. As typical in edge networks, that can include both service
consumers and providers, usually called a network zone, related to the more general concept of an autonomous system.
A service offered in multiple zones would involve a SC that can optimize the service in each zone, therefore service
control of a global service will follow a hierarchical structure. Therefore, from now we will focus on one of these edge

3
https://github.com/AdL1398/PiCasso.git

4
https://named-data.net/

6

https://github.com/AdL1398/PiCasso.git
https://named-data.net/

Service Provider

AP Daemon

Docker Engine

PiCasso
Stack

Monitoring
Manager

Decision
Engine

Service
Repository

Community Mesh
Network (CMN)

Forwarding Node
(FN)

Service Execution Gateway (SEG)

HANET

End-user Devices

Service Controller
(SC)

Figure 7: The overview of the PiCasso platform. Main components of Picasso platforms are shown: Service Controller (SC), Service Execution
Gateway (SEG) and Forwarding Node (FN).

regions. In our model, we assume that the service providers upload their services to a service repository inside the SC
before distributing to the network edge. To maintain a good QoS and overcome the network connectivity problems,
SC augments the monitoring data along with service deployment algorithms to decide where and when to place the
services. The Service Execution Gateway (SEG) provides a virtualisation capability to run a service instance at the
network edge (e.g., users home). In PiCasso, we use Docker, a container-based virtualisation to build lightweight
services and deploy across the SEGs. Each SEG is also equipped with the access point daemon (e.g., hostapd5) to
act as the point of attachment for the end-users to access the services via WiFi connection. A prototype of SEG has
been developed on the Raspberry Pi 3 running the Hypriot OS Version 1.2.036 on ARM Cortex-A53 1.2 GHz 4 core
CPU with 1 GB RAM. The Forwarding Node (FN) in Figure 7 is responsible for forwarding the requests towards the
original content source or nearby caches. Each FN is equipped with a storage while dynamically caching the content
chunks that flow through it. Notice that, FN does not necessary need to execute the services.

3.2. Architecture of PiCasso

Current implementations of edge computing still rely on a centralized approach with large amount of traffic
spreaded out over the network. Streams of requests are sent from edge devices to the data center instead of fetch-
ing the contents and services from the nearest nodes. NDN (Named Data Networking) is one of the ICN projects
which instead of using IP address for communication, NDN directly addresses the contents by name regardless of
physical location. As a matter of fact in NDN, a piece of content or service can be stored or cached at multiple lo-
cations. NDN uses name based forwarding (NFD) where the routing should be done dynamically and effectively to
fetch the desired contents of services from the best location. NDN naturally fits with the nature of CMNs allowing
nodes located far away and have intermittent connectivity to retrieve the content or services directly from the nearest
caches.

Currently, PiCasso is written in Python and implemented on top of NDN protocol stack [12] and Docker tech-
nology [17]. The main function blocks of PiCasso’s architecture are presented in Figure 8 and are the following
ones:

5
https://wiki.gentoo.org/wiki/Hostapd

6
https://blog.hypriot.com/downloads/

7

https://wiki.gentoo.org/wiki/Hostapd
https://blog.hypriot.com/downloads/

• NFD Forwarding plane sits between application and transport layer while looking at the content names and
opportunistically forwarding the requests to an appropriate network interface. It creates an ICN overlay to
support name-based routing over the network. This NFD layer inherits the functionalities from the original
NDN code base which maintains three types of data structure: Forwarding Information Base (FIB), Pending
Interest Table (PIT), and Content Store (CS). The FIB operates as a named based routing table. Unlike the
traditional IP routing table, FIB records the name prefix with outgoing interface rather than IP or network
prefixes. The PIT keeps track the pending Interest message that have not yet been delivered with the matching
content. In PIT table records the incoming faces along with Interest name while waiting for a response of
matching name content. CS is a local cache integrated in every NDN nodes. The NFD processes a content
request (Interest message) by interrogating the matching data with name prefix. If data exists in the CS, the
NFD returns the Data message to the same interface from which Interest message arrived. Otherwise the NFD
looks up the name prefix in the PIT, and if a matching PIT entry is found, the NFD adds a new entry of newly
arrived Interest with an incoming interface and discards the Interest without forwarding. In case neither CS nor
PIT find a matching record, the NFD further forwards the Interest message regarding information in the FIB.

In PiCasso, we have also extended the NDN protocol stack by introducing a DTN (Delay Tolerant Networking)
face to facilitate operation in challenge network environment like post-disaster scenario. Notice in NDN imple-
mentation, “face” is used instead of “interface”. The face refers to the logical interface. For instance, a physical
interface (e.g., WiFi) can have multiple faces with different name prefixes. This new DTN face communicates
with an underlying DTN implementation that handles intermittence by encapsulating Interest and Data packets
into a DTN bundle. The details of implementation and evaluation can be found in [18]. We integrate the NFD
forwarding plane to PiCasso architecture through a Python wrapper of NDN APIs, called PyNDN7.

• Service Execution runs on the SEG and has major functionalities as follows: registers the SEG to the service
controller, receives push command to instantiate and terminate services dynamically regarding the decision of
service deployment. This module uses docker-py8, a Python wrapper for Docker to expose the controlling
messages to Docker engine.

• Monitoring Agent is responsible for measuring the current status of underlying hardware resources (RPI3 de-
vices and ORs) such as current memory usage, CPU utilisation, CPU load, network bandwidth, RTT, availability
etc, and reporting this data to SC. Further, it associates with Docker engine to report the status of running con-
tainers (e.g., container names, number of running containers) and resource consumption inside each container
(e.g., CPU and memory usage).

• Decision Engine (DE) or orchestrator is responsible for selecting an appropriate SEG node for service instan-
tiation based on constraints such as available hardware resources, QoS and network topology. DE has access
to algorithm repository that can execute to make decisions on deployment of service instances. The service
deployment algorithms can be dynamically updated regarding different deployment scenarios and service re-
quirements.

• Service Repository is a repository for storing dockerized compressed service images. Images of the services are
stored augmented with specification about service deployment in the form of JSON format. Our implementation
allows the third party service providers to upload their service along with a deployment description augmented
with specifications and QoS requirements.

• Monitoring Manager periodically collects the monitoring data from each SEG and stores in the database
(Monitoring DB). It is implemented based on a time series database, called InfluxDB9. We also implemented
the dashboard for monitoring system using Grafana10 to visualise time series data for SEG’s measurements and
application analytics. Figure 9 shows the user interface of PiCasso monitoring dashboard.

7
https://github.com/named-data/PyNDN2

8
https://github.com/docker/docker-py

9
https://github.com/influxdata/influxdb-python

10
https://grafana.com/

8

https://github.com/named-data/PyNDN2
https://github.com/docker/docker-py
https://github.com/influxdata/influxdb-python
https://grafana.com/

Figure 8: PiCasso’s function blocks

CPU Load Memory Usage (%)

CPU Usage (%)

Figure 9: PiCasso monitoring dashboard

INTEREST (prefix1)

INTEREST (prefix2)

DATA (prefix1)

DATA (prefix2)

Monitoring
Manager SEG1 SEG2

(a) Pull-based model

Decision
Engine

INTEREST (push)

DATA (#0)
INTEREST (#0)

DATA (#1)

INTEREST (#1)

DATA (#n)

INTEREST (#n)
:

SEG1

(b) Push-based model

Figure 10: Key operations in PiCasso. (a) Monitoring manager retrieves the monitoring data from SEGs. (b) Decision Engine delivers the service
to the SEG

3.3. Operations in PiCasso

In this section we explain the main operations performed by PiCasso as well as the benefits of using NDN stack
for content and service delivery.

3.3.1. Collecting monitoring data
The monitoring manager periodically places the pull requests against the monitoring agent of each SEG to collect

the current status of their resources. This operation follows the native pull-based communication model of NDN. As
shown in Figure 10a, the monitoring manager places the pull requests towards SEG1 and SEG2 while configuring
name-prefixes as /picasso/monitoring/SEG1/ and /picasso/monitoring/SEG2/ respectively. When the SEGs receives
this pull Interest message, they attach the current monitoring data with JSON format to the Data message and forward
to the same path that Interest message (reverse path forwarding) came from by using information in the PIT (Pending
Interest Table). To avoid receiving outdated data from the caches, we set the data freshness to a small value (e.g., 10
ms).

