
Efficient Inter-Datacenter Bulk Transfers with Mixed Completion

Time ObjectivesI

Mohammad Noormohammadpour

University of Southern California

Srikanth Kandula

Microsoft

Cauligi S. Raghavendra

University of Southern California

Sriram Rao

Facebook

Abstract

Bulk transfers from one to multiple datacenters can have many different completion time

objectives ranging from quickly replicating some k copies to minimizing the time by which

the last destination receives a full replica. We design an SDN-style wide-area traffic sched-

uler that optimizes different completion time objectives for various requests. The scheduler

builds, for each bulk transfer, one or more multicast forwarding trees which preferentially

use lightly loaded network links. Multiple multicast trees are used per bulk transfer to in-

sulate destinations that have higher available bandwidth and can hence finish quickly from

congested destinations. These decisions–how many trees to construct and which receivers to

serve using a given tree–result from an optimization problem that minimizes a weighted sum

of transfers’ completion time objectives and their bandwidth consumption. Results from

simulations and emulations on Mininet show that our scheduler, Iris, can improve different

completion time objectives by about 2.5×.

Keywords: Replication, Bulk Multicast, Traffic Engineering, Inter-Datacenter

IThe work is partially supported by a Cisco Faculty Research Award under grant number 1312182.

Accepted to Computer Networks May 30, 2022

ar
X

iv
:1

90
5.

01
74

9v
3

 [
cs

.D
C

]
 1

5
Se

p
20

19

1. Introduction

A wide range of distributed applications replicate content and data to increase end-users’

quality of experience [1, 2, 3, 4, 5, 6, 7, 8] which results in inter-datacenter bulk multicast

transfers with a given set of receivers. For a variety of applications, objects may be replicated

to at least four datacenters and for some applications potentially to tens of datacenters [9, 10].

Moreover, an analysis of Baidu’s traffic [11] across 30 datacenters showed that over 90% of

the traffic is multicast and over 90% of the multicast transfers are destined to at least 60%

of datacenters.

A variety of approaches can be used to perform bulk multicast transfers. We can model

a bulk multicast transfer as multiple independent unicast bulk transfers [12, 13, 14, 4] which

wastes network capacity and can increase the transfer completion times. Standard internet

multicasting [15] builds multicast trees incrementally as receivers join the multicast session

without considering the distribution of traffic load across network links. Therefore, generated

multicast trees can be considerably larger than necessary with highly unbalanced network

load distribution. Overlay multicasting [16] builds application layer multicast trees which

may be far from the optimal due to limited visibility of network link level status and little

control of traffic routing at the network layer. Peer-to-peer file distribution [17, 18] aims

to maximize throughput per receiver in a decentralized fashion and greedily, which can

be far from global optimization. Centralized multicast routing approaches allow for better

multicast tree selection by incorporating a global view of network status. Some centralized

methods, such as [19, 20], target the regular and structured topologies of networks inside

datacenters, which cannot be directly applied to inter-datacenter networks. Many other

centralized techniques, such as [21, 22, 23, 24, 25, 26, 27], do not consider the optimization

of receiver completion times, especially in an online scenario with many concurrent bulk

multicast transfers. Finally, very recently, several centralized proposals aim to optimize the

completion times of bulk multicast receivers [9, 28]. Our work in this paper builds on these

techniques.

When receivers of a bulk multicast transfer have very different network bandwidth avail-

able on paths from the sender, the slowest receiver dictates the completion time for all re-

ceivers. Recent work suggests using multiple multicast trees to separate the faster receivers

2

which will improve the average receiver’s completion time [28]. However, each additional

tree consumes more network bandwidth and at the extremum, this idea devolves to one tree

per receiver. We aim to answer the following questions:

1. What is the right number of trees per transfer?

2. Which receivers should be grouped in each tree?

We analyze a relaxed version of this partitioning problem where each partition is a sub-

set of receivers attached to the sender with a separate forwarding tree. We first propose

a partitioning technique that reduces the average receiver completion times of receivers by

isolating slow and fast receivers. We study this approach in the relaxed setting of having a

congestion-free network core, i.e., links in/out of the datacenters are the capacity bottlenecks,

and considering max-min fair rate allocation from the underlying network. We then develop

a partitioning technique for real-world inter-datacenter networks, without relaxations, and

inspired by the findings from studying the relaxed scenario. The partitioning technique op-

erates by building a hierarchy of valid partitioning solutions and selecting the one that offers

the best average receiver completion times. Our evaluation of this partitioning technique

on real-world topologies, including ones with bottlenecks in the network core, show that the

technique yields completion times that are close to a lower bound and hence nearly optimal.

Back-end geo-distributed applications running on datacenters can have different require-

ments on how their objects are replicated to other datacenters. Hence, inter-datacenter

traffic is usually a mix of transfers with various completion time objectives. For example,

while reproducing n copies of an object to n different datacenters/locations, one applica-

tion may want to transfer k copies quickly to any among n given receivers, and another

application may want to minimize the time when the last copy finishes. In the former case,

grouping the slower n−k receivers into one partition consumes less bandwidth and this spare

bandwidth could be used to speed up the other transfers. In the latter case, by grouping all

receivers except the slowest receiver together to use one tree, we can isolate them from the

slowest receiver with minimal bandwidth consumption. Minimizing the completion times of

all receivers is another possible objective. Our technique takes as input a binary objective

vector whose ith element expresses interest in the completion time of the ith fastest receiver;

3

it aims to minimize the completion times of receivers whose rank is set to one in this objec-

tive vector. It is easy to see that following values of the objective vector achieve the goals

discussed so far; when k = 1, n = 3, {1, 0, 0}, {0, 0, 1} and {1, 1, 1} aim to minimize the

completion time of the fastest k out of n receivers, the slowest receiver, and all receivers,

respectively.

We have built a system called Iris which combines the proposed partitioning technique

and the application/user supplied objective vectors. It operates in a logically centralized

manner, receives bulk multicast transfer requests from end-points, and computes receiver

partitions along with their multicast forwarding trees. We create forwarding trees using

group tables [29]. Iris uses a RESTful API to communicate with the end-points allowing them

to specify their transfer properties and requirements (i.e., objective vectors) using which it

computes and installs the required rules in the forwarding plane. We believe our techniques

are easily applicable in today’s inter-datacenter networks [4, 30, 2]. Our contributions can

be summarized as follows:

• We propose a partitioning approach that reduces the effect of slow receivers by isolat-

ing them and attaching them using independent paths. We discuss various scenarios

where this approach offers different levels of performance compared to the optimal

partitioning on relaxed network topology and given max-min fair rate allocation.

• We incorporate binary objective vectors which allow applications to indicate transfer-

specific objectives for receivers’ completion times. Using the application-provided ob-

jective vectors, we can optimize for mixed completion time objectives based on the

trade-off between total network capacity consumption and the receivers’ average com-

pletion times.

• We present the Iris heuristic, which computes a partitioning of receivers for every

transfer given a binary objective vector. Iris aims to minimize the completion time

of receivers whose rank is indicated by applications/users with a one in the objective

vector while saving as much bandwidth as possible by grouping receivers whose ranks

are indicated with consecutive zeros in the objective vector.

4

• We perform extensive simulations and Mininet emulations with Iris using synthetic

and real-world Facebook inter-datacenter traffic patterns over large WAN topologies.

Simulation results show that Iris speeds up transfers to a small number of receivers (e.g.,

≥ 8 receivers) by ≥ 2× on the average completion time while the bandwidth used is

≤ 1.13× compared to state-of-the-art. Transfers with more receivers receive larger

benefits. For transfers to at least 16 receivers, 75% of the receivers complete at least

5× faster and the fastest receiver completes 2.5× faster compared to state-of-the-art.

Compared to performing multicast as multiple unicast transfers with shortest path

routing, Iris reduces mean completion times by about 2× while using 0.66× of the

bandwidth. Finally, Mininet emulations show that Iris reduces the maximum group

table entries needed by up to 3×.

2. Background and related Work

Point to Multipoint (P2MP) Bulk Transfers: Similar to bulk multicast, P2MP trans-

fers push data and content from one location to multiple locations. The transfer size, the

source and the receivers are known and fixed prior to initiation of the transfer. Load-aware

forwarding trees [9, 28, 31, 27], flexible source selection [26], and store-and-forward [32, 33]

have been used in recent work to save bandwidth and speed up transfer completion. Several

works around this subject focus on admission control for multicast transfers with deadlines

[26, 27] which is orthogonal to our work in this paper. Other works focus on transferring

large volumes of data with minimum increase in the network bandwidth cost [32, 33]. We

build our work in this paper on top of recent work on optimizing the completion times of

P2MP transfers [9, 28].

Network-layer Multicast: A vast variety of network-layer multicast solutions have been

proposed [15, 34, 35, 36, 37, 38, 39]. In general, these solutions consider the dynamic scenarios

where receivers may join or leave at any time; hence, they greedily adapt the multicast

distribution tree as the receiver set evolves. The problem considered in this paper differs in

the following key ways: we assume a known and fixed transfer size and set of receivers, we

assume SDN-style visibility and control on the network routes, and we support for general

completion time objectives. Compared to general multicast solutions that build multicast

5

trees incrementally and greedily as new receivers join, given a known and fixed set of receivers,

we can use the global knowledge of network load distribution and topology to select further

optimized multicast trees that reduce the number of bottlenecks and improve the receiver

completion times.

