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Abstract

Next-generation networks will pave the way for video distribution over
vehicular Networks (VANETs), which will be composed of ultra-dense het-
erogeneous radio networks by considering existing communication infrastruc-
tures to achieve higher spectral efficiency and spectrum reuse rates. However,
the increased number of cells makes mobility management schemes a chal-
lenging task for 5G VANET, since vehicles frequently switch among different
networks, leading to unnecessary handovers, higher overhead, and ping-pong
effect. In this sense, an inefficient handover algorithm delivers videos with
poor Quality of Experience (QoE), caused by frequent and ping-pong han-
dover that leads to high packets/video frames losses. In this article, we
introduce a multi-criteria skipping-based handover algorithm for video dis-
tribution over ultra-dense 5G VANET, called Skip-HoVe. It considers a skip-
ping mechanism coupled with mobility prediction, Quality of Service (QoS)-
and QoE-aware decision, meaning the handovers are made more reliable and
less frequently. Simulation results show the efficiency of Skip-HoVe to deliver
videos with Mean Opinion Score (MOS) 30% better compared to state-of-
the-art algorithms while maintaining a ping-pong rate around 2%.
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1. Introduction1

Next-generation communications will not only rely on new access tech-2

nologies, such as Massive MIMO and Millimeter Wave, but they will also3

take advantage of existing communication infrastructures, such as WiFi and4

LTE, to provide ubiquitous and efficient communication [1]. In this sense,5

5G networks will be composed of ultra-dense heterogeneous radio networks6

compared to 4G systems, increasing the data-rate at the network edge. For7

instance, densification consists of the massive deployment of macrocells, mi-8

crocells, small cells, relays, and other communication solutions, achieving9

both higher spectral efficiency and higher spectrum reuse rates [2, 3, 4].10

These cells can be used to offload traffic from macrocells to enable the com-11

munication of all kinds of devices in highly dense, ubiquitous, and hetero-12

geneous environments, having an immense impact from business and social13

standpoints [5].14

The next-generation wireless technology will pave the way for extensive15

use of high demanding applications such as video-based services for mobile16

users, anytime and anywhere [6], including real-time distribution of adver-17

tisement or entertainment videos over vehicular networks (VANETs). One of18

the critical issues for future and success of video distribution over VANETs19

will be the ability of heterogeneous networks to support efficient mobility20

and resource management schemes to increase the Quality of Experience21

(QoE), while optimizing the usage of high demanded wireless/radio resources22

[7]. However, the increased number of heterogeneous cells makes mobility23

management a challenging task for VANETs, since vehicles, especially in ur-24

ban environments, frequently switch among different heterogeneous networks,25

i.e.vehicles travel leaving an area of a cell to enter another one very often26

[8]. Many handovers result in excessive signaling overhead, disconnection,27

and ping-pong effect, i.e., a vehicle disconnects from a cell and afterward28

connects again to another one moments later [9]. These issues increase the29

packets/video frames losses, leading to a poor QoE for video applications in30

such a VANET scenario [10].31

Skipping unnecessary handovers is beneficial to the network and also to32

the user’s experience [2]. A skipping-based handover consists of avoiding33

consecutive handovers to maintain the QoE as high as possible, which means34
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reducing the handover frequency by sacrificing some of the best cell con-35

nectivity associations [11]. Hence, this allows maintaining a longer service36

duration with the serving cell with at least a minimum service quality level,37

while reducing signaling overhead and zapping delay. For instance, a han-38

dover decision based on RSS skips some handovers even if they mean that the39

user is not receiving the best Signal-to-interference-plus-noise-ratio (SINR) at40

all times, mitigating ping-pong effect [2]. Skipping-based handover schemes41

are often associated with mobility prediction information to maximize the42

connection duration without compromising the network/application perfor-43

mance [12, 13]. This is achieved by giving priority to cells with the highest44

probability that the user remains connected for more time [14]. However,45

skipping-based handover schemes alone are not enough to deliver videos with46

QoE support. Hence, a handover decision based on a mobility prediction47

coupled with QoE and Quality of Service (QoS) parameters improve video48

delivery over VANETs by avoiding ping-pong handovers and by improving49

the usage of network resources [15].50

In this article, we propose a multi-criteria skipping-based handover algo-51

rithm for video distribution over ultra-dense VANETs, called Skip-HoVe. It52

guarantees seamless handovers in an ultra-dense VANETs scenario to deliver53

videos with high QoE by taking into account mobility prediction, QoS, QoE,54

and radio parameters. Skip-HoVe supports an Analytic Hierarchy Process55

(AHP) to assign different degrees of importance for each criterion. Skip-56

HoVe considers proactive Ping-Pong avoidance for handover decision, by57

skipping handovers when QoE and QoS are acceptable and stable. The58

implementation of Skip-HoVe is available for downloading on Github1.59

We tested two mobility prediction technique with Skip-HoVe, namely60

AutoRegressive Integrated Moving Average (ARIMA) and Kalman Filter61

(KF). Based on a real-world vehicular dataset analysis, ARIMA provided a62

higher accuracy for mobility prediction compared with KF. Therefore, we63

chose ARIMA to be considered as a mobility prediction technique used by64

Skip-HoVe. Simulation results showed that the Skip-HoVe algorithm deliv-65

ered videos with QoE 14% better compared to state-of-the-art algorithms in66

ultra-dense VANET scenarios. For instance, Mean Opinion Score (MOS) re-67

sults showed a improvement of 30% in subjective evaluations, while ping-pong68

handover was kept at a low 2% rate. The main contributions of this work69

1https://github.com/lsiddd/hove
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are summarized as follows: (i) a skipping-based handover algorithm that70