3.3.2. Service deployment heuristic
The Decision Engine (DE) of PiCasso relies on the service deployment algorithms to decide where to place ser-

vices in a given network zone aiming to maximise the QoS by optimizing the usage of scarce resources in CMN such
as bandwidth. The DE selects the appropriate algorithm from the repository regarding the scenario and requirements
of the network. The output of the algorithm is a list of selected nodes for deploying and then instantiating the service.

In this work, we propose HANET (HArdware and NETwork resource) heuristic algorithm, which is designed
specifically for service deployment in unreliable network environment such as wireless CMN zone. HANET uses the
state of the underlying CMN (i.e., the Guifi-Sants zone) to optimize service deployment. In particular, it considers
three sources of information: i) network bandwidth and ii) node availability and iii) hardware resources to make
optimized decisions. Note that other sources of information could be also considered, e.g. demand/load. For the sake
of simplify we have assumed light demanded services, dominated by the aforementioned information. First, we test
HANET with the static data obtained from the Guifi-Sants network (i.e., bandwidth, availability and CPU data). Then

9

we ran HANET in Guifi-Sants zone and quantify the performance achieved after deploying real services (discussed in
Section 4). The HANET heuristic algorithm (see Algorithm 1) runs in three phases:

Phase 1 - Setting up the network: In this phase, based on the raw data that we got from the Guifi-Sants zone, ini-
tially we build the topology graph of the network. The topology graph of the Guifi-Sants network zone is constructed
by considering only operational nodes (i.e., working) and having one or more links pointing to another node (i.e.,
we remove the disconnected nodes). Once the topology graph is built, we check the availability of the nodes in the
network. The nodes that are under the predefined availability threshold (λ) are removed. Then, we use the K-Means
partitioning algorithm to group nodes based on their geo-location. The idea is to get back clusters of nodes that are
close to each other. The K-Means algorithm forms k clusters of nodes based on the Euclidean distances between
them, where the distance metrics in our case are the geographical coordinates of the nodes, a simple and good enough
coordinate and Euclidean distance for K-Means calculation, expressing preference for closer nodes, reflecting lower
number of hops and better performance. Each cluster contains a full replica of a service, i.e., the algorithm in this
phase partitions the network topology into k (maximum allowed number of service replicas) clusters.

Phase 2 - Bandwidth Computation/Estimation: The second phase of the algorithm is based on the concept of
finding the cluster heads maximizing the bandwidth between them and their member nodes in the clusters Ck formed
in the first phase. The bandwidth between two nodes is estimated as the bandwidth of the link having the minimum
bandwidth in the shortest path. The cluster heads computed are the candidate nodes for the service placement.

Phase 3 - Content Placement: The third phase is executed after the cluster heads are computed in Phase 2. Based
on that, the services are placed on the selected cluster heads if their CPU load is under the predefined threshold. This
corresponds to pulling the service images from the service repository, pushing at the selected edge nodes (cluster
heads) and starting them.

HANET Performance and Complexity: Figure 11 shows the average bandwidth from the cluster heads (i.e., ob-
tained with different heuristics) to the other nodes of clusters. We compare HANET heuristic performance with
random (default strategy in Guifi.net and Guifi-Sants) and K-Means (Phase 1 of the algorithm). Figure 11 reveals
that for the considered number of services k, HANET outperforms both K-Means and random placement. For k = 2,
the average bandwidth to the cluster heads has increased from 18.3 Mbps (K-Means) to 27.7 Mbps (HANET), which
represents a 33.8% improvement. The highest increase of 45.67% is achieved when k = 11. Based on the observa-
tions from Figure 11, the gap between the two algorithms grows as k increases. We observe that k will increase as the
network grows. And hence, HANET will presumably render better results for larger network zones than the rest of
strategies.

The complexity of the HANET is as follows: for HANET, finding the optimal solution to the K-means (i.e., phase
one) clustering problem if k and d (the dimension) are fixed (e.g., in our case n = 77, and d = 2), the problem can be
exactly solved in time O(ndk+1 logn), where n is the number of entities to be clustered. The complexity for computing
the cluster heads in phase two is O(n2), and O(n) for the reassigning the clusters in phase three. Therefore, the overall
complexity of HANET is polylogarithmic O(n2k+1 logn), which is significantly smaller than the brute force method
and thus practical for commodity processors.

3.3.3. Delivering services to the edge
In PiCasso, the service images are kept in service repository which is the repository for providers to upload their

services. To distribute the services over the network, PiCasso requires the push-based communication model to push
the service from the service repository to the SEG at the edge of the network. However, PiCasso relies on NDN which
supports only pull-based model where a consumer (or receiver) has to initiate the communication. To support this
operation, we have implemented the push-based communication model based on Interest/Data exchange of primitive
NDN. We follow the publish-subscribe model [19] where a data producer (DE) publishes contents or services via
Interest message to a subscribed consumer which in turn trigger an Interest back from the consumer to fetch the data.
Figure 10b illustrates the Interest/Data exchange of the push-based model, where the DE initially sends a push Interest
message to SEG1 with a name prefix: /picasso/service deployment/push/SEG1/service name.

To distinguish the push Interest message from the NDN pull model, a name component, ”push” is added after the
operation name (i.e., ”service deployment”). Consequently, when SEG1 receives the push Interest message, it dis-
cards the (”push”) and (”SEG ID”) prefixes while reconstructing a new Interest name: /picasso/service deployment/
service name/#00 to request the service image. As in NDN, a content is divided into several chunks, the last prefix is

10

Algorithm 1 HANET (Hardware and Network-aware Service Placement) Heuristic

Require: topo= Gui f iSantsTopology.xml
λ . availability threshold
α . CPU threshold
Rn . availability of the node n
CPUch . CPU load of the cluster head
Bi . Bandwidth of the node i

Phase 1 – Setting up the network zone:

1: procedure NETWORKSETUP(topo)
2: g= BuildTopology(topo)
3: g′= SanitizeGraph(g)
4: for each item in g′ do
5: Remove disconnected nodes
6: Ensure bidirectional links
7: Remove nodes with no metrics
8: end for
9: if Rn≥ λ then

10: Per f ormKMeans(g′, k)
11: return C
12: end if
13: end procedure

Phase 2 – Bandwidth Computation/Estimation

14: procedure COMPUTEHEADS(C)
15: clusterHeads← list()
16: for all k ∈ C do
17: for all i ∈ Ck do
18: Bi← 0
19: for all j ∈ setdi f f (C,i) do
20: Bi← Bi+ estimate.route.bandwidth(g′,i,j)
21: end for
22: clusterHeads← argmaxC ∑

k
i=1 ∑ j∈Ci Bi j

23: end for
24: end for
25: return clusterHeads

26: end procedure

Phase 3 – Content Placement (Hardware)

27: procedure PLACEMENTPHASE
28: for each clusterHeads do
29: if CPUch≤ α then
30: DeployService()
31: StartService()
32: end if
33: end for
34: end procedure

reserved for the requesting chunk ID which is started from zero (e.g., #00).
PiCasso relies on NDN stack in order to benefit from dynamic in-network caching and name-based routing capa-

11

Random-GuifiSants

K-Means

HANET

Figure 11: Average bandwidth to the cluster heads (candidate nodes for service placement)

SEG2

SC

SEG1

FN1 FN2

Figure 12: PiCasso benefits from NDN mechanism as SEG2 can retrieve the service from the cache

bilities. Figure 12 shows an example that highlights this efficiency by considering a scenario where the DE decides
to deliver the service to SEG1 and SEG2. Note that the DE is running inside the service controller. At first, the
DE initially sends the push Interest message to SEG1 as shown in Figure 10b. During the service delivery process,
the forwarding nodes along the path naturally store content chunks in their cache (CS). As for the second stage, the
DE subsequently sends the push Interest with the same service name to SEG2. Thanks to the named based routing
of NDN and caches by the former request, SEG2 can opportunistically fetch the content from the nearest forwarding
node (e.g., FN2) without unnecessary route towards the DE. This is very helpful for the service delivery in community
network where connectivity is not always stable.