End-system Multicast: These works form multicast trees in the application layer among

the participating end-points [40, 16, 41, 42, 43, 11]; they have limited visibility and control of

the underlying network, i.e., they cannot easily change routes, identify available bandwidth

along network paths, etc. Therefore, depending on the network topology and the underlying

routing approach, these techniques may offer solutions far from the optimal in minimizing

the completion times of receivers.

Datacenter Multicast: Recently, some works propose using multicast trees within and be-

tween datacenters [20, 19, 44]. These approaches, however, operate specifically on datacenter

networks that have regular and structured topologies whereas inter-datacenter networks are

usually neither structured nor regular. Besides, these solutions do not aim at optimizing the

completion times of multicast receivers.

Reliable transport protocols for multicast: Reliable multicast schemes ensure that

data is completely and correctly received by all receivers using a variety of techniques such

as FEC codes [45, 46, 36, 47, 48, 49], retransmissions [50, 44, 36], etc. Lost data can be

detected using ACKs or NACKs. Iris is orthogonal to and can use any multicast transport

protocol.

Bit Indexed Explicit Replication: A recent proposal, BIER [51], encodes forwarding

state in the packet headers which simplifies network forwarding and improves scalability on

large networks. BIER allows changes to multicast trees with a small overhead. Iris can adopt

BIER for creating and updating multicast trees to reduce the cost of rule installations and

updates from SDN Group Tables.

Store-and-Forward (SnF): SnF techniques [33, 52, 32, 53] have been proposed for unicast

delay tolerant transfers to avoid periods of network congestion; a recent work called BDS uses

SnF for bulk multicast over unicast TCP connections that connect receivers in a line [11] to

increase network utilization given diurnal patterns of available capacity on backbone links.

6

SnF, however, increases the protocol complexity and can incur additional bandwidth and

storage costs on intermediate datacenters. Besides, formulating the bulk multicast problem

using SnF will result in a completely new model as the data transmission rate across the

edges of a multicast tree may be different which can change the nature of the problem in

several ways. First, additional optimization metrics should be considered, among which are

the total network storage and maximum per-node storage budget over multicast trees. Next,

in case there is no limit on how much data can be stored per-node in a multicast tree, the

slow receivers will automatically be isolated from the fast receivers over the tree. However,

given that we most likely will have storage budgets per intermediate node on a multicast

tree, this may create a complex relationship between the download speeds of fast and slow

receivers. Therefore, modeling bulk multicasting with SnF can generate highly complex

linear programs solving which may be slow. Application of SnF for bulk multicasting to

optimize receiver completion times is considered part of the future work.

Peer-to-Peer File Distribution: These techniques [54, 18, 17, 55] function locally and

greedily and cannot take advantage of SDN-style visibility and control of the inter-datacenter

networks for global optimization of transfers among datacenters.

3. System Model

We focus on proprietary inter-datacenter networks that connect geographically dispersed

datacenters such as Microsoft Global WAN [30], Facebook Express Backbone [2] and Google

GScale [4]. These networks are managed by one organization and their forwarding state

can be managed in a logically centralized manner. A traffic engineering server that runs Iris

algorithm decides how traffic is forwarded in-network similar to other related work [4, 14,

12, 13].

Cross datacenter traffic can, in general, be categorized as high priority user traffic that

is highly sensitive to latency and internal traffic (also known as elastic or background traffic

[14, 12]) that is more resilient to latency. Internal traffic constitutes the majority of cross

datacenter traffic, consists of huge volumes of replicated data and content that generate

long-running transfers, and is growing at a much faster pace than user-generated traffic [2].

By forwarding such traffic according to transfer properties (i.e., end-points and volume)

7

and network topology (i.e., connectivity and available bandwidth) we can optimize some

network-wide utility. Wide-area traffic management is a complex problem and in general

a variety of metrics can be considered for optimization [56]. We focus on internal traffic

that is a result of data and content replication which can be modeled as bulk multicast

transfers. These transfers are processed in an online manner as they arrive with the main

objective of optimizing completion times. Also, forwarding entries, which are installed for

every transfer upon arrival, are fixed until transfers’ completion and are only updated in

case of failures. Finally, we assume that all multicast transfers are of the same priority.

Extension of the proposed solutions to a scenario where transfers are of different value to

the operator/client(s) is considered as part of the future work.

We consider max-min fair [57] rate allocation across multicast forwarding trees. Traffic is

transmitted with the same rate from the source to all the receivers attached to a forwarding

tree. To reach max-min fair rates, such rates can either be computed centrally over specific

time periods, i.e., timeslots, and then be used for end-point traffic shaping or end-points

can gradually converge to such rates in a distributed fashion in a way similar to TCP [44]

(fairness is considered across trees). In our evaluations, we will consider the former approach

for increased network utilization. Using a fair sharing policy addresses the starvation problem

(such as in SRPT policy) and prevents larger transfers from blocking edges (such as in FCFS

policy). Recent work has also shown that such conditions can worsen over trees [28].

We use the notion of objective vectors to allow applications to define transfer-specific

requirements which in general can improve overall system performance and reduce bandwidth

consumption. An objective vector for a transfer is a vector of zeros and ones which is the

same size as the number of receivers of that transfer. From left to right, the binary digit

i in this vector is associated with the ith fastest receiver. A one in the objective vector

indicates that we are specifically interested in the completion time of the receiver associated

with that rank in the vector. By assigning zeros and ones to different receiver ranks, it

is possible to respect different applications’ preferences or requirements while allowing the

system to optimize bandwidth consumption further. The application/user, however, needs

not be aware of the mapping between the downlink speeds (rank in the objective vector) and

the receivers themselves.

8

Table 1: Behavior of Several Objective Vectors

Objective Vector (ω) Outcome (given n receivers)

{1, ... , 1}
n

Interested in completion times of all individual re-

ceivers

{1, ... , 1, 0, ... , 0}
k n-k

Interested in completion times of the top k receivers

(groups the bottom n − k receivers to save band-

width)

{0, ... , 0, 1, 0, ... , 0}
k-1 n-k

Interested in the completion time of the kth receiver

(groups the top k − 1 receivers into a fast partition,

and the bottom n − k receivers into a slow one to

save bandwidth)

{0, ... , 0}
n

Not interested in the completion time of any specific

receiver (all receivers form a single partition)

Table 1 offers several examples. For instance, an objective vector of {0, 0, 0, 1, 0, 0, 0, 0}

indicates the application’s interest in the fourth fastest receiver. To respect the application’s

objective, we initially isolate the fourth receiver and do not group it with any other receiver.

The first three fastest receivers can be grouped into a partition to save bandwidth. The

same goes for the four slowest receivers. However, we do not group all receivers indicated

with zeros into one partition initially (i.e., the top three receivers and the bottom four) to

avoid slowing some of them down unnecessarily (in this case, the top three receivers). This

forms the basis for the partitioning technique proposed in §5.4 that operates by building a

hierarchy with multiple layers, where each layer is a valid partitioning solution, and selects

the layer that gives the smallest average receiver completion times.

Although the objective vector can, in general, be any binary string of zeros and ones, it

is worth noting that not all such combinations lead to meaningful objectives for datacenter

applications. For example, an objective vector of {0, 1, 0, 1, 0, 1, 0, 1} may be unlikely to

be used by an application. Having the ability to define and enforce any objective function

though makes the system highly configurable and adaptable. Operators may come up with

a set of rules based on which they can decide whether the objective vector proposed by an

application is meaningful, or propose changes to a submission that is not deemed useful.

9

Problem Statement: Given an inter-datacenter topology with known available bandwidth

per link, the traffic engineering server is responsible for partitioning receivers and selecting

a forwarding tree per partition for every incoming bulk multicast transfer. A bulk multicast

transfer is specified by its source, set of receivers and volume of data to be delivered. The

primary objective is minimizing average receiver completion times. In case an objective

vector is specified, we want to minimize average completion times of receivers whose ranks

are indicated with a 1 in the vector as well as receivers indicated with consecutive 0’s in

the vector together as groups (receivers noted with consecutive 0’s use the same forwarding

tree and will have the same completion times). Minimizing bandwidth consumption, which

is directly proportional to the size of selected forwarding trees, is considered a secondary

objective.

3.1. Online Greedy Optimization Model

The online bulk multicast partitioning and forwarding tree selection problem can be

formulated using Eq. 1-3 with the added constraint that our rate allocation is max-min fair

across forwarding trees for any selection of the partitions and the trees. Table 2 lists the

variables used in the formulation below.

The set R includes both the new transfer RN and all the ones already in the system

for which we already have the partitions and forwarding trees. The optimization objective

of Eq. 1 is to minimize the weighted sum of completion times of receivers of all requests

R ∈ R according to their objective vectors, and the total bandwidth consumption of RN

by partitioning its receivers and selecting their forwarding trees (indicated by the term∑
P∈PRN

VP |TP |). Operators can choose the non-negative coefficient ε according to the overall

system objective to give a higher weight to minimizing the weighted completion time of

receivers than reducing bandwidth consumption. Eq. 2 shows the demand constraints which

state that the total sum of transmission rates over every tree for future timeslots is equal to

the remaining volume of data per partition (each partition uses one tree). Eq. 3 presents

the capacity constraints which state that the total sum of transmission rates per timeslot

for all trees that share a common edge has to not go beyond its available bandwidth.