maximizes connection time to a serving cell; (ii) a multi-criteria decision-71

making technique for handover decisions in an ultra-dense VANET scenario;72

and (iii) simulation results to show the performance of Skip-HoVe to de-73

liver videos with QoE support in ultra-dense VANET scenarios compared to74

existing handover algorithms.75

We organize the rest of the article as follows. Section 2 outlines the state-76

of-the-art about handover algorithms, their main drawbacks to provide video77

dissemination with QoE support. Section 3 describes the Skip-HoVe Al-78

gorithm. Section 4 discusses the simulation scenario and results. Finally,79

Section 5 presents the conclusion and possible extensions.80

2. Related Work81

Gong et al. [16] proposed a Fuzzy Analytical Hierarchical Process (FAHP)82

algorithm to reduce failure and ping-pong probability in Heterogeneous Ultra-83

dense by defining a Time-To-Trigger (TTT) during handover execution. Al-84

though it highlights the importance of a multi-parameter handover decision,85

the use of TTT can have undesired effects, such as link failures and delayed86

handovers [17]. Silva et al. [18] proposed an adaptive TTT handover based87

on Fuzzy logic and user speed. Such a handover algorithm collects mobility88

parameters to predict user location for content dissemination, and not for89

handover purposes, showing that offloading from macrocells to Small Cells90

can be essential in a heterogeneous environment. One of the main benefits91

of the proposed scheme is the reduced ping-pong rates in dense scenarios.92

However, it is not intended for multimedia traffic, and, thus, it does not con-93

sider QoE for decision making. Liu et al. [19] introduced an adaptive TTT to94

minimize the impact of frequent handovers in Ultra-Dense Networks. That95

work applies a Fuzzy TOPSIS decision to choose the best handover candidate96

to achieve proper QoS levels. However, it does not apply predictive metrics97

or any QoE monitoring, which can significantly enhance the quality of the98

decisions in a VANET scenario.99

Arshad et al. [12] showed that handover introduces an overhead in the100

network and is, sometimes, redundant. Skipping some handovers can be101

beneficial for the network while maintaining a seamless QoS. However, that102

work offers small support for video transmission and may not be suitable for103

the strict requirements involved. Demarchou et al. [2] studied the challenge of104

reducing handover rates (i.e., skipping) in ultra-dense networks. That work105
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considers the trajectory prediction in the skipping decision, but only assumes106

a simple model based on position and velocity. Xu et al. [20] proposed a107

delay oriented cross-tier handover skipping to maximize the performance of108

low latency applications in ultra-dense networks. Their work derived an109

analytical expression for the adequate capacity of users during the handover110

execution and proposed a resource allocation scheme in Target Cells to reduce111

blocking probability. It does not employ predictive schemes, or mobility112

information into the decision, which may improve the decision quality and113

positively impact user QoE.114

Medeiros et al. [21] showed the importance of performing a multi-criteria115

handover decision to balance metrics from different layers, namely, radio116

measurements, QoS, and QoE. That work uses AHP to balance the metrics117

according to predefined importance levels assigned to each, but the algorithm118

presents high handover rates, which is harmful to QoE in dense scenarios.119

Sargento et al. [22] proposed a connection manager for VANETs with hetero-120

geneous technologies, VANET Connection Manager (VCM), which is based121

on an Analytical Hierarchic Process (AHP) that combines information from122

multiple sources (vehicle speed, GPS, heading, RSSI, and available technolo-123

gies such as DSRC/WAVE, IEEE 802.11 and 4G Cellular), and decides what124

is the best connection available at all times, trying also to minimize the num-125

ber of handovers. The AHP is optimized using interaction with a Genetic126

Algorithm (GA). This approach includes mobility prediction through the ex-127

pected connectivity time but does not include QoE requirements. Zhang et128

al. [23] proposed a classification of applications sensitive and insensitive based129

on user experience. A handover decision switches to a more energy-efficient130

network during idle timer and a high-performance network when predicted.131

Chen et al. [24] proposed a QoE estimation to correlate QoS and QoE to132

improve user satisfaction, not focusing only on call blocking probability and133

handover dropping probability. However, video sharing requires more sub-134

jective metrics to describe QoE, such as MOS, which can be mimicked by135

machine learning algorithms and integrated into automated decisions.136

Table 1 summarizes the main characteristics of analyzed handover al-137

gorithms in terms of QoE-awareness, mobility prediction-awareness, and138

skipping-based handover. Based on our analysis of the state-of-the-art, we139

conclude that video distribution over ultra-dense VANETs scenarios requires140

an efficient skipping-based handover algorithm to maintain a minimum num-141

ber of disruptions and avoid occurrence of ping-pong. Such a scheme requires142

efficient mobility prediction technique to improve handover decisions. Fur-143
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thermore, it is vital to consider a multi-criteria decision scheme to balance144