3.4. PiCasso in Guifi-Sants

In order to understand the feasibility of running PiCasso and to ensure the possible gains of our network-aware
service placement heuristic HANET in a real production CMN, we deploy PiCasso in small servers connected to the
nodes of the Guifi-Sants network zone, located in the city of Barcelona. We have strategically deployed 10 SEGs to
cover the area of Guifi-Sants network as presented in Figure 2. In our configuration, SEGs are connected to the ORs
via Ethernet cable and the service controller is centrally set up inside the main campus of Universitat Politecnica de
Catalunya (UPC) where the Guifi research lab is located. We consider lightweight services based on Docker container
which can be easily deployed at the edge (i.e. SEG node). The example of these services include the Video streaming
where the streamer is running inside the web server container (e.g., tomcat, apache). Notice that web services like
GStreamer are commonly used in Guifi-Sants. Another example refers to IoT related service that requires basic data
processing right at the edge. This includes collecting the sensor data as well as simple calculation like finding the
average/max/min value of sensors (e.g., temperature, humidity, CO, CO2).

Node Location: The location of five SEGs deployed is chosen based on the output of the HANET algorithm.
Initially, using data from the ORs, HANET outputs the location of five ORs. Based on this, we deploy five Raspberry

12

Pi’s to the selected ORs given by the HANET algorithm. This corresponds to the top-ranked nodes (i.e., cluster heads)
selected from the HANET; with higher bandwidth, availability and CPU resources. Then, using the data coming from
the RPI devices HANET is executed to find the best node (RPI device) for service deployment among five selected in
the earlier phase. The other five ORs in the Guifi-Sants are selected randomly for comparison purposes. In this set,
we cover nodes with different properties: high degree centrality, nodes that are not well connected, nodes acting as
bridges i.e., nodes with high betweenness centrality etc).

ICN Overlay: Our deployment in Guifi-Sants follows the ICN-as-an-Overlay approach [20] by constructing
an ICN shim layer on top of the existing routing protocol (i.e., BMX6). The name based routing in ICN layer is
maintained by the NFD forwarding plane. In this trail, we use a static routing to setup the forwarding table (FIB) of
each SEG and service controller based on actual information taken from the IP routing table of ORs in the Guifi-Sants
network.

Network Performance: In order to understand the possible effect of the network (e.g., background traffic) when
running our experiments, we measure the bandwidth and RTT (Round-trip time) of the Guifi-Sants network. Figure 13
shows the RTT and the bandwidth of the SEGs during the time when we run experiments in the Guifi-Sants network.
For each SEG (in total 10) we plot the mean throughput and the mean RTT to every other SEG (for each SEG we plot
9 values) in the boxplot form. The values are sorted from lower to higher throughput median. We can observe that, the
lower the throughput is the higher the RTT is. Some of the SEGs in the network are connected with high-bandwidth
links reaching a bandwidth of 30 Mbps and others with really low bandwidth links i.e, 2 Mbps.

0

25

50

75

10

20

30

40

4 3 6 10 2 9 7 1 8 5
SEG Name

M
ea

n
th

ro
ug

hp
ut

[M
bp

s]
M

ea
n

R
T

T
[m

s]

Figure 13: RTT and bandwidth of the deployed SEGs

4. Performance Evaluation

In this section we demonstrate the performance of PiCasso platform in a zone of a production mesh network such
as Guifi-Sants. We concentrate on benchmarking two services: user and network-focused services. From the user
services, we quantify the performance of the HANET heuristic using a stateless service (ApacheBench [21]) and a
stateful Web2.0 service (Cloudsuite Web Serving benchmark [22]). The evaluation of end-user services is based on the

13

web technology while measuring the response time is the key performance metric. The evaluation of network services
focuses on the efficiency of service delivery in PiCasso comparing to a traditional host-centric communication (HCN)
approach.

4.1. Evaluation of End-user Services
One of the major goals of PiCasso is to improve the QoS by delivering services close to the users at the network

edge. This can alleviate the impact of intermittent connectivity problem as well as reducing the latency to access
a service. Deploying multiple service instances can significantly improve the QoS in a network zone, since servers
or containers can balance the load and improve response to user requests. However, in practice, it is not trivial to
have a service instance in every location as it comes with extra costs such as bandwidth consumption, memory usage
and CPU load. To balance this trade-off, the HANET service deployment heuristic allows to decide where (in which
nodes) to place the services. We compare the HANET heuristic with the random heuristic i.e., the usual strategy in
the Guifi-Sants network zone11.

4.1.1. Stateless user services
In the evaluation with Apache tool, we focus on the response time of the HTTP requests while considering dif-

ferent number of service replicas (e.g., k = 1 and k = 2). The location of the service replicas is determined by the
HANET algorithm. Based on HANET, {SEG1} and {SEG1,SEG8} are selected for k = 1 and k = 2 respectively, as
highlighted in Figure 2. In this experiment, we consider a lightweight web server, namely hypriot/rpi-busybox-httpd
which contains a static single HTML document with a link to a local JPEG image (the payload size is 304 bytes). This
service image is delivered to the selected SEGs by using the operation in Figure 10b. In each node, we configured the
Apache tool to simulate 10 clients instructed to send 500 HTTP sequential requests to the closest replica.

Figure 14 depicts the CDF of response time collected from the Apache client nodes. Generally, HANET achieves
significantly lower response times compared to a random choice. We observed that, for k = 1, 80% of the requests
achieve response time less than 360 ms when using HANET and 700 ms when using the random approach, respec-
tively. Further, increasing the number of replicas to k = 2 also reduces the response time of both algorithms. By
considering 80% of the requests, HANET reduces the response time down to less than 190 ms while a random choice
results in up to 324 ms, that is about 47.22% and 53.71% improvement compared to k = 1 case. For HANET, k = 2
is quite sufficient as almost 90% of the requests can achieve the response time less than 500 ms which is widely
acceptable for a static web application.

4.1.2. Stateful user services
From the stateful user services we are experimenting with the Web 2.0 service which mimics a social networking

application (e.g., Facebook). For our experiments, we use the dockerized version of the CloudSuite Web Serving
benchmark [22]. Cloudsuite benchmark has four tiers: the web server, the database server, the memcached server and
the clients. Each tier has its own Docker image. The web server runs the Elgg [23] social networking engine and
it connects to the memcached server and the database server. The clients (implemented using the Faban workload
generator) send requests to login into the social network and perform different operations.

We use 10 SEGs attached to the Guifi-Sants mesh routers, where 9 of them act as clients. One of the nodes is used
to deploy the web server. The web server, database server, and memcached server are always collocated in the same
host. On the clients side, we measure the response time while performing operations such as: posting on the wall,
sending a chat message, updating live feed operation, etc. In Cloudsuite, each operation is assigned an individual QoS
latency limit. If less than 95% of the operations meet the QoS latency limit, the benchmark is considered to be failed.
The location of the web server, database server, and memcached server has a direct impact on the client response time.

Figure 15 depicts three Cloudsuite operations performed when placing the web server with the HANET and ran-
dom heuristic. Figure 15 reveals that HANET outperforms random for all the operations; for PostingInTheWall
operation the improvement brought by HANET is 26.4%, for SendChatMessage operation 35.7% and for UpdateAc-
tivity operation 24%. We can notice that the gain brought by HANET is higher for more intensive workloads (i.e., on

11As the criteria for server choice usually depends on which server the service provider has an account, since they know and convince the owner,
and not according, therefore randomly, to location and characteristics of service demand.

14

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Response time (ms)

C
D

F

HANET k=1
Random k=1
HANET k=2
Random k=2

Figure 14: Response time of HTTP requests

average 53% improvement when performing 40 operations per client). Further, Figure 15 shows the average CPU load
observed in the clients when performing a different number of operations. The figure reveals that for 40 operations
per client, CPU is reaching a load of 3, and as a result of this we can have higher response times.

4.2. Evaluation of Network Services

In order to evaluate the network services, we focus on service delivery capability of PiCasso by considering how
service instances are made available at the network edge. We focus on the delivery cost which is the total time counting
from when the DE makes a service deployment decision until the service is delivered to the SEG. We compare the
delivery cost of our solution (PiCasso) with the classic host-centric networking approach (HCN) which is commonly
used in many edge computing platforms such as Cloudy [8] and Paradrop [24]. To implement this approach, we
disable in-network caching facility of PiCasso and direct the service to be delivered from the service repository to
each SEG, which is also similar to the IP unicast.