10

Table 2: Definition of Variables

Variable Definition

tnow Current timeslot

e A directed edge

Ce Capacity of e in bytes/second

Be(t) Available bandwidth on edge e at timeslot t after setting aside

usage of high priority user traffic

Be Average available bandwidth on edge e

G The directed inter-datacenter graph

T A directed Steiner tree

VG and VT Set〈〉 of vertices of G and T

EG and ET Set〈〉 of edges of G and T

rT (t) The transmission rate over tree T at t

δ Duration of a timeslot

R A bulk multicast transfer request

SR Source datacenter of request R

AR Arrival time of request R

VR Original volume of request R

DR Set〈〉 of destinations of request R

R Set〈〉 of ongoing transfers

P A receiver partition of some request

PR Set〈〉 of partitions of some request R

TP The forwarding tree of partition P

V [res]
P Current residual volume of partition P of request R

κP Estimated minimum completion time of partition P

Le Edge e’s total outstanding load (see §5.1)

ωR Objective vector assigned to request R

ω?
R Weighted completion time vector computed from ωR by replacing

the last zero in a pack of consecutive zeros with the number of

consecutive zeros in that pack (e.g., ωR = {0, 0, 0, 1, 0, 0} → ω?
R =

{0, 0, 3, 1, 0, 2})

tDR
Vector of completion times of receivers of request R sorted from

fastest to slowest

11

min
∑
R∈R

(
tDR
· ω?R

)
+ ε

∑
P∈PRN

VP |TP | (1)

S.t.
∑
t

rTP (t) = V [res]P ∀P ∈ PR, R ∈ R (2)

∑
{P |e∈TP }

rTP (t) ≤ Be(t) ∀t, e, P ∈ PR, R ∈ R (3)

This online discrete optimization problem is highly complex as it is unclear how receivers

should be partitioned into multiple subsets to reduce completion times and there is an

exponential number of possibilities. Selection of forwarding trees to minimize completion

times is also a hard problem. In §5, we will present a heuristic that approximates a solution

to this optimization problem inspired by the findings in §4.

4. Partitioning of Receivers on a Relaxed Topology

Due to the high complexity of the partitioning problem as a result of physical topol-

ogy, we first study a relaxed topology where every datacenter is attached with a single

uplink/downlink to a network with infinite core capacity and so the network core cannot

become a bottleneck. As shown in Figure 1, the sender has a maximum uplink rate of rs and

transmits to a set of n receivers with different maximum downlink rates of ri,∀i ∈ {1, . . . , n}.

In §5.1, we discuss a load-balancing forwarding tree selection approach that aims to distribute

load across the network to minimize the effect of bottlenecks within the network core.

Without loss of generality, let us also assume that the receivers in Figure 1 are sorted

by their downlink rates in descending order. The sender can initiate multicast flows to any

partition, i.e., a subset of receivers, given that every receiver appears in exactly one partition.

All receivers in a partition will have the same multicast rate that is the rate of the slowest

receiver in the partition. To compute rates at the uplink, we consider the max-min fair rate

allocation policy as stated earlier in §3. In this context, we would like to compute the number

of partitions as well as the receivers that should be grouped per partition to minimize mean

completion times.

12

Network

s

1 n

r1 rn
2

r2
...

rs

> > >

Figure 1: A relaxed topology with infinite core capacity, and uplink and downlink capacities of rs and

r1 ≥ · · · ≥ rn.

Theorem 1. Given receivers sorted by their downlink rates, partitioning that groups

consecutive receivers is pareto-optimal with regards to minimizing completion times.

Proof. We use proof by contradiction. Let us assume a partitioning where non-

consecutive receivers are grouped together, that is, there exist two partitions P1 and P2

where part of partition P1 falls in between receivers of P2 or the other way around. Let us

call the slowest receivers of P1 and P2 as j1 and j2, respectively. Across j1 and j2, let us pick

the fastest and call it f(j1, j2). If f(j1, j2) = j1 (i.e., in the non-decreasing order of downlink

speed from left to right, P2 appears before P1 as in P2{. . . } P1{. . . , j1} P2{. . . , j2} . . .), then

by swapping the fastest receiver in P2 and j1, we can improve the rate of P1 while keeping

the rate of P2 the same. If f(j1, j2) = j2, then by swapping the fastest receiver in P1 and j2,

we can improve the rate of P2 while keeping the rate of P1 the same. This can be done in

both cases without changing the number of partitions, or number of receivers per partition

across all partitions. Since the new partitioning has a higher or equal achievable rate for

one of the partitions, the total average completion times will be less than or equal to that

of original partitioning, which means the original partitioning could not have been optimal.

4.1. Our Partitioning Approach

Based on Theorem 1, the number of possible partitioning scenarios that can be considered

for minimum average completion times is the number of compositions of integer n, that is,

2n−1 ways which can be a large space to search. To reduce complexity, we propose to isolate

slow receivers from the rest of receivers to minimize their effect. In other words, given an

13

Network Core

10 10 1 1

10

8 1 1

Network Core

10 10 1 1

10

9 1

Network Core

10 10 1 1

10

4.5 4.5 1

Mean Rate:
(8+8+1+1)/4 = 4.5

Mean Rate:
(9+9+1+1)/4 = 5

Mean Rate:
(4.5+4.5+1+1)/4 = 2.75

Isolating Slow
Receivers

(Our Approach)
Optimal Isolating Fast

Receivers

Figure 2: Various partitioning solutions for a scenario with four receivers. Numbers show the downlink and

uplink speeds of nodes and curly brackets indicate the partitions where all nodes in a partition receive data

at the same rate. The objective is to maximize the average rate of receivers given the max-min fairness

policy.

integer 1 ≤M ≤ n, we propose to group the first n−M+1 fastest receivers into one partition

and the rest of the receivers as separate 1-receiver partitions (M − 1 in total). Since we do

not know the value of integer M , we will try all possible values, that is, n in total which will

help us find the right threshold for the separation of fast and slow receivers. In particular,

we compute the total average downlink rate of all receivers for the given transfer for every

value of M and select the M that maximizes the average rate.1 As shown in Figure 1, the

uplink at the sender has a rate of rs which will be divided across all the multicast flows

that deliver data to the receivers. Isolating a slow receiver only takes a small fraction of the

sender’s uplink which is why this technique is effective as we will later see in evaluations. An

example of this approach and how it compares with the optimal solution is shown in Figure

2 where our solution selects M = 3 partitions isolating the two slow receivers.

A main determining factor in the effectiveness of this approach is how rs compares with

1Or alternatively minimizes the average completion times of receivers.

14

∑
1≤i≤n ri. If rs is larger, then simply using n partitions will offer the maximum total rate

to the receivers. The opposite is when rs �
∑

1≤i≤n ri in which case using a single partition

offers the highest total rate. In other cases, given the partitioning approach mentioned

above, the worst-case scenario happens when there are many slow receivers and only a

handful of fast receivers. An example has been shown in Figure 3. In the scenario on the

left, our approach groups all the receivers into one partition where they all receive data

at the rate of one. That is because by isolating slow receivers we can either get a rate

of one or less than one if we isolate more than nine slow receivers, which means using

one partition is enough. The optimal case, however, groups all the slow receivers into one

partition. In general, scenarios like this rarely happen as the number of slow receivers over

inter-datacenter networks is usually small, i.e., most datacenters are connected using high

capacity links with large available bandwidth.2 In general, since we consider all values of

M from 1 to n partitions, the solution obtained from our partitioning approach cannot be

worse than the two baseline approaches of using a single multicast tree for all receivers and

unicasting to all receivers using separate paths.

4.2. Incorporating Objective Vectors

We allow users to supply an objective vector along with their multicast transfers to

better optimize the network performance, that is, total network capacity consumption and

receiver completion times. We incorporate the objective vectors by grouping receivers with

consecutive ranks that are indicated with zeros in the objective vector and treating them

as one partition in the whole process. That is because the users have indicated no interest

in the completion times of those receivers, so we might as well reduce the network capacity

usage by grouping them from the beginning. Figure 4 shows an example of building possible

solutions by isolating slow receivers and incorporating the user-supplied objective vector,

which we refer to as the partitioning hierarchy. Please note that this hierarchy moves in

the reverse direction, that is, instead of isolating slow receivers, it merges fast receivers from

2We have deduced this by looking at many WAN topologies available on the Internet Topology Zoo [58].

We found that in most topologies, a small fraction of nodes are connected using significantly slower links

while the variation of downlink/uplink capacity for the rest of the nodes is not significant.

15

Isolating Slow
Receivers

(Our Approach)
Optimal

Network Core

10 1 1 1

10

9 1

Mean Rate:
(9+19)/20 = 1.4

1...

1 2 3 4 20

Network Core

10 1 1 1

10

1

Mean Rate:
(20×1)/20 = 1

1...

1 2 3 4 20

Figure 3: A worst-case scenario for the proposed partitioning scenario. Numbers within the nodes show the

downlink and uplink speeds of nodes and curly brackets indicate the partitions where all nodes in a partition

receive data at the same rate. The objective is to maximize the average rate of receivers given the max-min

fairness policy.

bottom to the top.

Each layer in this hierarchy, labeled as Pi, 1 ≤ i ≤ 5, represents a valid partitioning

solution.3 We see that receivers indicated with consecutive zeros in ωR are merged into one

big partition at the base layer or P5. Also, we see that as we move up, the two fastest

partitions at each layer are merged, which reduces total bandwidth consumption. For each

layer, we compute the average completion time of receivers and then select the layer that

offers the least value, in this case, P3 was chosen.