heterogeneous metrics that will directly or indirectly impact user experience145

on consuming video services. To the best of our knowledge, Skip-HoVe incor-146

porates all of these critical features that have not been provided in a unified147

handover algorithm before.148

Table 1: Summary of analyzed handover algorithms for ultra-dense VANET scenarios
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Gong et al. [16] Adaptive TTT
Silva et al. [18] Adaptive TTT
Liu et al. [19] Fuzzy Logic

Arshad et al. [25]
Handover
Skipping

X
Demarchou et al. [2] Handover Skipping Assumed present X
Xu et al. [20] Delay-Oriented
Handover Skipping X
Medeiros et al. [21] AHP X
Sargento et al. [22] AHP Expected contact time X
Zhang et al. [23] Q Learning X
Chen et al. [24] Q Learning X
Skip-HoVe ARIMA + AHP X X X

3. Skip-HoVe Algorithm149

In this section, we introduce a multi-criteria skipping-based handover150

algorithm for video distribution over an ultra-dense VANET scenario, called151

Skip-HoVe. It aims to mitigate the adverse effects of frequent handovers152

while maintaining an acceptable QoE level of delivered videos. We employ153

a proactive skip avoidance condition during a handover decision, as well as154

the decision skips handovers when QoE and QoS are acceptable and stable,155

while always preferring cells that maximize the connected time.156
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3.1. Network and System Model157

We consider a scenario composed of a set of n vehicles V = {v1, v2, ..., vn}158

with an individual identity (i ∈ [1, n]). Each vehicle vi is assumed to have a159

radio transceiver to enable the communication between vehicles (V2V) and160

with an infrastructure (V2I). For V2I communication, we consider an ultra-161

dense cellular network as a K-tier cellular network, where each tier models162

the cell of a particular access network, such as macrocells, small cells, or163

picocells. In this sense, we consider a set of cells B = {b1, b2, ..., bm} with164

an individual identity (j ∈ [1,m]) and deployed in fixed known locations165

(xj, yj). The cells across tiers may differ in terms of the spatial density and166

transmit power Pj. We also assume a core network with high capacity fibers167

connected to avoid congestion on the backhaul links. We denote N(bj) ⊂ B168

as a subset of cells within the radio range (Rmax) of a given vehicle vi.169

Regarding the video content, each compressed video is composed of three170

types of frames, i.e., I-, P-, and B-frames [26]. These frames are arranged171

into sequences, called a group of pictures (GoP), which contains all the in-172

formation required to decode a given video within a period. We denote a173

given Video Flow (V Fi = g1, g2, ..., gk) as a set of k GoP g. Each frame in174

a given GoP g is divided into one or more video packets (p), depending on175

each frame size. Each packet p contains, in addition to the data payload,176

other encoder parameters, such as frame-type flag, Id, length, timestamp,177

and packet segmentation [26]. To obtain this information, a packet monitor178

at the client-side extracts the frame type and intra-frame dependency infor-179

mation for each packet p [27], since each VF starts with a sequence header180

followed by a GoP header, and then by one or more coded frames.181

Each vehicle vi can measure the received signal quality as a radio pa-182

rameter from each available cell N(bj), which can be measured using the183

Reference Signal Received Quality (RSRQ). Each vehicle vi is aware of its184

location L(xi, yi, t) in a given timestamp t using a positioning system, such as185

GPS. Each vehicle vi travels following a given trajectory traji with a speed si186

ranging between a minimum (e.g., smin) and a maximum (e.g., smax) speed187

limit. Each vehicle vi moves over different areas due to their fast movement,188

and, thus, it frequently has a different set of available cells N(bj).189

The handover manager entity, such as LTE Mobility Management Entity190

(MME), performs all Skip-HoVe handover phases, namely: Measurement,191

Decision, and, if a handover is necessary, Execution. This entity must have192

a connection to each bj, such as an S1 interface. Each vehicle vi communi-193

cates with the handover manager logically through its current bj to report194
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the measurements, which can be requested by the mobility management if195

needed. Each vehicle vi performs measurements, while the MME performs196

the handover decision and execution. At the measurement phase, the han-197

dover manager must obtain information from both vi and N(bj). Afterward,198

the handover decision phase considers information collected in the previous199

phase to select the bj that a given vehicle vi must connect to. Finally, the200

handover execution phase is responsible for changing the connection between201

a given vehicle vi from a serving cell to a target cell, chosen by a handover202

manager. In the following, we introduce more details about each phase.203

3.2. Measurement Step204

Skip-HoVe algorithm collects information from both vehicle vi and avail-205

able cells N(bj) at the measurement step. Specifically, Skip-HoVe gets from206

the vehicle vi information about its estimated QoE, current location, QoS,207

and radio parameters. On the other hand, Skip-HoVe collects QoS and QoE208

information from the serving and candidates cells N(bj) to understand their209

performance to make a better decision. The handover manager assigns the210

maximum QoS and QoE values as soon as a given cell is idle to give preference211

to such cells, and, thus, providing load balancing. In the following, we intro-212