4.2.1. Analysis of service delivery cost
We select four dockerised containers which have different image sizes from the Docker hub and migrate them

from the service repository to all deployed SEGs. Table 1 shows a comparison between HCN and PiCAsso-HANET
solution in terms of average delivery time with different size Docker images.

Overall, the average delivery cost achieved by PiCasso is substantially lower than the HCN approach. For instance,
PiCasso can reduce the delivery cost of the armbuild/debian image from 154.94 to 70.74 seconds which is about 54%
improvement compared to the HCN solution. To have a closer look how a service image is delivered, we focus on
the Debian image and plot the delivery time across each node, as presented in Figure 16. By comparing HCN and
PiCasso, we observe that every SEG is improving the performance through the in-network caching and named-based
routing capabilities of PiCasso. The SEGs running PiCasso are able to retrieve the data chunks from the nearest cache
(discussion will be provided with Figure 17).

15

0 5 10 15 20 25 30 35 40
0.5

1.0

1.5

2.0

2.5

3.0
R

e
sp

o
n
se

 t
im

e
 (

s)
Posting in the wall

HANET (Clients Average)

Random (Clients Average)

0 5 10 15 20 25 30 35 40
0.2

0.4

0.6

0.8

1.0

1.2

R
e
sp

o
n
se

 t
im

e
 (

s)

Sending a chat message

HANET (Clients Average)

Random (Clients Average)

0 5 10 15 20 25 30 35 40

Number of operations per client

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

R
e
sp

o
n
se

 t
im

e
 (

s)

Update activity

HANET (Clients Average)

Random (Clients Average)

0 5 10 15 20 25 30 35 40

Number of operations per client

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
P
U

 L
o
a
d

CPU load

CPU Load (Cloudsuite Operations)

Figure 15: Cloudsuite Operations (HANET vs. Random)

Image name Size HCN PiCasso
hypriot/rpi-nano-httpd 88 kB 0.401 sec 0.139 sec
hypriot/rpi-busybox-httpd 2.16 MB 2.566 sec 1.014 sec
armhf-alpine-nginx 14.95 MB 16.021 sec 6.741 sec
armbuild/debian 145 MB 154.94 sec 70.741 ssec

Table 1: Comparison of the average delivery cost

On the other hand, the HCN approach is inefficient in terms of bandwidth utilisation. The red line in Figure 16
shows the link bandwidth with 95% confidence interval between each SEG and service repo using iperf (TCP traffic).
Given an example of SEG2, the average link bandwidth is 24.63 Mbit/s. However, the HCN approach acquires 186.3
second to deliver the service which is approximately 6.22 Mbit/s (image size of 145 MBytes). As previously stated
in Section 2.1, the resources in Guifi-Sants network are not uniformly distributed. This indicates that the traditional
HCN approach is not sufficient to support good quality service delivery in this dynamic environment. In contrast,
PiCasso significantly improves the bandwidth utilisation, for instance the delivery cost of SEG2 is only 50.46 second
which is equivalent to bandwidth of 22.99 Mbit/s.

4.2.2. Investigating traffic consumption of service delivery
Previous results demonstrated that PiCasso efficiently improves the service delivery in Guifi-Sants network. To

further investigate this, we perform sensitivity analysis on the amount of traffic that is consumed for delivering the
service images to the SEGs. We inspect the amount of traffic among SEGs and the service controller from the nfd-
status reports [25]. However, the information from these reports contains only the traffic of an overlay network. To
construct the actual traffic that spread over the Guifi-Sants network, we map the paths from PiCasso overlay with the

16

1 2 3 4 5 6 8 9 10

SEG Name

0

50

100

150

200

250

300
D

el
iv

er
y

C
os

t (
se

co
nd

)

HCN
PiCasso●

●

●

●

●

●

●

●
● 10

20

30

40

50

60

70

A
ve

ra
ge

 B
an

dw
id

th
 (

M
bi

t/s
)

Figure 16: Inspecting the delivery cost of each SEG

routing tables of BMX6 routing protocol. For instance, the path between service controller and SEG5 (see Figure 2)
can be mapped to UPC-Portal - UPC-Alix - GSgV rb - GSgranVia - CanBruixa (i.e., names denote the location of
routers).

Figure 17 depicts the distribution of data traffic transferred among mesh routers to deliver a service image to
all 10 SEGs. Here, we solely present the results of delivering armbuild/debian image (the largest image size in the
experiments) due to space constraints. The total amount of traffic consumed by HCN approach is approximately 5.375
GB while our PiCasso achieved only 3.05 GB which is about 43.24% reduction. In case of HCN, the most dominant
traffic path is a link between GSgV rb and UPC-Portal since this is a bottleneck link between nodes deployed in
Guifi-Sants and the service controller at the UPC Campus. In contrast, PiCasso significantly reduces the traffic over
this link. The reason is that PiCasso takes benefits of the edge caching by allowing SEGs to retrieve a service image
from closer nodes. As illustrated in Figure 2, we deployed SEG1 at the node GSgV rb which has the highest degree
centrality (i.e., it is well connected by other nodes). In this manner, several nodes (e.g., SEG2, SEG5, SEG6, SEG8,
SEG9) can directly retrieve the data chunks from the cache of SEG1. This is very useful as the cache is utilised closer
to the network edge. In addition to traffic reduction, PiCasso also improves the service delivery process with lower
cost when deploying service instances.

5. Discussion

Local Service Ecosystem: The PiCasso edge computing platform, combines a set of NDN tools that simplify and
optimize the delivery of content and services to clients, a kind of local CDN, ideally with presence of PiCasso support
in the first hop, the access point. The result is that the indirection infrastructure offloads a majority of requests,
decoupling content and service from the volume of demand. This encourages CMN users to participate as active
contributors of services, ultimately creating an ecosystem of local services, as PiCasso can automate the load spreading
across several servers and nearby network links, and increase the robustness of service delivery. PiCasso packages
together different cloud services and content at near minimal network and server cost to end users. However, the
challenge for Picasso remains to analyze and optimize the delivery of different kinds of services when using the ICN
paradigm. For instance, one of the services to consider in our future work is live video streaming, that can benefit
from taking advantage of the application semantics.

17

G
S

gV
_r

b

U
P

C
_A

lix

U
P

C
_P

or
ta

l

G
S

26
ge

ne
r

G
S

gr
an

V
ia

P
is

ue
rg

a

H
W

C
tr

aC
ol

l

U
P

C
_T

er
ra

t

m
el

ci
or

pa
la

u

Jp
Ta

rr
ad

el

N
ev

ar
is

to
ar

C
an

B
ru

ix
a

Ja
rd

iB
ot

an
ic

B
C

N
S

an
ts

B
C

N
_S

al
ou

U
P

C
_E

E
TA

C

UPC_EETAC
BCN_Salou
BCNSants
JardiBotanic
CanBruixa
Nevaristoar
JpTarradel
melciorpalau
UPC_Terrat
HWCtraColl
Pisuerga
GSgranVia
GS26gener
UPC_Portal
UPC_Alix
GSgV_rb

0 200 400 600 800 1000 1200

Value

0
15

0

Color Key
and Histogram

C
ou

nt

(a) Experiments with HCN

G
S

gV
_r

b

U
P

C
_A

lix

U
P

C
_P

or
ta

l

G
S

26
ge

ne
r

G
S

gr
an

V
ia

P
is

ue
rg

a

H
W

C
tr

aC
ol

l

U
P

C
_T

er
ra

t

m
el

ci
or

pa
la

u

Jp
Ta

rr
ad

el

N
ev

ar
is

to
ar

C
an

B
ru

ix
a

Ja
rd

iB
ot

an
ic

B
C

N
S

an
ts

B
C

N
_S

al
ou

U
P

C
_E

E
TA

C

UPC_EETAC
BCN_Salou
BCNSants
JardiBotanic
CanBruixa
Nevaristoar
JpTarradel
melciorpalau
UPC_Terrat
HWCtraColl
Pisuerga
GSgranVia
GS26gener
UPC_Portal
UPC_Alix
GSgV_rb

0 200 400 600 800 1000 1200

Value

0
15

0

Color Key
and Histogram

C
ou

nt

(b) Experiments with PiCasso

Figure 17: Data traffic distributed over the Guifi-Sants network. X and Y axis denote the name of mesh routers while the gradient on each coordinate
represents the density of traffic (MBytes) over a link between two routers.