5. Iris

We apply the partitioning technique discussed in the previous chapter to real-world inter-

datacenter networks. We develop a heuristic for partitioning receivers on real-world topolo-

gies without relaxations of §4. We will generate multiple valid partitioning solutions in the

3The associated network topology is not shown.

16

P1

P2

P3

P4

Pbase (P5)

DR 8 5 3 9 7 10 1 4 2 6

5 3, 9, 7, 10, 1, 4 2 68

Ψ 1 2 3 4 5 6 7 8 9 10

ωR 1 1 0 0 0 0 0 0 1 1

6

6

8, 5, 3, 9, 7, 10, 1, 4, 2 6

8, 5, 3, 9, 7, 10, 1, 4, 2, 6

Pa
rt

iti
on

in
g

H
ie

ra
rc

hy

Receiver
Ranks

Objective
Vector

3, 9, 7, 10, 1, 4 28, 5

8, 5, 3, 9, 7, 10, 1, 4 2

Receiver
IDs

Figure 4: Example of a partitioning hierarchy for a transfer with 10 receivers (the topology not shown).

form of a hierarchy where layers of the hierarchy present feasible partitioning solutions and

each layer is formed by merging the two fastest partitions of the layer below.4

We present Iris, a heuristic that runs on the traffic engineering server to manage bulk

multicast transfers.5 When a bulk multicast transfer arrives at an end-point, it will com-

municate the request to the traffic engineering server which will then invoke Iris. It uses the

knowledge of physical layer topology, available bandwidth on edges after deducting the share

of high priority user traffic and other running transfers to compute partitions and forwarding

trees. The traffic engineering server pulls end-points’ actual progress periodically to deter-

mine their exact remaining volume across transfers to compute the total outstanding load

per edge for all edges. Iris consists of four modules as shown in Figure 5 which we discuss

in the following subsections. Iris aims to find an approximate solution to the optimization

problem of Eq. 1 assuming ε� 1 to prioritize minimizing completion times over minimizing

4In general, it is not possible to offer optimality guarantees due to the highly varying factors of network

topology, transfer arrivals, and the distribution of transfer volumes. However, our extensive simulations in

§6 show that our approach can offer significant improvement on other approaches over various topologies

and traffic patterns. Also, as a result of building a hierarchy of partitioning options and selecting the best

one, our solution will be at least as good as either using a single multicast tree or using unicasting to all

receivers.
5Unicast transfers are a special case with a single receiver.

17

Traffic Engineering Server

Existing Transfers' Information
(Receiver Partitions, Remaining Volumes, Forwarding Trees)

Fo
rw

ar
d

in
g

S
ta

te

Multicast
Transfer
Request

Bulk Multicast Sender
Intermediate Node (Datacenter, IXP, PoP, etc.)
Bulk Multicast Receiver

Iris (Algorithm 4)

Algorithm 3:

Rank Receivers

Algorithm 2:

Estimate Min.
Comp. Times

Algorithm 1:

Compute
Forwarding Trees

Figure 5: Pipeline of Iris.

bandwidth consumption. We will empirically evaluate Iris by comparing it to recent work

and a lower bound in §6.

5.1. Choosing Forwarding Trees

Load aware forwarding trees are selected given the link capacity information on the

topology and according to other ongoing bulk multicast transfers across the network to

reduce the completion times by mitigating the effect of bottlenecks. Tree selection should

also aim to keep bandwidth consumption low by minimizing the number of edges per tree

where an edge could refer to any of the links on the physical topology. To select a forwarding

tree, a general approach that can capture a wide range of selection policies is to assign

weights to edges of the inter-datacenter graph G and select a minimum weight Steiner tree

[59]. Per edge e ∈ EG, we assume a virtual queue that increases by volume of every transfer

scheduled on that edge and decreases as traffic flows through it. Since edges differ in capacity,

18

Algorithm 1: Compute A Forwarding Tree

Input: Steiner tree terminal nodes Γ, request R

Output: Edges of a tree

CompForwardingTree (Γ, R)

To every edge e ∈ EG, assign weight We = (Le + VR
Be

);

return A minimum weight Steiner tree that connects the nodes in set Γ (we used a

hueristic [61, 60]);

completing the same virtual queue size may need significantly different times for different

links. We extend the metric used in a recent work [28] that is called load Le as follows.

Le =
1

Be

∑
{P∈PR|e∈TP }

V [res]
P (4)

In Eq. 4, PR is the set of partitions of receivers of all ongoing transfers. This equation

sums up the remaining volumes of all trees that use a specific edge (total virtual queue size)

and divides that by the average available bandwidth on that edge to compute the minimum

possible time it takes for all ongoing transfers on that edge to complete. In the tree selection

process, to keep completion times low, we need to avoid edges for which this value is large.

With this metric available, to select a forwarding tree given a sender and several receivers,

we will first assign an edge weight of We = Le + VR
Be

to all edges and then select a minimum

weight Steiner tree as shown in Algorithm 1. With this edge weight, compared to edge

utilization which has been extensively used in literature for traffic engineering, we achieve

a more stable measure of how busy a link is expected to be in the near future on average.

We considered the second term in edge weight to reduce total bandwidth use when there are

multiple trees with the same weight. It also leads to the selection of smaller trees for larger

transfers which decreases the total bandwidth consumption of Iris further in the long run.

Complexity: To compute a minimum weight Steiner tree we use a heuristic that is called

GreedyFLAC [60] which given the set of terminal nodes Γ, has a guaranteed polynomial

running time of O(|VG||EG|+ |VG|2log(|VG|)|Γ|+ |VG|2|Γ|3).

19

5.2. Estimating Minimum Completion Times

The purpose of this procedure is to estimate the minimum completion time of different

partitions of a given transfer considering available bandwidth over the edges and applying

max-min fair rate allocation when there are shared links across forwarding trees. Algorithms

3 and 4 then use the minimum completion time per partition to rank the receivers (i.e.,

faster receivers have an earlier completion time) and then decide which partitions to merge.

Computing the minimum completion times is done by assuming that the new transfer request

has access to all the available bandwidth and compared to computing the exact completion

times is much faster. Besides, calculating the exact completion times is not particularly

more effective due to the continuously changing state of the system as new transfer requests

arrive. Since available bandwidth over future timeslots is not precisely known, we can use

estimate values similar to other work [33, 12, 62]. Algorithm 2 shows how the minimum

completion times are computed.

Complexity: For a new request R with |P| partitions, this algorithm calls Algorithm 1, |P|

times. It then computes max-min fair rates per partition for timeslots until all partitions

finish. Computing max-min fair rates per timeslot has a complexity of O(|P||EG|). This

process continues for O(|P| VR
mine,tBe(t)

) iterations. Therefore, the complexity of this algorithm is

O(|P| (CAlgorithm 1 + |EG| |P| VR
mine,tBe(t)

)).

5.3. Assigning Ranks to Receivers

Algorithm 3 assigns ranks to individual receivers according to their minimum completion

times taking into account available bandwidth over edges as well as edges’ load in the path

selection process. This ranking is used along with the provided objective vector later to

partition receivers.

Complexity: This algorithm calls Algorithm 2 over all receivers as separate 1-node parti-

tions, then sorts the nodes which gives a complexity of O(CAlgorithm 2 + |DR| log(|DR|)).

5.4. The Iris Algorithm

The Iris algorithm computes receiver partitions using hierarchical partitioning and assigns

each partition a multicast forwarding tree. The partitioning problem is solved per transfer

20

Algorithm 2: Minimum Completion Times

Input: A set of partitions P, request R

Output: Completion time of every partition in P

MinimumCompletionTimes (P, R)

f ← ∅, t← tnow + 1;

γP ← VR, ∀P ∈ P;

TP ← CompForwardingTree(P,R), ∀P ∈ P;

while |f | < |P| do

Compute rP (t), ∀P ∈ {P− f}, max-min fair rate [57] allocated to tree TP at

timeslot t given available bandwidth of Be(t) on every edge e ∈ EG;

γP ← γP − δ × rP (t), ∀P ∈ P;

foreach P ∈ {P− f} do

if γP = 0 then

κP ← t, f ← f ∪ P ;

t← t+ 1;

return κP ,∀P ∈ P

and determines the number of partitions and the receivers that are grouped per partition.

Iris uses a partitioning technique inspired by the findings of §4 that is computationally fast,

significantly improves receiver completion times, and operates only relying on network topol-

ogy and available bandwidth per edge.6 We refer to our approach as hierarchical partitioning

as it builds a hierarchy of different partitioning solutions.

We build a partitioning hierarchy with numerous layers and examine the various num-

ber of partitions from bottom to the top of the hierarchy while looking at the average of

minimum completion times. Given that each node in a real-world topology may have mul-

tiple interfaces, by building a hierarchy, we consider the discrete nature of forwarding tree

6The available bandwidth per edge is computed by deducting the quota for higher priority user traffic

from the link capacity.

21

Algorithm 3: Assign Receiver Ranks

Input: Request R

Output: ψr, i.e., rank of receiver r ∈ DR

AssignReceiverRanks (R)

/* Every receiver is treated as a separate partition */

{κr, ∀r ∈ DR} ← MinimumCompletionTimes(DR, R);

ψr ← Position of receiver r in the list of all receivers sorted by their estimated minimum

completion times (fastest receiver is assigned a rank of 1), ∀r ∈ DR;

return ψr, ∀r ∈ DR;

selection on the physical network topology. The process consists of two steps as follows.