duce the description of the mobility prediction, QoE, and QoS monitoring213

modules.214

3.2.1. Mobility Prediction215

Vehicle mobility is approximately linear, increasing the accuracy of vehic-216

ular mobility prediction [28]. In this sense, a mobility prediction algorithm,217

such as ARIMA or KF [28], enables to estimate the position L(xi, yi, t + 1)218

of a given vehicle vi in a future timestamp t + 1 based on the vehicles speed219

and location using kinematics equations. Based on the mobility prediction,220

it is possible to avoid connections to a cell that might no longer be avail-221

able in the future. It is useful to treat mobility as a time series, where each222

measurement constitutes an entry for the predictor to adjust the prediction223

model. The prediction granularity, in a spacial and temporal context, may224

be defined by a measurement frequency. For instance, Skip-HoVe performs a225

new prediction at every new measurement. We also evaluated the granularity226

of mobility prediction ranging from 0.1 to 2 seconds in steps of 0.2 seconds.227

Based on our evaluation, we adopted a granularity of 1 second, given the228

simplicity of the prediction module, which does not cause significant over-229
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head. However, for other scenarios, this value can be adjusted in order to fit230

mobility and computing resources accordingly.231

Based on the predicted vehicle location, Skip-HoVe computes the distance232

di,j between the vehicle future position L(xi, yi, t + 1) and its available cells233

N(bj). Large distance means a cell from which the vehicle is distancing itself,234

which should be avoided. However, higher values correspond to a higher score235

for such bj during a handover decision, and, thus, distances vector Dists are236

inverted, as shown in Eq. 1.237

Dists =
[

1
di,0

1
di,1

1
di,2

· · · 1
di,3

]
. (1)

Several values in the vector Dists could be near zero, due to distances238

being too high. In this sense, the vector Dists must be normalized by dividing239

every element by the absolute value of the vector Dists, which is computed240

based on Eq. 2.241

|Dists| =
√

(di,0)2 + (di,1)2 + · · ·+ (di,2)2. (2)

These values can be fed to the algorithm when computing the score d to242

the individual cell bj, which is computed based on Eq. 3.243

d =
di,j
|Dists| ,∀di,j ∈ Dists. (3)

3.2.2. QoE-monitor244

Skip-HoVe considers a low complexity hybrid QoE-monitor running on245

a given vehicle vi to estimate the QoE of a given video flow V Fi, such as246

introduced by Medeiros et al. [21]. Hybrid QoE video quality assessment247

measures the video quality level in real-time based on information from IP248

and video codec packet headers [26]. In this sense, a machine learning tech-249

nique, namely, a random forest, predicts the MOS value based on frame loss250

and video characteristics with low complexity.251

At the client-side, a packet monitor examines the MPEG bitstream to252

verify which frame is lost in a GoP g to compute the frame loss ratio for253

each frame type. This is because the loss ratio of each frame and GoP size254

differently affect the QoE of transmitted videos [26]. We consider an entire255

machine learning process, i.e., training, testing, and validation, to predict256

the MOS value for a given video flow V F . In this sense, the QoE-monitor257

considers a random forest as a low complexity machine learning technique258
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to correlate the loss rate of I-, P-, and B-frames and GoP size with the259

assigned MOS values, achieving a final MOS score. Random forest works260

with the concept of forming smaller selections of a tree, informing different261

results in these smaller trees, and counting the most chosen solution (i.e.,262

majority tree) as the answer to a question: what is the estimated MOS value263

considering the GoP size and loss ratio of I-, P-, and B-frames?264

3.2.3. QoS- and signal-monitor265

Regarding QoS parameters, Skip-HoVe considers PDR to evaluate the266

connection between a given vehicle vi and a cell bj. Each vehicle vi computes267

the PDR by using packet Ids to detect the lost packets, and associated with a268

cell bj. From the radio perspective, Skip-HoVe algorithm considers the RSRQ269

value computed by a given vehicle vi for each beacon message transmitted270

by a cell bj (both serving and candidate cells). RSRQ measures the received271

signal quality in the LTE networks. All measurements are sent to the vehicle’s272

serving cell and can be requested by the mobility management when they273

execute their decision step.274

3.3. Decision Step275

At this step, the handover Manager computes a score Sj to each available276

cell N(bj) based on Eq. 4, in order to find the best available cell bj for a given277

vehicle vi connect to. Skip-HoVe considers multiple metrics with different278

priorities for handover decisions, and, thus, it needs to assign a weight wi for279

each input metric Mi, i.e., QoE, QoS, and distance. For instance, weights280

can represent how many times QoE is more or less critical than QoS.281

Sj =
n∑

i=1

wi ×Mi. (4)