Deployment benefits (transparency): The Picasso platform is easy to deploy thanks to the plug-and-play feature
of nodes. The adoption of the Picasso platform requires minimal changes in the WISP (Wireless Internet Service
Provider) architecture or network configuration since nodes are added via plug-and-play. Moreover, PiCasso nodes
are able to discover the closest node and dynamically retrieve the service image from the nearest cache. Hence, content
can be transparently delivered, cached and deployed at the network edge, at just one network hop from the client.

Traffic reduction benefits (Operator gain): As mentioned in our analysis, network bandwidth is crucial in
Guifi-Sants network since it highly fluctuates. Even though the end-user services could not gain much benefits from
ICN capability as we haven’t intervene the end user to upgrade their devices to support the ICN. In contrast, only
the network equipments (e.g., SEG node) in Guifi.net are ICN ready. The use of ICN over PiCasso platform results
in significant traffic reduction in network zones from the benefits of in-network caching and name-based routing.
These functions assists PiCasso to reduce the service delivery cost as well as the network traffic during the service
deployment (42% reduction in terms of traffic comparing to a host-centric solution). However, regarding the results
from our deployment trial, the traffic consumption of PiCasso is not yet optimized. As a matter of fact, NDN strictly
requires the collaborative effort in order to achieve the maximum bandwidth reduction from in-network caching
capability. However, in our case, we couldn’t deploy the PiCasso node (SEGs) in all locations. For instance, the
owner of GSGgranVia node, one of the most critical node from our selection algorithm due to its network centrality,
didn’t let us deploy the SEG in this location. From our calculation, we could be able to reduce the data traffic around
871 MB compared to the results in Figure 17b. The main reason is that node would become a central hub for content
distribution to the rest o the network: that would benefit everyone else except from that particular node. To summarize,
in a mid-size network zone (e.g., 80 nodes) as in the Guifi-Sants case, if we can deploy the PiCasso in critical nodes
of the network, the expected traffic reduction will be similar in percentage, but given the larger size of the network
zone, having content still one hop away from users results in a bigger difference in terms of intra-network traffic that
reduces network congestion, in addition to an increase of controller (server) load that grows more slowly than the size
of the network.

6. Related Work

The work in PiCasso brings together many building blocks aiming at developing an efficient platform for service
delivery in challenging network environments. This section reviews the main related works by classifying them in

18

the following areas: edge computing platforms, content delivery networks (CDNs) and service placement. Each
subsection discusses the works and compares with our work.

6.1. Edge Computing Platforms

Many researchers have leveraged the advantage of lightweight virtualisation technologies (e.g., Docker [17],
Unikernel [26]) by proposing edge computing platforms to improve the QoS, security and privacy [27, 28, 29, 24,
8, 30, 31].

The work in [27] studies how Information-Centric Networking in combination with Mobile Edge Computing can
work together in the context of connected vehicle environments. Authors present a vehicular scenario and list the chal-
lenges. However, the authors propose only the conceptual design architecture (without a proof of concept prototype).
Sathiaseelan et al. [28] proposes Cloudrone, an edge computing platform for delivering the services over a cluster
of flying drones. This work reports only a feasibility study and evaluation of the system using Docker containers
over a single Raspberry Pi device. Similar to this work, Yehia et al. [29] study the scalability of Docker containers
with different generations of Raspberry Pi’s. Accordingly, these works are still lacking of required components for
edge computing platform such as orchestration, monitoring and communication modules. The work in [32] presents
a general framework where global cloud and ICN platforms are complemented by local clouds formed at the edge
of the network by mobile devices. The prototype of PiCasso has been introduced in [33]. However, the evaluation
of communication protocol for delivering the service has not been discussed yet. In contrast, this paper presents a
complete architecture of PiCasso and evaluates the performance of service delivery with HANET algorithm and NDN
solution. Cloudy [8] is the core software of the community clouds [2], as it unifies the different tools and services for
the distributed cloud system with a Debian-based Linux distribution. Cloudy provides custom decentralised services
for network management and service discovery. Paradrop [24] is a specific edge computing platform that provides
(modest) computing and storage resources at the “extreme” edge of the network allowing third-party developers to
flexibly create new types of services. The main limitation of these two platforms is a lack of service controller who au-
tomatically applies complex algorithms for service deployment regarding network condition and hardware resources.
Furthermore, they are relied on host-centric communication which is not efficient for community networks as dis-
cussed in Section 4.2. Another work similar to ours is SCANDEX [30], a service centric networking framework for
challenging decentralised networks by bringing together the lightweight virtulisation, ICN and DTN technologies.
However, the authors propose only the conceptual design architecture. NFaaS [31] is another platform that aims to
leverage the information-centric communication. NFaaS architecture is based on Unikernel and NDN while enabling
the seamless execution of stateless microservices across the network. However, the authors only evaluate the system
through simulation while the real implementation is still under development.RICE [34] is another edge-ICN platform
that allows remote invocation to execute the function on the fly. RICE uses a TLV field of NDN message to add more
information on the message which also supports the push communication without tweaking the natural pull based
model of NDN.

6.2. Content Delivery Networks

With the massive growth of Internet traffic, CDNs has become a key solution to support scalability of Internet
content delivery services. However, current CDNs are not collaborative, there is a lack of collaboration among CDNs
providers (e.g., Akamai, Limelight) and ISPs. The leading content providers like Google, Amazon, Facebook also
prefer to build their own CDNs infrastructure with private policies [35]. Despite there is an attempt from CDNi IETF
working group proposing a collaborative solution for CDNs, the proposal just focuses on the protocol design rather
than practical implementation [36]. Moreover, CDNs architecture is still based on host-centric communication whilst
the CDN server can become easily congested and become a network bottleneck [37].

The clean slate approach called Information Centric Networks (ICNs) has recently emerged which inherently
integrated the content delivery capability in the architecture [38]. Several research projects have been proposed to
cope with the efficiency of content delivery, which have also been considered as the future Internet architecture [12,
13, 14, 15, 16]. Among those ICNs realisations, NDN (Named Data Networking) aims to utilise the widely distributed
caching in the network by delivering contents based on name based routing with a simple stateful forwarding plane.
In contrast, PURSUIT [13] and RIFE [14] architectures are designed based on a centralised solution where there is
a central entity to control the published and subscribed requests. In PiCasso, we have extended the NDN code base

19

in order to leverage the distributed in-network caching in a network zone while integrating a new service abstraction
layer to support service delivery rather than static content.

6.3. Service/Node Placement

Service placement is a key function of cloud management systems. By monitoring the resources on a system,
service placement aims to balance load through the allocation, migration and replication of tasks. We look at the
service placement problem in three different environments: wireless networks, data centres (DCs) and distributed
data centres.

The work of Al Arnaut [39, 40], proposes a content replication scheme for wireless mesh networks. The pro-
posed scheme is divided into two phases including the selection of replica nodes (network setup phase) and content
placement, where content is cached in the replicas based on popularity. The first phase aims to partition the network
into p sub graphs and each partition will have one replica node. The second phase aims to distribute the content to
be cached in the replicas based on content popularity. Panadero et. al. [41, 42] proposes the Multi Criteria Biased
Randomized (MCBR) method, a selection method for large-scale systems that use unreliable nodes. MCBR method is
based on a multicriteria optimization strategy. They evaluate their method in a microblogging social network formed
by a large number of microservices hosted by volunteer nodes. Selimi et. al., [43] put forward a service placement
algorithm, called BASP, to place micro-cloud services in CMNs. The algorithm uses K-Means for clustering and
a lightweight bandwidth computation/estimation heuristic. The HANET algorithm used in PiCasso platform is the
advanced and lighthtweight version of the BASP. Coimbra et. al., [44] proposes a novel service placement approach
based on community finding using a scalable graph label propagation technique and decentralized election procedure.
Another example of a network-aware approach is the work from Moens in [45] which employs a Service Oriented
Architecture (SOA), where applications are constructed as a collection of services. Their approach performs node and
link mapping simultaneously. The work in [46] extends the work of Moens in wireless settings taking into account the
IoT. Spinnewyn [47] provides a resilient placement of mission-critical applications on geo-distributed clouds using
heuristic based on subgraph isomorphism detection. Tantawi [48, 49] uses biased statistical sampling methods for
cloud workload placement. Regarding the service placement through migration, the authors in [50] and [51] study the
dynamic service migration problem in mobile edge-clouds that host cloud-based services at the network edge. The
work in [52] evaluates the migration performance of various real applications in mobile edge clouds (MEC). The work
of Elmroth [53] takes into account rapid user mobility and resource cost when placing applications in Mobile Cloud
Networks (MCN). Sevil et. al., [54] propose a fully automated approach to the joint optimization problem of scaling
and placement of virtual network services.