Algorithm 4 illustrates how Iris partitions receivers with an objective vector. We first use

the receiver ranks from Algorithm 3 and the objective vector to create the base of partitioning

hierarchy, Pbase. We first sort the receivers by their ranks from fastest to slowest and then

group them according to the weights in the objective vector. For any receiver whose rank in

the objective vector has a value of 1, we consider a separate partition (single node partition)

which allows the receiver to complete as fast as possible by not attaching it to any other

receiver. Next, we group receivers with consecutive ranks that are assigned a value of 0 in

the objective vector into partitions with potentially more than one receiver, which allows

us to save as much bandwidth as possible since the user has not indicated interest in their

completion times.

Now that we have a set of base partitions Pbase, a heuristic creates a hierarchy of par-

titioning solutions with |Pbase| layers where every layer 1 ≤ l ≤ |Pbase| is made up of a set

of partitions Pl. Each layer is created by merging two partitions from the layer below going

from the bottom to the top of hierarchy. At the bottom of the hierarchy, we have the base

partitions. Also, at any layer, any partition P is attached to the sender using a separate

forwarding tree TP . We first compute the average of minimum completion times of all re-

ceivers at the bottom of the hierarchy. We continue by merging the two partitions that hold

receivers with highest ranks. When merging two partitions, the faster partition is slowed

down to the speed of slower partition. A new forwarding tree is computed for the resulting

22

Algorithm 4: Compute Receiver Partitions and Trees (Iris)

Input: Request R, binary objective vector ωR

Output: Partitions of request R and their forwarding trees

CompPartitionsAndTrees (R,ωR)

/* Initial partitioning using the objective vector ωR */

{ψr,∀r ∈ DR} ← AssignReceiverRanks(R);

Ds
R ← Receivers r sorted by ψr,∀r ∈ DR ascending;

Pbase ← {Any receiver r ∈ DR for which ωR < ψr > is 1 as a separate

partition} ∪ {Group receivers that appear consecutively on Ds
R for which ωR < ψr > is

0, each group forms a separate partition};

/* Building the partitioning hierarchy for Pbase */

P|Pbase| ← Pbase;

for l = |Pbase| to l = 1 by −1 do

{κP , ∀P ∈ Pl} ← MinimumCompletionTimes(Pl,R);

κl ←
∑

P∈Pl
(|P | κP)

|DR| ; /* Compute the best average completion times */

Assuming receivers are sorted from left to right by increasing order of rank, merge

the two partitions on the left, P and Q, to form PQ;

Pl−1 ← {PQ} ∪ {Pl − {P,Q}};

Find lmin for which κlmin
≤ min1≤l≤|Pbase| κl, if multiple layers have the same κl, choose

the layer with minimum total weight over all of its forwarding trees, i.e., select lmin to

min
∑

P∈Plmin
(
∑

e∈TP We);

/* Compute forwarding trees for the partitions */

foreach P ∈ Plmin
do

TP ← CompForwardingTree(P,R);

foreach e ∈ TP do

Le ← Le + VR
Be

, We ←We + VR
Be

;

return (P, TP), ∀P ∈ Plmin
;

23

Table 3: Various topologies and traffic patterns used in evaluation. One unit of traffic is equal to what can

be transmitted at the rate of the fastest link over a given topology per timeslot.

Name Description

Topology
GEANT Backbone and transit network across Europe with 34

nodes and 52 links. Link capacity from 45 Mbps to

10 Gbps.

UNINETT Backbone network across Norway with 69 nodes and

98 links. Most links have a capacity of 1, 2.5 or 10

Gbps.

Traffic Pattern

Light-tailed Based on Exponential distribution with a mean of 20

units per transfer.

Heavy-tailed Based on Pareto distribution with the minimum of

2 units, the mean of 20 units, and the maximum

capped at 2000 units per transfer.

Hadoop Generated by geo-distributed data analytics over

Facebook’s inter-datacenter WAN (distribution

mean of 20 units per transfer).

Cache-follower Generated by geo-distributed cache applications

over Facebook’s inter-datacenter WAN (distribution

mean of 20 units per transfer).

partition using the forwarding tree selection heuristic of Algorithm 1 to all receivers in that

partition, and the average of minimum completion times for all receivers are recomputed.

This process continues until we reach a single partition that holds all receivers. In the end,

we select the layer at which the average of minimum completion times across all receivers

is minimum, which gives us the number of partitions, the receivers that are grouped per

partition, and their associated forwarding trees. If there are multiple layers with the mini-

mum average completion times, the one with minimum total forwarding tree weight across

its forwarding trees is chosen which on average leads to better load distribution.

Complexity: This algorithm first calls Algorithm 3, then it calls Algorithm 2 up to |DR|

times. At the end, it also runs Algorithm 1 up to |DR| times. Therefore, this algorithm has

a complexity of O(CAlgorithm 3 + |DR| (CAlgorithm 2 + CAlgorithm 1)).

24

6. Evaluation

We considered various topologies and transfer size distributions as shown in Table 3. We

selected two research topologies with given capacity information on edges from the Internet

Topology Zoo [63]. We could not use other commercial topologies as the exact connectivity

and link capacity information were not publicly disclosed. We also considered multiple

transfer volume distributions including synthetic (light-tailed and heavy-tailed) and real-

world Facebook inter-datacenter traffic patterns (Hadoop and Cache-follower) [64]. Transfer

arrival pattern was according to Poisson distribution with a rate of λ per timeslot. For

simplicity, we assumed an equal number of receivers for all bulk multicast transfers per

experiment. We performed simulations and Mininet emulations to evaluate Iris.

We compare Iris with multiple baseline techniques and QuickCast [28] which also focuses

on partitioning receivers into groups for improved completion times. We were unable to

evaluate our work against another recent work called BDS [11], which has been developed

by Baidu, due to source code unavailability. BDS takes advantage of store-and-forward

and operates at the application layer. We qualitatively compare Iris with BDS. Iris can offer

lower bandwidth consumption since BDS uses paths instead of trees, and can more effectively

exercise physical links as it manages traffic at the network layer. On the other hand, since

BDS uses all available overlay paths (possibly many routes to any specific receiver), under

the lightly loaded regime, BDS may offer higher throughput (at the cost of considerably

higher bandwidth consumption). Extension of Iris to use parallel trees is considered part of

future work.

6.1. Computing a Lower Bound

We develop a technique to compute a lower bound on receiver completion times by

creating an aggregate topology from the actual topology. As shown in Figure 6, to create the

aggregate topology, we combine all downlinks and uplinks with rates r
[node]
i for all interfaces

i per node to a single uplink and downlink with their rates set to the sum of rates of physical

links. Also, the aggregate topology connects all nodes in a star topology using their uplinks

and downlinks and so assumes no bottlenecks within the network. Since this topology is a

relaxed version of the physical topology, any solution that is valid for the physical topology

25

A B

CD

A B

CD

Actual Topology Aggregate Topology

Σri
A Σri

B

Σri
CΣri

D

Figure 6: The physical topology, and the aggregate topology to compute a lower bound on receiver completion

times. The aggregate topology is used only for evaluation purposes and it does not play any part in the

design of Iris.

is valid on this topology as well. Therefore, the solution to the aggregate topology is a

lower bound that can be computed efficiently but may be inapplicable to the actual physical

topology. We will use this approach in §6.2.1 for evaluation of Iris.

6.2. Simulations

In simulations, we focus on computing gains and therefore assume no dropped packets

and accurate max-min fair rates. We normalized link capacities by maximum link rate per

topology and fixed the timeslot length to δ = 1.0.

Effect of User Traffic: We account for the effect of higher priority user traffic in the sim-

ulations. The amount of available bandwidth per edge per timeslot, i.e., Be(t), is computed

by deducting the rate of user traffic from the link capacity Ce. Recent work has shown that

this rate can be safely estimated [12, 33]. For evaluations, we assume that user traffic can

take up to 30% of a link’s capacity with a minimum of 5% and that its rate follows a periodic

pattern going from low to high and to low again. Per link, we consider a random period in

the range of 10 to 100 timeslots that is generated and assigned per experiment instance.

6.2.1. Minimizing Average Completion Times

This is when the objective vector is made of all ones. The partitioning hierarchy then

begins with all receivers forming their 1-receiver partitions. This is a highly general objective

26

and can be considered as the default approach when the application/user does not specify

an objective vector. We discuss multiple simulation experiments.

In Figure 7, we measure the completion times (mean and tail) as well as bandwidth

consumption by the number of receivers (tail is 99.9th percentile). We consider two baseline

cases: unicast shortest path and static single tree (i.e., minimum edge Steiner tree) routing.

The shortest path routing is the unicast scenario that uses minimum bandwidth possible.

The minimum edge Steiner tree routing uses minimum bandwidth possible while connecting

all receivers with a single tree. The first observation is that using unicast, although leads to

highest separation of fast and slow receivers, does not lead to the fastest completion as it

can lead to many shared bottlenecks and that is why we see long tail times. Iris offers the

minimum completion times (mean and tail) across all scenarios. Also, its completion times

grow much slower compared to others as the number of receivers (and so overall network

load) increases. This is while Iris uses only up to 35% additional bandwidth compared to the

static single tree (unicast shortest path routing uses up to 2.25×). Compared to QuickCast,

Iris offers up to 26% lower tail times and up to 2.72× better mean times while using up to

13% extra bandwidth.