We consider AHP [29] to compute the influence factor for each parameter282

since AHP provides a structured technique for decision-making of problems283

with multiple parameters involved. AHP decomposes a complex problem284

into a hierarchy of simpler sub-problems by combining qualitative and quan-285

titative factors for the analysis, allowing the system to find an ideal solution286

when there are several criteria considered in the handover process. Specifi-287

cally, AHP considers a pairwise comparison between the numerical values of288

each collected parameter and its relative degrees of importance, in order to289

adjust at runtime its weights. A numeric value represents this pairwise com-290

parison, and pairs must not contradict each other, e.g., if a metric i is two291
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times more important than metric j, then j is 1/2 times as important as i.292

We define five importance levels to compare each pair of parameters, which293

indicate how vital one parameter is compared to others and the inverted294

comparison, as shown in Table 2.295

Table 2: Pairwise context importance

ci,j Definition

4 i is much more important than j
2 i is more important than j
1 i is as important as j

1/2 i is less important than j
1/4 i is much less important than j

The handover Manager constructs for each vehicle vi a comparison matrix296

A = (Ci,j)mxm, where lines and columns represent the metrics to represent297

all pair-wise comparisons, as shown in Eq. 5. We denote ci,j as how impor-298

tant the i-th element is compared with the j-th element, and m denotes the299

number of elements to be compared.300

A = (Ci,j)nxn =




c1,1 c1,2 · · · c1,n
c2,1 c2,2 · · · c2,n

...
...

. . .
...

cn,1 cn,2 · · · cn,n


. (5)

Matrix Ci,j indicates which parameters have higher priority over others,301

as shown in Eq. 6. We denote d as the normalized distances computed by Eq.302

2, QoE represents the predicted MOS score, and Signal represents the RSRQ303

intensity, and QoS means the PDR. For instance, in the first line, we observe304

that distance metric d is two times more important than QoE, and four305

times more critical than QoS and Signal. It is essential to highlight that if306

one criterion is considered to be two times more important than another one,307

then the other is 1/2 as relevant compared with the first, due to the inverted308

comparison. Note that the main diagonal of the Matrix must always contain309

the value 1, as the metric is compared with itself.310
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Ci,j =




d QoE QoS Signal

d 1 2 4 4
QoE 1/2 1 2 2
QoS 1/4 1/2 1 1
Signal 1/4 1/2 1 1


. (6)

We find the eigenvector of the matrix (Ci,j) by dividing each element by311

the sum of its column, obtaining the eigenvector W = [0.5 0.25 0.125 0.125],312

meaning that that the normalized distances will have a weight of 0.5 for d,313

0.25 for QoE, 0.125 for QoS and 0.125 for Signal as well. We analyzed the314

consistency ratio (CR) and the consistency index (CI) of the derived weight315

vector, i.e.. We analyzed if the derived weight vector is correct. In this sense,316

if CI = 0 and CR = CI/RI ≤ 0.1, then the inconsistency of the constructed317

comparison matrix is acceptable. Following the process of consistency checks,318

we can find out that the comparison matrix (Ci,j) in Eq. 6 has CI = 0 and319

CR = 0. Therefore, the inconsistency of the constructed pairwise comparison320

matrix is acceptable to meet the validation criteria defined for AHP [29].321

The handover manager performs a product between the eigenvector and322

a vector that stores the measured values Mi, obtaining the score of Si for323

all available cells N(bj). Hence, the handover manager selects the cell with324

the highest score Si, which is the most suitable for the vehicle vi to connect325

at the moment. In the decision/skipping step, the handover manager must326

decide if a handover is necessary based on a skipping-based handover decision327

since a handover execution is costly and should be avoided if not essential.328

Skip-HoVe considers a QoE threshold to trigger the handover, which is de-329

fined as 4 for the predicted QoE value [30]. As soon as the predicted QoE330

value computed by the QoE-monitor is above this threshold, a handover is331

considered unnecessary and skipped, since the video is already delivered to332

the vehicle vi with an acceptable QoE. On the other hand, as soon as the333

handover is necessary, the decision step chooses the best available cells N(bj)334

for the vehicle vi to connect, explained hereafter.335

Skip-HoVe must also analyze if the decision constitutes a ping-pong han-336

dover (i.e., when a vehicle leaves a cell and returns within up to 4 seconds337

[31]). If so, Skip-HoVe actively skips the execution of the handover, consid-338

ered wasteful to network resources. On the other hand, the Skip-HoVe algo-339

rithm will consider such a cell for handover decisions after this time window340

has passed. Algorithm 1 introduces the primary operations performed by the341
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Skip-HoVe algorithm to deliver video content with QoE support over ultra-342

dense VANET. The handover manager executes all three phases, while the343

mobile node is connected to any cell.344

Algorithm 1: Skip-HoVe algorithm

1 ∀ vehicles in the network vi ∈ V
2 while vehicle is connected do
3 Vehicle sends measurements to its serving cell Handover Manager

to initiate the decision phase
4 for each available cell N(bi) ∈ B do
5 if QoS is above a threshold and not decreasing then
6 Skip handover