Most of the work in the distributed data centers consider micro-datacenters, where in our case the CMN such as
Guifi-Sants consist of constraint/low-power devices such as Raspberry Pi’s. Our service placement heuristic HANET
allows us to prioritize, in an easy and fast way the most important parameters of both the network and the nodes to
place services, providing a flexible and agile method. Further, most of the above mentioned pieces of work are not
applicable to our case because we have a strong heterogeneity given by the limited capacity of nodes and links, as
well as asymmetric quality of wireless links.

7. Conclusion

The network environment in Community Mesh Networks (CMNs) is highly dynamic and network servers tend
to be very modest, which make it hard to offer good quality content and services to the end-users. In this paper,
we have analysed the characteristics of a Guifi.net network zone to identify the key requirements for developing edge
computing and content services. From this analysis, we have argued that most of the existing platforms are not suitable
for the CMNs since they rely on host-centric communication. In this aspect, we propose PiCasso, an edge computing
platform that utilises the strength of lightweight virtualisation technology and Information-Centric Networking (ICN)
to overcome the challenges in CMNs and deliver most content to users one or few hops away only. Unlike other
platforms, PiCasso contains a decision engine that manages the service deployment operation in network zones. To
address this issue, we have also proposed a heuristic algorithm, HANET, which considers both hardware and network
resources. Through our results, HANET optimally selects the nodes to host the service and ensures that the end-users
can achieve better QoS, depending mainly on the performance of a single hop to reach a SEG, instead of the multi-hop

20

traffic to the origin server. Apart from improving QoS of end-users services, our results show that ICN plays a key
role to improve the service delivery time as well as reducing the traffic consumption in CMNs.

There are several directions to extend this work. First, we plan to implement the user interface of service controller
where the network administrators can manage the service deployment operation. This interface will include the option
to select and update the service deployment algorithms for different scenarios. Second, we are developing several
algorithms (e.g., based on centrality measures) that could support different scenarios and requirements for service
deployment. Lastly, we wish to deploy PiCasso in other CMN zones which might have different environments.

Acknowledgments

This paper has been supported by the AmmbrTech Group, the Spanish government TIN2016-77836-C2-2-R and
the European Community H2020 Programme netCommons (688768) and UMobile (645124). The authors would like
to thank the people from the Guifi.net (Guifi-Sants) community network for hosting the servers and supporting the
experiments. Thanks to Roger Pueyo for proofreading the article.

References

[1] D. Vega, R. Baig, L. Cerdà-Alabern, E. Medina, R. Meseguer, L. Navarro, A technological overview of the guifi.net community network,
Computer Networks 93, Part 2 (2015) 260 – 278. doi:http://dx.doi.org/10.1016/j.comnet.2015.09.023.
URL //www.sciencedirect.com/science/article/pii/S1389128615003436

[2] M. Selimi, A. M. Khan, E. Dimogerontakis, F. Freitag, R. P. Centelles, Cloud services in the guifi.net community network, Computer
Networks 93, Part 2 (2015) 373 – 388. doi:http://dx.doi.org/10.1016/j.comnet.2015.09.007.
URL //www.sciencedirect.com/science/article/pii/S1389128615003175

[3] R. Baig, R. P. Centelles, F. Freitag, L. Navarro, On edge microclouds to provide local container-based services, in: 2017 Global Information
Infrastructure and Networking Symposium, GIIS 2017, Saint Pierre, France, October 25-27, 2017, 2017, pp. 31–36. doi:10.1109/GIIS.
2017.8169801.
URL https://doi.org/10.1109/GIIS.2017.8169801

[4] A. Lertsinsrubtavee, M. Selimi, A. Sathiaseelan, L. Cerdà-Alabern, L. Navarro, J. Crowcroft, Information-centric multi-access edge comput-
ing platform for community mesh networks, in: Proceedings of the 1st ACM SIGCAS Conference on Computing and Sustainable Societies,
COMPASS ’18, ACM, New York, NY, USA, 2018, pp. 19:1–19:12. doi:10.1145/3209811.3209867.
URL http://doi.acm.org/10.1145/3209811.3209867

[5] A. Lertsinsrubtavee, A. Ali, C. Molina-Jimenez, A. Sathiaseelan, J. Crowcroft, Picasso: A lightweight edge computing platform, in: 2017
IEEE 6th International Conference on Cloud Networking (CloudNet), 2017, pp. 1–7. doi:10.1109/CloudNet.2017.8071529.

[6] A. Neumann, E. Lopez, L. Navarro, An evaluation of bmx6 for community wireless networks, in: 8th IEEE International Conference on
Wireless and Mobile Computing, Networking and Communications (WiMob), 2012 I, 2012, pp. 651–658. doi:10.1109/WiMOB.2012.

6379145.
[7] A. Neumann, E. Lopez, L. Cerda-Alabern, L. Navarro, Securely-entrusted multi-topology routing for community networks, in: 2016 12th

Annual Conference on Wireless On-demand Network Systems and Services (WONS), 2016, pp. 1–8.
[8] R. Baig, F. Freitag, L. Navarro, Cloudy in guifi.net: Establishing and sustaining a community cloud as open commons, Future Generation

Computer Systemsdoi:https://doi.org/10.1016/j.future.2017.12.017.
URL http://www.sciencedirect.com/science/article/pii/S0167739X1732856X

[9] Guinux, https://guifi.net/en/node/29320, accessed: 2018-02-10.
[10] E. Dimogerontakis, R. Meseguer, L. Navarro, Internet Access for All: Assessing a Crowdsourced Web Proxy Service in a Community

Network, Springer International Publishing, Cham, 2017, pp. 72–84. doi:10.1007/978-3-319-54328-4_6.
URL http://dx.doi.org/10.1007/978-3-319-54328-4_6

[11] D. Vega, L. Cerda-Alabern, L. Navarro, R. Meseguer, Topology patterns of a community network: Guifi.net, in: 1st International Workshop
on Community Networks and Bottom-up-Broadband (CNBuB 2012), within IEEE WiMob, Barcelona, Spain, 2012, pp. 612–619. doi:

10.1109/WiMOB.2012.6379139.
[12] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, R. L. Braynard, Networking named content, in: Proceedings of the

5th International Conference on Emerging Networking Experiments and Technologies, CoNEXT ’09, ACM, New York, NY, USA, 2009, pp.
1–12. doi:10.1145/1658939.1658941.
URL http://doi.acm.org/10.1145/1658939.1658941

[13] PURSUIT a Pub/Sub Internet, http://www.fp7-pursuit.eu/PursuitWeb/, accessed: 2018-02-10.
[14] RIFE: Architecture for an Internet for everybody, https://rife-project.eu/, accessed: 2018-02-10.
[15] Scalable and Adaptive Internet Solutions (SAIL), http://www.sail-project.eu, accessed: 2018-02-10.
[16] NetInf - Network of Information, http://www.netinf.org, accessed: 2018-02-10.
[17] Docker technology, https://www.docker.com/what-docker, accessed: 2018-02-10.
[18] C.-A. Sarros, A. Lertsinsrubtavee, C. Molina-Jimenez, K. Prasopoulos, S. Diamantopoulos, D. Vardalis, A. Sathiaseelan, Icn-based edge

service deployment in challenged networks, in: Proceedings of the 4th ACM Conference on Information-Centric Networking, ICN ’17,
ACM, New York, NY, USA, 2017, pp. 210–211. doi:10.1145/3125719.3132096.
URL http://doi.acm.org/10.1145/3125719.3132096