In Figure 8, we show the completion times speedup of receivers by their rank. As seen,

gains depend on the topology, traffic pattern, and receiver’s rank. The dashed line is the

baseline, i.e., no-partitioning case. Compared to QuickCast [28], the fastest node always

completes faster and up to 2.25× faster with Iris. Also, the majority of receivers complete

significantly faster. In case of four receivers, the top 75% receivers complete between 2× to

4× faster than baseline and with sixteen receivers, the top 75% receivers complete at least

8× faster than baseline. This is when QuickCast’s gain drops quickly to one after the top

25% of receivers.

In Figure 9, we measure the CDF of completion times for all receivers. As seen, tail

completion times are two to three orders of magnitude longer than median completion times

which is due to variable link capacity and transfer volumes. We evaluate the completion

times of QuickCast and Iris and compare them with a lower bound which considers the

aggregate topology (see §6.1) and applies Theorem 2 directly. It is likely that no feasible

solution exists that achieves this lower bound. Under low arrival rate (light load), we see

27

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

M
ea

n
C

om
pl

et
io

n
Ti

m
es

UNINETT (Cache-Follower)

Iris QuickCast Single Tree (Load Aware) Single Tree (Static) Unicast (Shortest Path)

1 2 3 4 5 6 7 8 9 10

0

5

10

15

20

M
ea

n
C

om
pl

et
io

n
Ti

m
es

UNINETT (Hadoop)

1 2 3 4 5 6 7 8 9 10
0

200

400

600

800
Ta

il
C

om
pl

et
io

n
Ti

m
es

UNINETT (Cache-Follower)

1 2 3 4 5 6 7 8 9 10

0

200

400

600

800

1000

Ta
il

C
om

pl
et

io
n

Ti
m

es

UNINETT (Hadoop)

0

5

10

15

To
ta

l B
an

dw
id

th

UNINETT (Cache-Follower)

1 2 3 4 5 6 7 8 9 10
Receivers

0

2

4

6

8

10

To
ta

l B
an

dw
id

th

UNINETT (Hadoop)

1 2 3 4 5 6 7 8 9 10
Receivers

Figure 7: Comparison of various techniques by number of multicast receivers. Plots are normalized by the

minimum data point (mean and tail charts are normalized by the same minimum), λ = 1, and lower values

are better.

28

1 2 3 4
Receiver Rank

5 10 15
Receiver Rank

0

5

10

15

20

25

16 Receivers (GEANT, Cache-follower)

1 2 3 4
Receiver Rank

0

2

4

6

8
4 Receivers (UNINETT, Hadoop)

5 10 15
Receiver Rank

0

5

10

15

16 Receivers (UNINETT, Hadoop)

Iris QuickCast Single Tree (Load Aware)

0

1

2

3

M
ea

n
Sp

ee
du

p

4 Receivers (GEANT, Cache-follower)

M
ea

n
Sp

ee
du

p

M
ea

n
Sp

ee
du

p
M

ea
n

Sp
ee

du
p

Figure 8: Mean completion time speedup (larger is better) of receivers normalized by no partitioning (load

aware single tree) case given their rank from fastest to slowest, every node initiates equal number of transfers,

receivers were selected according to uniform distribution from all nodes, and we considered λ of 1.

29

that Iris tracks the lower bound nicely with a marginal difference. Under high arrival rate

(heavy load), Iris stays close to the lower bound for lower and higher percentiles while not

far from it for others.

6.2.2. Other Objective Vectors

We discuss four different objective vectors of A, B, C and D as shown in Figure 10. This

figure shows the mean speedup of receivers given their ranks, and the bandwidth consumption

associated with each vector. InA, we aim to finish one copy quickly while not being concerned

with completion times of other receivers. We see a gain of between 9× to 18× across the

two topologies considered for the first receiver. We also see that this approach uses much

less extra bandwidth compared to when we have a vector with more ones (e.g., case B).

In B, we aim to speed up the first four receivers (we care about each one) while in C, we

want to speed up the fourth receiver not directly concerning ourselves with the top three

receivers. As can be seen, B offers increasing speedups for the top three receivers while C’s

speedup is flatter. Also, C uses less bandwidth compared to B by grouping the top three

receivers into one partition at the base of the hierarchy. Finally, D’s vector specifies that

the application/user only cares about the completion time of the last receiver which means

that receiver will be put in a separate partition at the base of the hierarchy while other

receivers will be grouped into one partition. Since the slowest receiver is usually limited by

its downlink speed, this cannot improve its completion time. However, with minimum extra

bandwidth, this speeds up all receivers except the slowest by as much as possible. Except

for the slowest, all receivers observe a speedup of between 3× to 6× while using 8% to 16%

less bandwidth compared to B. A tradeoff is observed, that is, D offers lower speedup but

consistent gain for more receivers with less bandwidth use compared to B.

6.3. Mininet Emulations

We used Mininet to build and test a prototype of Iris and compare it with QuickCast and

set up the testbed on CloudLab [65]. We used OpenvSwitch (OVS) 2.9 in the OpenFlow 1.3

compatibility mode along with the Floodlight controller 1.2 connecting them to a control

network. We assumed fixed available bandwidth over edges according to GEANT topology

30

100 105
0

0.2

0.4

0.6

0.8

1
GEANT (= 0.001, Light-tailed)

100 105
0

0.2

0.4

0.6

0.8

1
GEANT (= 0.001, Heavy-tailed)

100 105
0

0.2

0.4

0.6

0.8

1
GEANT (= 1.0, Light-tailed)

100 105
0

0.2

0.4

0.6

0.8

1
GEANT (= 1.0, Heavy-tailed)

100 105

0

0.2

0.4

0.6

0.8

1
UNINETT (= 0.001, Light-tailed)

100 105

0

0.2

0.4

0.6

0.8

1
UNINETT (= 0.001, Heavy-tailed)

100 105

Receiver Completion Times

0

0.2

0.4

0.6

0.8

1
UNINETT (= 1.0, Light-tailed)

100 105

Receiver Completion Times

0

0.2

0.4

0.6

0.8

1
UNINETT (= 1.0, Heavy-tailed)

Iris QuickCast Lower Bound

Figure 9: CDF of receiver completion times. Every transfer has 8 receivers selected uniformly across all

nodes. “Lower Bound” is computed by finding the aggregate topology and applying Theorem 2.

31

Figure 10: Gain by rank for different receivers per transfer averaged over all transfers for four different

objective vectors. We set λ = 0.1 and there are 8 receivers.

32

[66] while scaling downlinks’ capacity so that the maximum is 500 Mbps.7 We did this to

reduce the CPU overhead of traffic shaping over TCLink Mininet modules. Our traffic engi-

neering program communicated with end-points through a RESTful API. We used NORM

[67] for multicast session management along with its rate-control module. To increase effi-

ciency, we computed max-min fair rates centrally at the traffic engineering program and let

the end-points shape their traffic using NORM’s rate control module. The experiment was

performed using twelve trace files generated according to Facebook traffic patterns concern-

ing transfers’ volumes [64], and each trace file had 200 requests in total with an arrival rate

of one request per timeslot based on Poisson distribution. We also considered timeslots of

one second, a minimum transfer volume of 5 MB and limited the maximum transfer volume

to 500 MB.8 We considered three schemes of Iris, QuickCast and a single tree approach (no

partitioning). The total emulation time was about 24 hours. Figure 11 shows our emulation

results. To allow comparison between the tail, i.e., 95th percentile, and mean values, we have

normalized both plots by the same minimum in each row. Also, the group table usage plots

are not normalized and show the actual average and actual maximum across all switches.

The reason why data points jump up and down is the randomness of generated traces that

comes from transfers (volume, source, receivers, arrival pattern, etc).

Completion Times and Bandwidth: Iris offers up to 2.5× speed up in mean completion

times compared to QuickCast and 4× compared to using a single multicast tree per transfer.

We also see that compared to using a single multicast tree, Iris consumes at most 25% extra

bandwidth.

Forwarding Plane: We see that Iris uses up to about 4× less group table entries at the

7In general, inter-datacenter link capacities may go beyond tens of Gbps. Due to the limitations of our

emulation server, we had to use 500 Mbps as the maximum link capacity. That is, although we used a server

with 56 logical CPU cores, even with a maximum link rate of 500 Mbps, the machine ran at close to full CPU

utilization across most cores. Using a higher rate would have led to inaccurate emulation results due to the

timing inaccuracies caused at high CPU utilization. The high CPU utilization in Mininet is caused mostly

by the traffic shapers that Mininet uses to model links’ capacities. Using a lower rate, however, should have

a negligible effect on the validity of results as a proof of concept.
8These parameters also match the distribution of YouTube video sizes [68].