7 else
8 Estimate the vehicle’s next position
9 Calculate the Si score for the cell

10 BestCellId ← cell with the highest Si

11 if BestCellId ̸= ServingCellId and BestCellRSRQ ≥ Threshold
then

12 if Handover is a Ping-Pong then
13 Skip handover

14 else
15 Initiate the handover execution phase

3.4. Mobility Prediction Scenario345

We consider both ARIMA and KF as use cases for the mobility predic-346

tion technique considered by Skip-HoVe, but it can be any other position347

prediction scheme. Both ARIMA and KF can be used to predict the vehi-348

cle’s future position L(xi, yi, t + 1) based on the current one L(xi, yi, t). In349

this sense, Skip-HoVe iterates the mobility prediction algorithm every time a350

new measurement arrives, where the intervals between measurements define351

the granularity of the filter. In our tests, we adopted the granularity of 1352

second.353
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3.4.1. ARIMA354

ARIMA is a statistical model to analyze and forecast time series, which355

is one of the most general time series forecasting scheme. ARIMA works by356

taking values of series and making them stationary if necessary. A stationary357

time series has no trend, and the amplitude of its variations around the mean358

is constant. In the ARIMA model, future values of series are assumed to be359

a linear combination of past values and past moving averages.360

ARIMA is described as a 3tuple (p, d, q), where p corresponds to the361

number of past measurements weighted in the estimation, d consists of the362

number of differencing series to make statistically stationary, and q corre-363

sponds to the number of past moving averages. The basic formulation of the364

model is given by Eq. 7. We denote past terms as y, past moving averages365

as ϵ, while θ and ϕ are individual weights for each term and will be trained366

by the model.367

yt = θ0 + ϕ1yt−1 + ϕ2yt−1 + ϕ3yt−3 + · · ·+ ϕpyt−p

ϵ0 + θ1ϵt−1 + θ2ϵt−1 + θ3ϵt−3 + · · ·+ θqϵt−q.
(7)

The number of past value terms and past moving averages depends on368

the studied series, where some series are mostly dependant on weighted past369

values and do not need any moving average terms. The model can be repre-370

sented by the notation ARIMA(5, 1, 0), which means we use five past terms,371

perform one differentiation, and consider no past moving averages.372

ARIMA is used to forecast a single-variable time series, and, thus, it373

has to be done a training step separately for the latitude and longitude374

measurements. The first step for the general ARIMA formulation is to define375

the differencing order, i.e., the number of times each term is subtracted from376

the next one, given by the parameter d, as shown in Eq. 8). The ARIMA377

model can be used for the vehicle mobility prediction L(xi, yi, t + 1). In this378

sense, the model must be trained for each vehicle separately and for each379

coordinate (i.e., latitude, and longitude).380

yt =





Yt, if d = 0

(Yt − Yt−1), if d = 1

(Yt − Yt−1)− (Yt−1 − Yt−2), if d = 2

and so on

(8)
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3.4.2. Kalman Filter381

KF tries to estimate a state xt ∈ Rn based on previous state xt−1, i.e.,382

the filter only needs the value of the previous state to estimate the next383

one. The state x in a KF is a vector containing a pair of vehicle geographic384

coordinates gt, namely latitude and longitude, at a given moment t (i.e.,385

L(xi, yi, t)). Explicitly, we model the process as in a stochastic difference386

equation shown in Eq. 9. We denote A as a n × n matrix that relates the387

previous state to the current one, and w ∈ Rn as noise estimation.388

xt = Axt−1 + wt−1. (9)

The estimation considers a measurement given by Zk, as shown in Eq.389

10. It can be modeled in terms of the prediction with a correcting factor H390

and a noise vk.391

Zk = Hxk + vk. (10)

We define x̂−
k as previous state, xk as predicted state, and x̂k as following392

state, where x̂−
k and x̂k are real values of the process. We want to estimate xk393

based on the measurement Zk. The previous and following errors are defined394

by e−k and ek, respectively, as shown in Eqs. 11 and 12.395

e−k = xk − x̂−
k . (11)

ek = xk − x̂k. (12)

Also, the previous state covariance can be defined based on Eq. 13, and396

the following state covariance by Eq. 14 as the expected value of the error,397

times the error matrix transpose. The goal of the filter is to minimize the398

error covariance Pk.399

P−
k = E

[
e−k e

−T
k

]
. (13)

Pk = E
[
eke

T
k

]
. (14)

We express the following state as a linear combination of the previous400

state, and a correction term proportional to the difference between measure-401

ment and state value, as shown in Eq. 15, the value of x̂k corresponds to the402

vector of predicted coordinates in the next measurement gt+1.403
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x̂k = x̂−
k + K

(
zk −Hx̂−

k

)
. (15)