21

http://dx.doi.org/http://dx.doi.org/10.1016/j.comnet.2015.09.023
//www.sciencedirect.com/science/article/pii/S1389128615003436
http://dx.doi.org/http://dx.doi.org/10.1016/j.comnet.2015.09.007
//www.sciencedirect.com/science/article/pii/S1389128615003175
https://doi.org/10.1109/GIIS.2017.8169801
http://dx.doi.org/10.1109/GIIS.2017.8169801
http://dx.doi.org/10.1109/GIIS.2017.8169801
https://doi.org/10.1109/GIIS.2017.8169801
http://doi.acm.org/10.1145/3209811.3209867
http://doi.acm.org/10.1145/3209811.3209867
http://dx.doi.org/10.1145/3209811.3209867
http://doi.acm.org/10.1145/3209811.3209867
http://dx.doi.org/10.1109/CloudNet.2017.8071529
http://dx.doi.org/10.1109/WiMOB.2012.6379145
http://dx.doi.org/10.1109/WiMOB.2012.6379145
http://www.sciencedirect.com/science/article/pii/S0167739X1732856X
http://dx.doi.org/https://doi.org/10.1016/j.future.2017.12.017
http://www.sciencedirect.com/science/article/pii/S0167739X1732856X
http://dx.doi.org/10.1007/978-3-319-54328-4_6
http://dx.doi.org/10.1007/978-3-319-54328-4_6
http://dx.doi.org/10.1007/978-3-319-54328-4_6
http://dx.doi.org/10.1007/978-3-319-54328-4_6
http://dx.doi.org/10.1109/WiMOB.2012.6379139
http://dx.doi.org/10.1109/WiMOB.2012.6379139
http://doi.acm.org/10.1145/1658939.1658941
http://dx.doi.org/10.1145/1658939.1658941
http://doi.acm.org/10.1145/1658939.1658941
http://doi.acm.org/10.1145/3125719.3132096
http://doi.acm.org/10.1145/3125719.3132096
http://dx.doi.org/10.1145/3125719.3132096
http://doi.acm.org/10.1145/3125719.3132096

[19] U. De Silva, A. Lertsinsrubtavee, A. Sathiaseelan, C. Molina-Jimenez, K. Kanchanasut, Implementation and evaluation of an information
centric-based smart lighting controller, in: Proceedings of the 12th Asian Internet Engineering Conference, AINTEC ’16, 2016.

[20] A. Rahman, D. Trossen, D. Kutscher, R. Ravindran, Deployment Considerations for Information-Centric Networking (ICN) , Internet-Draft
(Jan. 2018).
URL https://tools.ietf.org/id/draft-rahman-icnrg-deployment-guidelines-05.html#

[21] “Apache Benchmarking tool”.
URL https://httpd.apache.org/docs/2.4/programs/ab.html

[22] T. Palit, Y. Shen, M. Ferdman, Demystifying cloud benchmarking, in: 2016 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), 2016, pp. 122–132.

[23] Introducing a powerful open source social networking engine, https://elgg.org/, accessed: 2018-02-10.
[24] P. Liu, D. Willis, S. Banerjee, Paradrop: Enabling lightweight multi-tenancy at the network’s extreme edge, in: 2016 IEEE/ACM Symposium

on Edge Computing (SEC), Vol. 00, 2016, pp. 1–13. doi:10.1109/SEC.2016.39.
URL doi.ieeecomputersociety.org/10.1109/SEC.2016.39

[25] A. Afanasyev, NFD Developer’s Guide, Tech. rep. (Feb. 2018).
URL http://named-data.net/publications/techreports/

[26] M. Anil, D. J. Scott, Unikernels: Rise of the Virtual Library Operating System, Queue 11 (11) (2013) 30:30–30:44.
[27] D. Grewe, M. Wagner, M. Arumaithurai, I. Psaras, D. Kutscher, Information-centric mobile edge computing for connected vehicle environ-

ments: Challenges and research directions, in: Proceedings of the Workshop on Mobile Edge Communications, MECOMM ’17, ACM, New
York, NY, USA, 2017, pp. 7–12. doi:10.1145/3098208.3098210.
URL http://doi.acm.org/10.1145/3098208.3098210

[28] A. Sathiaseelan, A. Lertsinsrubtavee, A. Jagan, P. Baskaran, J. Crowcroft, Cloudrone: Micro clouds in the sky, in: Proc. 2Nd Workshop on
Micro Aerial Vehicle Networks, Systems, and Applications for Civilian Use (DroNet’16), 2016.

[29] Y. Elkhatib, B. Porter, H. B. Ribeiro, M. F. Zhani, J. Qadir, E. Rivière, On using micro-clouds to deliver the fog, IEEE Internet Computing
21 (2) (2017) 8–15. doi:10.1109/MIC.2017.35.

[30] A. Sathiaseelan, L. Wang, A. Aucinas, G. Tyson, J. Crowcroft, Scandex: Service centric networking for challenged decentralised networks,
in: Proc. 2015 Workshop on Do-it-yourself Networking: an Interdisciplinary Approach (DIYNetworking ’15), 2015.

[31] M. Król, I. Psaras, Nfaas: Named function as a service, in: Proceedings of the 4th ACM Conference on Information-Centric Networking,
ICN ’17, ACM, New York, NY, USA, 2017, pp. 134–144. doi:10.1145/3125719.3125727.
URL http://doi.acm.org/10.1145/3125719.3125727

[32] E. Borgia, R. Bruno, M. Conti, D. Mascitti, A. Passarella, Mobile edge clouds for information-centric iot services, in: 2016 IEEE Symposium
on Computers and Communication (ISCC), 2016, pp. 422–428. doi:10.1109/ISCC.2016.7543776.

[33] A. Lertsinsrubtavee, A. Ali, C. Molina-Jimenez, A. Sathiaseelan, J. Crowcroft, Picasso: A lightweight edge computing platform, in: Proceed-
ings of the 6th IEEE International Conference on Cloud Networking, CloudNet’17, 2017.

[34] M. Król, K. Habak, D. Oran, D. Kutscher, I. Psaras, Rice: Remote method invocation in icn, in: Proceedings of the 5th ACM Conference on
Information-Centric Networking, ICN ’18, ACM, New York, NY, USA, 2018, pp. 1–11. doi:10.1145/3267955.3267956.
URL http://doi.acm.org/10.1145/3267955.3267956

[35] G. Carofiglio, G. Morabito, L. Muscariello, I. Solis, M. Varvello, From content delivery today to information centric networking, Comput.
Netw. 57 (16) (2013) 3116–3127.

[36] L. Peterson, B. Davie, R. van Brandenburg, Framework for Content Distribution Network Interconnection (CDNI), RFC 7336 (Aug. 2014).
URL https://tools.ietf.org/html/rfc7336

[37] Q. Jia, R. Xie, T. Huang, J. Liu, Y. Liu, The collaboration for content delivery and network infrastructures: A survey, IEEE Access 5 (2015)
18088 – 18106. doi:10.1109/ACCESS.2017.2715824.

[38] G. Xylomenos, C. N. Ververidis, V. A. S. andn Nikos Fotiou, C. Tsilopoulos, X. Vasilakos, K. V. Katsaros, G. C. Polyzos, A survey of
information-centric networking research, IEEE Communications Surveys & Tutorials 16 (2) (2014) 1024–1049.

[39] Z. Al-Arnaout, Q. Fu, M. Frean, A content replication scheme for wireless mesh networks, in: Proceedings of the 22Nd International
Workshop on Network and Operating System Support for Digital Audio and Video, NOSSDAV ’12, ACM, New York, NY, USA, 2012, pp.
39–44. doi:10.1145/2229087.2229098.
URL http://doi.acm.org/10.1145/2229087.2229098

[40] Z. Al-Arnaout, Q. Fu, M. Frean, An efficient replica placement heuristic for community wmns, in: 2014 IEEE 25th Annual International Sym-
posium on Personal, Indoor, and Mobile Radio Communication (PIMRC), 2014, pp. 2076–2081. doi:10.1109/PIMRC.2014.7136514.

[41] J. Panadero, J. de Armas, X. Serra, J. M. Marquès, Multi criteria biased randomized method for resource allocation in distributed systems:
Application in a volunteer computing system, Future Generation Computer Systems 82 (2018) 29 – 40. doi:https://doi.org/10.1016/
j.future.2017.11.039.
URL http://www.sciencedirect.com/science/article/pii/S0167739X17315236

[42] J. Panadero, L. Calvet, J. M. Marquès, A. A. Juan, A simheuristic approach for resource allocation in volunteer computing, in: 2017 Winter
Simulation Conference (WSC), 2017, pp. 1479–1490. doi:10.1109/WSC.2017.8247890.