33

1 2 3 4 5 6
1

1.5

2

2.5

3

3.5

4

M
ea

n
C

om
pl

et
io

n
Ti

m
es

GEANT (Cache-Follower)

Iris QuickCast Single Tree (Load Aware)

1 2 3 4 5 6

0

2

4

6

8

10

M
ea

n
C

om
pl

et
io

n
Ti

m
es

GEANT (Hadoop)

1 2 3 4 5 6
11.5

12

12.5

13

13.5

14

95
th

 P
er

c.
 C

om
pl

et
io

n
Ti

m
es

GEANT (Cache-Follower)

1 2 3 4 5 6

0

10

20

30

40

95
th

 P
er

c.
 C

om
pl

et
io

n
Ti

m
es

GEANT (Hadoop)

1 2 3 4 5 6
1

1.5

2

2.5

3

3.5

To
ta

l B
an

dw
id

th

GEANT (Cache-Follower)

1 2 3 4 5 6

1

2

3

4

5

To
ta

l B
an

dw
id

th
GEANT (Hadoop)

2 3 4 5 6
0

0.5

1

1.5

2

M
ea

n
G

ro
up

 T
ab

le
 E

nt
rie

s

GEANT (Cache-Follower)

2 3 4 5 6

0

0.5

1

1.5

2

2.5

M
ea

n
G

ro
up

 T
ab

le
 E

nt
rie

s

GEANT (Hadoop)

0

10

20

30

40

Ta
il

G
ro

up
 T

ab
le

 E
nt

rie
s

GEANT (Cache-Follower)

0

10

20

30

40

50

Ta
il

G
ro

up
 T

ab
le

 E
nt

rie
s

GEANT (Hadoop)

2 3 4 5 6
Receivers

2 3 4 5 6
Receivers

Figure 11: Mininet Emulation Results

34

switches where the maximum number of entries were exhausted which allows more parallel

transfers across the same network. Iris achieves this by allowing a larger number of partitions

per transfer whenever it does not hurt the completion times. By allowing more partitions,

each tree will branch less times on average reducing the number of group table entries.

Running Time: Across all experiments, the computation time needed to run Iris to calculate

partitions and forwarding trees, i.e., running Algorithm 4, stayed below 5 ms per request.

6.4. Practical Concerns

New challenges, such as increased communication latency across network elements and

failures, may arise while deploying Iris on a real-world geographically distributed network.

Communication latency may not affect the performance considerably as we focus on long-

running internal transfers that are notably more resilient to latency overhead of scheduling

and routing compared to interactive user traffic. Failures may affect physical links or the

traffic engineering server. Loss of a physical link can be addressed by rerouting the affected

transfers reactively either by the controller or by use of SDN fast failover mechanisms. End-

points may be equipped with distributed congestion control (similar to [44]) which they can

fall back to in case the centralized traffic engineering fails.

7. Conclusions and Future Work

Replication of content and data across geographically dispersed datacenters creates a

large volume of multicast traffic that needs to be managed for increased performance. A bulk

multicast transfer can be indicated with a source, set of receivers and total transfer volume.

In this paper, we focused on the problem of grouping receivers into multiple partitions to

minimize the effect of receiver downlink speed discrepancy on completion times of receivers.

We analyzed a relaxed version of this problem and proposed a partitioning that reduces

mean completion times of multicast receivers given max-min fair rates. We also set forth

the idea of applications/users expressing their requirements in the form of binary objective

vectors which allows us to optimize resource consumption and performance further. We

then proposed Iris, a system that computes partitions and forwarding trees for incoming

bulk multicast transfers as they arrive given objective vectors. We showed that Iris could

35

significantly reduce mean completion times with a small increase in bandwidth consumption

and can fulfill the requirements expressed using objective vectors while saving bandwidth

whenever possible. It is worth noting that performance of any partitioning and forwarding

tree selection algorithm rests profoundly on the network topology and transfer properties.

Study of rate allocation policies besides max-min fairness and handling failures are among

future directions.

References

[1] Chunqiang Tang, Thawan Kooburat, et al. Holistic configuration management at face-

book. In Proceedings of the 25th Symposium on Operating Systems Principles, SOSP

’15, pages 328–343. ACM, 2015.

[2] Building express backbone: Facebook’s new long-haul net-

work. https://code.facebook.com/posts/1782709872057497/

building-express-backbone-facebook-s-new-long-haul-network/. visited

on September 30, 2017.

[3] Ken Florance. How netflix works with isps around the globe to deliver a great viewing

experience. https://goo.gl/72CbM7, 2016.

[4] Sushant Jain, Alok Kumar, et al. B4: Experience with a globally-deployed software

defined wan. SIGCOMM, 43(4):3–14, 2013.

[5] Y. Xia, T. S. E. Ng, and X. S. Sun. Blast: Accelerating high-performance data analytics

applications by optical multicast. In 2015 IEEE Conference on Computer Communica-

tions (INFOCOM), pages 1930–1938, April 2015.

[6] Kirill Bogdanov, Miguel Peón-Quirós, Gerald Q. Maguire, Jr., and Dejan Kostić. The

Nearest Replica Can Be Farther Than You Think. In Proceedings of the Sixth ACM

Symposium on Cloud Computing, SoCC ’15, pages 16–29, New York, NY, USA, 2015.

ACM.

[7] Sarah Wassermann, John P Rula, et al. Anycast on the Move: A Look at Mobile

Anycast Performance. Network Traffic Measurement and Analysis Conference, 2018.

36

https://code.facebook.com/posts/1782709872057497/building-express-backbone-facebook-s-new-long-haul-network/
https://code.facebook.com/posts/1782709872057497/building-express-backbone-facebook-s-new-long-haul-network/
https://goo.gl/72CbM7

[8] Felipe Huici, Mohamed Ahmed, Sofia Nikitaki, and Saverio Niccolini. Efficient caching

in content delivery networks based on popularity predictions, May 9 2017. US Patent

9,648,126.

[9] M. Noormohammadpour, C. S. Raghavendra, S. Rao, and S. Kandula. Dccast: Efficient

point to multipoint transfers across datacenters. In HotCloud. USENIX Association,

2017.

[10] Volker Stocker, Georgios Smaragdakis, William Lehr, and Steven Bauer. The growing

complexity of content delivery networks: Challenges and implications for the Internet

ecosystem. Telecommunications Policy, 41(10):1003 – 1016, 2017. Celebrating 40 Years

of Telecommunications Policy A Retrospective and Prospective View.

[11] Yuchao Zhang, Junchen Jiang, Ke Xu, Xiaohui Nie, Martin J. Reed, Haiyang Wang,

Guang Yao, Miao Zhang, and Kai Chen. BDS: A Centralized Near-optimal Overlay

Network for Inter-datacenter Data Replication. In Proceedings of the Thirteenth EuroSys

Conference, EuroSys ’18, pages 10:1–10:14. ACM, 2018.

[12] Srikanth Kandula, Ishai Menache, Roy Schwartz, and Spandana Raj Babbula. Calen-

daring for wide area networks. SIGCOMM, 44(4):515–526, 2015.

[13] Xin Jin, Yiran Li, Da Wei, Siming Li, Jie Gao, Lei Xu, Guangzhi Li, Wei Xu, and

Jennifer Rexford. Optimizing bulk transfers with software-defined optical wan. In

SIGCOMM, pages 87–100. ACM, 2016.

[14] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, et al. Achieving high utilization with

software-driven wan. In SIGCOMM, pages 15–26. ACM, 2013.

[15] M. Cotton, L. Vegoda, and D. Meyer. IANA guidelines for IPv4 multicast address

assignments. Internet Requests for Comments, 2010.

[16] Suman Banerjee, Bobby Bhattacharjee, and Christopher Kommareddy. Scalable appli-

cation layer multicast. In SIGCOMM, pages 205–217. ACM, 2002.

37

[17] R. Sherwood, R. Braud, and B. Bhattacharjee. Slurpie: a cooperative bulk data transfer

protocol. In INFOCOM, volume 2, pages 941–951, 2004.

[18] Johan Pouwelse, Pawe lGarbacki, Dick Epema, and Henk Sips. The bittorrent p2p file-

sharing system: Measurements and analysis. In Proceedings of the 4th International

Conference on Peer-to-Peer Systems, IPTPS’05, pages 205–216, Berlin, Heidelberg,

2005. Springer-Verlag.

[19] Aakash Iyer, Praveen Kumar, and Vijay Mann. Avalanche: Data center multicast using

software defined networking. In COMSNETS, pages 1–8. IEEE, 2014.

[20] J. Cao, C. Guo, G. Lu, Y. Xiong, Y. Zheng, Y. Zhang, Y. Zhu, C. Chen, and Y. Tian.

Datacast: A scalable and efficient reliable group data delivery service for data centers.

IEEE Journal on Selected Areas in Communications, 31(12):2632–2645, 2013.

[21] S. H. Shen, L. H. Huang, D. N. Yang, and W. T. Chen. Reliable multicast routing for

software-defined networks. In INFOCOM, pages 181–189, April 2015.

[22] L. H. Huang, H. C. Hsu, S. H. Shen, D. N. Yang, and W. T. Chen. Multicast traffic

engineering for software-defined networks. In INFOCOM, pages 1–9. IEEE, 2016.

[23] A. Nagata, Y. Tsukiji, and M. Tsuru. Delivering a file by multipath-multicast on open-

flow networks. In International Conference on Intelligent Networking and Collaborative

Systems, pages 835–840, 2013.

[24] K. Ogawa, T. Iwamoto, and M. Tsuru. One-to-many file transfers using multipath-

multicast with coding at source. In IEEE International Conference on High Performance

Computing and Communications, pages 687–694, 2016.

[25] M. Noormohammadpour and C. S. Raghavendra. DDCCast: Meeting Point to Multi-

point Transfer Deadlines Across Datacenters using ALAP Scheduling Policy. Technical

Report, Department of Computer Science, University of Southern California, Report

No. 17-972, 2017.

38

[26] Long Luo, Hongfang Yu, and Zilong Ye. Deadline-guaranteed Point-to-Multipoint Bulk

Transfers in Inter-Datacenter Networks. ICC, 2018.

[27] Long Luo, Klaus-Tycho Foerster, Stefan Schmid, and Hongfang Yu. Dartree: Deadline-

aware multicast transfers in reconfigurable wide-area networks. In 27th IEEE/ACM

International Symposium on Quality of Service (IWQoS 2019), June 2019.