The matrix K n × m is the gain, which should minimize the following404

error covariance. We can minimize the error by replacing Eq. 15 into Eq. 12405

and, then, deriving the result. In this way, final formulas for computing the406

gain of the filter to be used in the estimation is given by Eqs. 16 and 17.407

Kk = P−
k HT

(
HP T

k H
T + R

)−1
. (16)

Kk =
P−
k HT

HP−
k HT + R

. (17)

3.4.3. Mobility Prediction Accuracy408

We tested the mobility prediction accuracy of KF and ARIMA in a real-409

world vehicular dataset to choose one of them to be part of the handover410

algorithm. In this sense, we considered a vehicular mobility trace collected411

from approximately 500 taxis from San Francisco [32]. The dataset consists412

of GPS measurements of 500+ cabs in the San Francisco bay area over a413

period of one month, generating more than 10 million samples. We consider414

ARIMA(2,2,1) in such a dataset, i.e., it means that we consider two past415

values, the series is direffenced twice to make it stationary, and one moving416

average term. These parameters were found using a Grid Search estimator417

for better performance. We consider 60% of the data for training and the418

remaining 40% for tests.419

Figure 1(a) shows the average Root-Mean-Square Deviation (RMSE) for420

the ARIMA and KF to predict each vehicle location in the dataset. By an-421

alyzing the results, we can observe that KF has an error 85.7% higher than422

the ARIMA. Vehicle movement may be irregular and non-linear for the most423

part, but KF is more accurate when the analyzed data has a linear nature424

due to its interactive nature. In this sense, KF needs time to adjust to mo-425

bility changes in parameters such as speed and direction, i.e., KF makes426

adjustments online. On the other hand, ARIMA can predict the mobility427

pattern with high accuracy after being trained and is very robust even with428

non-linear data. RMSE results can be explained by means of Figure 1(b),429

which shows the vehicle’s longitude over time for a given vehicle. By analyz-430

ing the results, we can conclude that ARIMA predictions are much closer to431

the original data points, while KF predictions, in some cases, are very distant432
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from the original data points. For instance, at sample 30, the vehicle turned433

(left or right), and ARIMA can predict such vehicle mobility pattern, while434

the KF does not detect it.435

ARIMA Kalman Filter0

5

10

15

20

25

30

35

40

RM
SE

 (m
et

er
s)

(a) RMSE for ARIMA and the
Kalman Filter Applied in the
San Francisco Taxi Dataset

10 20 30 40 50 60 70
Sample Number

6360

6340

6320

6300

6280

V
e
h
ic

le
 L

o
n
g

it
u
d

e

Original Data ARIMA Predictions KF Predictions
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cisco Taxi Dataset

Figure 1: Mobility prediction results

4. Evaluation436

This section describes the evaluation methodology, including scenario de-437

scription, simulation parameters, and metrics used to evaluate the perfor-438

mance of different handover algorithms for video distribution in an ultra-439

dense VANET scenario.440

4.1. Scenario description and methodology441

We implemented the evaluated handover algorithms in the NS-3.292 sim-442

ulator and the implementation is available for download on Github1. NS-3.29443

implements the LTE protocol stack for V2I communication. We consider an444

ultra-dense VANET scenario such as described by Demarchou et al.[2] and445

3GPP LTE release 13 [33], considering a 2 km × 2 km area with 7 macrocells446

covering the whole scenario to some degree, and 100 small cells distributed447

through the scenario. Macrocells have a transmission power of 46 dBm, while448

small cells have transmission power of 23 dBm. The simulation considers the449

Nakagami path loss model, which can be very suitable for urban scenarios450

[34]. We conducted 33 simulations with different randomly generated seeds451

2http://www.nsnam.org/
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fed to the simulator’s pseudo-random number generator (MRG32k3a). Re-452

sults show the values with a confidence interval of 95%. The main simulation453

parameters can be seen in Table 3.454

Table 3: Simulation parameters

Parameter Value
Number of vehicles [50, 100, 150, 200]
Average Speed of Vehicles 43.81 km/h
Number of macrocells 7
Number of Small Cells 100
macrocell Transmission Power 46 dBm
Small Cell Transmission Power 23 dBm
Small Cell Height 10 meters
macrocell Height 45 meters
Propagation Loss Model Nakagami
Scenario Size 2 km × 2 km
Video Sequence Tested Highway [35]
Downlink Frequency 2120 (MHz)
Uplink Frequency 1930 (MHz)

We employed the San Francisco cabs mobility trace [32] for the simulation455

of traffic and vehicle mobility, as described in Section 3.4.3, varying the456

number of vehicles between 50, 100, 150, and 200 to evaluate the scalability.457

We consider the real scenario represented by the trace, i.e., the San Francisco458

Bay area, due to its direct relation to the real world and human mobility459

patterns. Figure 2 depicts the distribution of macrocells and small cells. In460

this context, the coverage area of small cells tends to a Voronoi Tessellation461