[43] M. Selimi, L. Cerdà-Alabern, F. Freitag, L. Veiga, A. Sathiaseelan, J. Crowcroft, A lightweight service placement approach for community
network micro-clouds, Journal of Grid Computingdoi:10.1007/s10723-018-9437-3.
URL https://doi.org/10.1007/s10723-018-9437-3

[44] M. E. Coimbra, M. Selimi, A. P. Francisco, F. Freitag, L. Veiga, Gelly-scheduling: Distributed graph processing for service placement in
community networks, in: 33rd ACM/SIGAPP Symposium On Applied Computing (SAC 2018), ACM, 2018.

[45] H. Moens, et al., Hierarchical network-aware placement of service oriented applications in clouds, in: 2014 IEEE Network Operations and
Management Symposium (NOMS), 2014, pp. 1–8. doi:10.1109/NOMS.2014.6838230.

[46] B. Spinnewyn, B. Braem, S. Latré, Fault-tolerant application placement in heterogeneous cloud environments, in: Network and Service
Management (CNSM), 2015, pp. 192–200. doi:10.1109/CNSM.2015.7367359.

22

https://tools.ietf.org/id/draft-rahman-icnrg-deployment-guidelines-05.html
https://tools.ietf.org/id/draft-rahman-icnrg-deployment-guidelines-05.html#
https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
doi.ieeecomputersociety.org/10.1109/SEC.2016.39
http://dx.doi.org/10.1109/SEC.2016.39
doi.ieeecomputersociety.org/10.1109/SEC.2016.39
http://named-data.net/publications/techreports/
http://named-data.net/publications/techreports/
http://doi.acm.org/10.1145/3098208.3098210
http://doi.acm.org/10.1145/3098208.3098210
http://dx.doi.org/10.1145/3098208.3098210
http://doi.acm.org/10.1145/3098208.3098210
http://dx.doi.org/10.1109/MIC.2017.35
http://doi.acm.org/10.1145/3125719.3125727
http://dx.doi.org/10.1145/3125719.3125727
http://doi.acm.org/10.1145/3125719.3125727
http://dx.doi.org/10.1109/ISCC.2016.7543776
http://doi.acm.org/10.1145/3267955.3267956
http://dx.doi.org/10.1145/3267955.3267956
http://doi.acm.org/10.1145/3267955.3267956
https://tools.ietf.org/html/rfc7336
https://tools.ietf.org/html/rfc7336
http://dx.doi.org/10.1109/ACCESS.2017.2715824
http://doi.acm.org/10.1145/2229087.2229098
http://dx.doi.org/10.1145/2229087.2229098
http://doi.acm.org/10.1145/2229087.2229098
http://dx.doi.org/10.1109/PIMRC.2014.7136514
http://www.sciencedirect.com/science/article/pii/S0167739X17315236
http://www.sciencedirect.com/science/article/pii/S0167739X17315236
http://dx.doi.org/https://doi.org/10.1016/j.future.2017.11.039
http://dx.doi.org/https://doi.org/10.1016/j.future.2017.11.039
http://www.sciencedirect.com/science/article/pii/S0167739X17315236
http://dx.doi.org/10.1109/WSC.2017.8247890
https://doi.org/10.1007/s10723-018-9437-3
https://doi.org/10.1007/s10723-018-9437-3
http://dx.doi.org/10.1007/s10723-018-9437-3
https://doi.org/10.1007/s10723-018-9437-3
http://dx.doi.org/10.1109/NOMS.2014.6838230
http://dx.doi.org/10.1109/CNSM.2015.7367359

[47] B. Spinnewyn, R. Mennes, J. F. Botero, S. Latré, Resilient application placement for geo-distributed cloud networks, Journal of Network and
Computer Applications 85 (2017) 14 – 31, intelligent Systems for Heterogeneous Networks. doi:https://doi.org/10.1016/j.jnca.
2016.12.015.
URL http://www.sciencedirect.com/science/article/pii/S1084804516303149

[48] A. N. Tantawi, Solution biasing for optimized cloud workload placement, in: 2016 IEEE International Conference on Autonomic Computing
(ICAC), 2016, pp. 105–110. doi:10.1109/ICAC.2016.34.

[49] A. N. Tantawi, Quantitative placement of services in hierarchical clouds, in: Proceedings of the 12th International Conference on Quantitative
Evaluation of Systems - Volume 9259, QEST 2015, Springer-Verlag New York, Inc., New York, NY, USA, 2015, pp. 195–210. doi:

10.1007/978-3-319-22264-6_13.
URL http://dx.doi.org/10.1007/978-3-319-22264-6_13

[50] R. Urgaonkar, S. Wang, T. He, M. Zafer, K. Chan, K. K. Leung, Dynamic service migration and workload scheduling in edge-clouds,
Performance Evaluation 91 (2015) 205 – 228. doi:http://dx.doi.org/10.1016/j.peva.2015.06.013.
URL //www.sciencedirect.com/science/article/pii/S0166531615000619

[51] S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer, K. K. Leung, Dynamic service placement for mobile micro-clouds with predicted future
costs, IEEE Trans. Parallel Distrib. Syst. 28 (4) (2017) 1002–1016. doi:10.1109/TPDS.2016.2604814.
URL https://doi.org/10.1109/TPDS.2016.2604814

[52] A. Machen, S. Wang, K. K. Leung, B. J. Ko, T. Salonidis, Live service migration in mobile edge clouds, in: IEEE Wireless Communications,
2017.

[53] W. Tärneberg, A. Mehta, E. Wadbro, J. Tordsson, J. Eker, M. Kihl, E. Elmroth, Dynamic application placement in the mobile cloud network,
Future Generation Computer Systems 70 (2017) 163 – 177. doi:http://dx.doi.org/10.1016/j.future.2016.06.021.
URL //www.sciencedirect.com/science/article/pii/S0167739X16302060

[54] S. Draxler, H. Karl, Z. A. Mann, Joint optimization of scaling and placement of virtual network services, in: 2017 17th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing (CCGRID), 2017, pp. 365–370. doi:10.1109/CCGRID.2017.25.

23

http://www.sciencedirect.com/science/article/pii/S1084804516303149
http://dx.doi.org/https://doi.org/10.1016/j.jnca.2016.12.015
http://dx.doi.org/https://doi.org/10.1016/j.jnca.2016.12.015
http://www.sciencedirect.com/science/article/pii/S1084804516303149
http://dx.doi.org/10.1109/ICAC.2016.34
http://dx.doi.org/10.1007/978-3-319-22264-6_13
http://dx.doi.org/10.1007/978-3-319-22264-6_13
http://dx.doi.org/10.1007/978-3-319-22264-6_13
http://dx.doi.org/10.1007/978-3-319-22264-6_13
http://dx.doi.org/http://dx.doi.org/10.1016/j.peva.2015.06.013
//www.sciencedirect.com/science/article/pii/S0166531615000619
https://doi.org/10.1109/TPDS.2016.2604814
https://doi.org/10.1109/TPDS.2016.2604814
http://dx.doi.org/10.1109/TPDS.2016.2604814
https://doi.org/10.1109/TPDS.2016.2604814
http://dx.doi.org/http://dx.doi.org/10.1016/j.future.2016.06.021
//www.sciencedirect.com/science/article/pii/S0167739X16302060
http://dx.doi.org/10.1109/CCGRID.2017.25

	Introduction
	Case Study: Guifi-Sants Mesh Network
	Guifi-Sants Network Characterization
	Key Observations

	PiCasso: Multi-Access Lightweight Edge Computing Platform
	Platform Overview
	Architecture of PiCasso
	Operations in PiCasso
	Collecting monitoring data
	Service deployment heuristic
	Delivering services to the edge

	PiCasso in Guifi-Sants

	Performance Evaluation
	Evaluation of End-user Services
	Stateless user services
	Stateful user services

	Evaluation of Network Services
	Analysis of service delivery cost
	Investigating traffic consumption of service delivery

	Discussion
	Related Work
	Edge Computing Platforms
	Content Delivery Networks
	Service/Node Placement

	Conclusion