[28] Mohammad Noormohammadpour, Cauligi S. Raghavendra, Srikanth Kandula, and Sri-

ram Rao. QuickCast: Fast and Efficient Inter-Datacenter Transfers using Forwarding

Tree Cohorts. INFOCOM, 2018.

[29] Ben Pfaff, Bob Lantz, Brandon Heller, et al. Openflow switch specification, version

1.1.0 implemented (wire protocol 0x02). http://archive.openflow.org/documents/

openflow-spec-v1.1.0.pdf, 2011.

[30] How microsoft builds its fast and reliable global net-

work. https://azure.microsoft.com/en-us/blog/

how-microsoft-builds-its-fast-and-reliable-global-network/. visited on

September 30, 2017.

[31] Mohammad Noormohammadpour, Cauligi S. Raghavendra, Srikanth Kandula, and Sri-

ram Rao. Fast and efficient bulk multicasting over dedicated inter-datacenter networks,

2018.

[32] Nikolaos Laoutaris, Georgios Smaragdakis, Rade Stanojevic, Pablo Rodriguez, and Ravi

Sundaram. Delay-tolerant bulk data transfers on the internet. IEEE/ACM TON, 21(6),

2013.

[33] Nikolaos Laoutaris, Michael Sirivianos, Xiaoyuan Yang, and Pablo Rodriguez. Inter-

datacenter bulk transfers with netstitcher. In SIGCOMM, pages 74–85. ACM, 2011.

[34] Srinivasan Keshav and Sanjoy Paul. Centralized multicast. In International Conference

on Network Protocols, pages 59–68. IEEE, 1999.

39

http://archive.openflow.org/documents/openflow-spec-v1.1.0.pdf
http://archive.openflow.org/documents/openflow-spec-v1.1.0.pdf
https://azure.microsoft.com/en-us/blog/how-microsoft-builds-its-fast-and-reliable-global-network/
https://azure.microsoft.com/en-us/blog/how-microsoft-builds-its-fast-and-reliable-global-network/

[35] S. Liang and D. Cheriton. Tcp-smo: extending tcp to support medium-scale multi-

cast applications. In Proceedings.Twenty-First Annual Joint Conference of the IEEE

Computer and Communications Societies, volume 3, pages 1356–1365, 2002.

[36] Brian Adamson, Carsten Bormann, Mark Handley, and Joe Macker. Nack-oriented

reliable multicast (norm) transport protocol, 2009.

[37] M. J. Donahoo, M. H. Ammar, and E. W. Zegura. Multiple-channel multicast scheduling

for scalable bulk-data transport. In INFOCOM ’99. Eighteenth Annual Joint Conference

of the IEEE Computer and Communications Societies. Proceedings. IEEE, volume 2,

pages 847–855 vol.2, Mar 1999.

[38] S. Bhattacharyya, J. F. Kurose, et al. Efficient rate-controlled bulk data transfer using

multiple multicast groups. TON, 11(6):895–907, 2003.

[39] Meeyoung Cha, W. Art Chaovalitwongse, Jennifer Yates, Aman Shaikh, and Sue Moon.

Efficient and scalable provisioning of always-on multicast streaming services. Computer

Networks, 53(16):2825 – 2839, 2009.

[40] D. Li, M. Xu, M. c. Zhao, C. Guo, Y. Zhang, and M. y. Wu. Rdcm: Reliable data

center multicast. In 2011 Proceedings IEEE INFOCOM, pages 56–60, 2011.

[41] A. Rodriguez, D. Kostic, and A. Vahdat. Scalability in adaptive multi-metric overlays.

In International Conference on Distributed Computing Systems, pages 112–121, 2004.

[42] Karthik Nagaraj, Hitesh Khandelwal, Charles Killian, and Ramana Rao Kompella.

Hierarchy-aware distributed overlays in data centers using dc2. In COMSNETS, pages

1–10. IEEE, 2012.

[43] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh Nandi, Antony Row-

stron, and Atul Singh. Splitstream: High-bandwidth multicast in cooperative environ-

ments. In SOSP, pages 298–313. ACM, 2003.

[44] Tingwei Zhu, Fang Wang, Yu Hua, Dan Feng, et al. Mctcp: Congestion-aware and ro-

bust multicast tcp in software-defined networks. In International Symposium on Quality

of Service, pages 1–10, June 2016.

40

[45] Michael Luby, Lorenzo Vicisano, Jim Gemmell, et al. The use of forward error correction

(fec) in reliable multicast, 2002.

[46] M. Luby, J. Gemmell, L. Vicisano, L. Rizzo, and J. Crowcroft. Asynchronous layered

coding (alc) protocol instantiation, 2002.

[47] Christos Gkantsidis, John Miller, and Pablo Rodriguez. Comprehensive view of a live

network coding p2p system. In IMC, pages 177–188. ACM, 2006.

[48] A. Shokrollahi. Raptor codes. IEEE Transactions on Information Theory, 52(6):2551–

2567, 2006.

[49] John W. Byers, Michael Luby, Michael Mitzenmacher, and Ashutosh Rege. A digital

fountain approach to reliable distribution of bulk data. In SIGCOMM, pages 56–67.

ACM, 1998.

[50] K. Jeacle and J. Crowcroft. Tcp-xm: unicast-enabled reliable multicast. In ICCCN,

pages 145–150, 2005.

[51] IJsbrand Wijnands, Eric C. Rosen, Andrew Dolganow, Tony Przygienda, and Sam

Aldrin. Multicast Using Bit Index Explicit Replication (BIER). RFC 8279, November

2017.

[52] Sen Su, Yiwen Wang, Sujuan Jiang, Kai Shuang, and Peng Xu. Efficient algorithms

for scheduling multiple bulk data transfers in inter-datacenter networks. International

Journal of Communication Systems, 27(12), 2014.

[53] Yiwen Wang, Sen Su, et al. Multiple bulk data transfers scheduling among datacenters.

Computer Networks, 68:123–137, 2014.

[54] M. Hefeeda, A. Habib, B. Botev, et al. Promise: Peer-to-peer media streaming using

collectcast. In MULTIMEDIA, pages 45–54. ACM, 2003.

[55] K. Suh, C. Diot, J. Kurose, L. Massoulie, C. Neumann, D. Towsley, and M. Varvello.

Push-to-Peer Video-on-Demand System: Design and Evaluation. IEEE Journal on

Selected Areas in Communications, 25(9):1706–1716, December 2007.

41

[56] Srinivas Narayana, Joe Wenjie Jiang, Jennifer Rexford, and Mung Chiang. Distributed

wide-area traffic management for cloud services. SIGMETRICS Perform. Eval. Rev.,

40(1):409–410, June 2012.

[57] Dimitri Bertsekas and Robert Gallager. Data networks, 1987.

[58] The Internet Topology Zoo. http://www.topology-zoo.org/.

[59] FK Hwang and Dana S Richards. Steiner tree problems. Networks, 22(1):55–89, 1992.

[60] Dimitri Watel and Marc-Antoine Weisser. A Practical Greedy Approximation for the

Directed Steiner Tree Problem, pages 200–215. Springer International Publishing, Cham,

2014.

[61] Evaluation of approximation algorithms for the directed steiner tree problem. https:

//github.com/mouton5000/DSTAlgoEvaluation. visited on Apr 27, 2017.

[62] Hong Zhang, Kai Chen, Wei Bai, et al. Guaranteeing deadlines for inter-datacenter

transfers. In EuroSys, page 20. ACM, 2015.

[63] The internet topology zoo (dataset). http://topology-zoo.org/dataset.html.

[64] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C. Snoeren. Inside

the social network’s (datacenter) network. In SIGCOMM, pages 123–137. ACM, 2015.

[65] CloudLab. https://www.cloudlab.us/.

[66] The Internet Topology Zoo (GEANT). http://www.topology-zoo.org/files/

Geant2009.gml.

[67] NACK-Oriented Reliable Multicast (NORM). https://www.nrl.navy.mil/itd/ncs/

products/norm.

[68] Phillipa Gill, Martin Arlitt, Zongpeng Li, and Anirban Mahanti. Youtube traffic charac-

terization: A view from the edge. In Proceedings of the 7th ACM SIGCOMM Conference

on Internet Measurement, IMC ’07, pages 15–28, New York, NY, USA, 2007. ACM.

42

http://www.topology-zoo.org/
https://github.com/mouton5000/DSTAlgoEvaluation
https://github.com/mouton5000/DSTAlgoEvaluation
http://topology-zoo.org/dataset.html
https://www.cloudlab.us/
http://www.topology-zoo.org/files/Geant2009.gml
http://www.topology-zoo.org/files/Geant2009.gml
https://www.nrl.navy.mil/itd/ncs/products/norm
https://www.nrl.navy.mil/itd/ncs/products/norm

	1 Introduction
	2 Background and related Work
	3 System Model
	3.1 Online Greedy Optimization Model

	4 Partitioning of Receivers on a Relaxed Topology
	4.1 Our Partitioning Approach
	4.2 Incorporating Objective Vectors

	5 Iris
	5.1 Choosing Forwarding Trees
	5.2 Estimating Minimum Completion Times
	5.3 Assigning Ranks to Receivers
	5.4 The Iris Algorithm

	6 Evaluation
	6.1 Computing a Lower Bound
	6.2 Simulations
	6.2.1 Minimizing Average Completion Times
	6.2.2 Other Objective Vectors

	6.3 Mininet Emulations
	6.4 Practical Concerns

	7 Conclusions and Future Work