[36], and we assume at least one macrocell is available at all points in the462

scenario, as expected in connected vehicles environments. A vehicle traveling463

with average speed of 43 km/h crossed the coverage area of 42.8 small cells464

during the simulations.465

We consider a video with moderate complexity (i.e., the Highway video466

sequence) levels in terms of motion and spatial complexity, which can be467

found in a well-known Video-trace repository [35]. The video has a duration468

of 66 seconds encoded with H.264, 30 fps and intermediate size (352 × 288469

pixels), and a bitrate of 210 kbps. It should be noted that all evaluated470

videos are streamed in a loop. The decoder uses a Frame-Copy method as471
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Figure 2: Sample of the simulation scenario with 7 macrocells and several small cells
around each macrocell

error concealment, replacing each lost frame with the last received one to472

reduce the frame loss and to maintain the video quality.473

We conducted simulations with five different handover algorithms as fol-474

lows: (i) SINR-based handover algorithm is the most common and traditional.475

It considers only the signal strength for handover decision, where a handover476

occurs as soon as there is a radio cell with a higher signal strength value477

than the current one [37]; (ii) PBGT handover algorithm, also known as478

Strongest Cell Algorithm, performs a Power Budget based decision, in which479

the handover is executed if a neighbor cell has a received strength superior480

to the serving cell’s plus a hysteresis value, and such difference is main-481

tained throughout a previously set Time-To-Trigger [38]; (iii) NC-Skipping482

handover algorithm) takes into account the mobility for a Non-Cooperative483

Handover Skipping [2]; (iv) SER handover algorithm considers QoS and QoE484

information for handover decision [21]; and (v) Skip-HoVe algorithm consid-485

ers multi-criteria for decision making, as well as an enhanced skipping-based486

handover algorithm to provide seamless mobility without ping-pong effects487

for video distribution, such as described in Section 3.488

QoE metrics overcome the limitations of QoS metrics for video quality as-489

sessment since QoS metrics fail to capture subjective aspects of video content490

related to the human experience [15]. In this way, we measured the quality491
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level of each transmitted video using well-known objective and subjective492

QoE metrics, namely Structural Similarity (SSIM) and MOS, respectively.493

Specifically, SSIM compares the variance between the original video and the494

original sequence concerning luminance, contrast, and structural similarity.495

SSIM values range from 0 to 1, where 0 is the worst case, and 1 means that496

the transmitted video has the same quality as the original video. We consider497

the video quality measurement tool (VQMT) to measure the SSIM values of498

each transmitted video.499

Subjective evaluation captures all details that might affect the users ex-500

perience. In this context, MOS is one of the most frequently used metric501

for subjective evaluation and requires human observers to rating the over-502

all video quality. For MOS evaluation, we used the single stimulus method503

of ITU-R BT.500-11 recommendations, since it fits well to a large number504

of emerging multimedia applications [39]. The human observers watch only505

once the video and then give a score using ten-grade numerical quality scale,506

expressing the user experience in words, such as Best (Imperceptible), Good507

(Perceptible, but not annoying), Fair (Slightly annoying), Poor (Annoying),508

or Worse (Very annoying). In our subjective evaluation, 31 observers evalu-509

ated the videos, including undergraduate and postgraduate students, as well510

as university staff. They had normal vision, and their age ranged from 18511

to 45 years. The distorted videos were played on a Samsung Galaxy Tab A512

8.0 with a 8 inches display placed on the back seat of a car headrest, and513

evaluated by humans to define/score their MOS values during trips between514

9 AM and 6 PM. The human behavior when they are evaluating videos, the515

distractions caused by the surrounding environment, and any other (subjec-516

tive) psychological factors related to the human psychology are out of the517

scope of this article [40]. For instance, we will not discuss why observers are518

quick to criticize and slow to forgive or why they take less time to fall when519

distortions appear than to rise when distortions disappear.520

We evaluated the handover effectiveness since every handover is a costly521

process for the infrastructure point-of-view. In this way, a handover should522

be carefully executed by the handover manager to avoid wasting limited523

resources. We considered two metrics to evaluate the unnecessary handover524

decision. The number of handovers is vital to provide details about the525

average times that a specific handover management algorithm supports a526

single mobile user to change its cell. Besides, ping-pong is an important527

metric to evaluate unnecessary handovers, since a ping-pong happens when528

the handover manager triggers the mobile device to perform a handover to a529
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cell. However, a few moments later (4–6 seconds) the mobile device returns530

to the previously connected cell (performing a second handover).531

4.2. Simulation results532

Figure 3 shows the objective video quality assessment considering SSIM533

values for a video transmitted by different handover algorithms, i.e., Skip-534

HoVe, NC-Skipping, SER, SINR-based, and PGBT. By analyzing the results,535

we can conclude that videos delivered by Skip-HoVe consistently have a near-536

one SSIM value regardless of the number of vehicles, which is not achieved by537

the state-of-the-art handover algorithms. For instance, Skip-HoVe delivered538

videos with SSIM 28%, 26%, 27%, and 30% higher compared to NC-Skipping,539

SER, SINR-based, and PGBT handover algorithms, respectively. This is540

because Skip-HoVe provided seamless and reliable handover decisions in an541

ultra-dense VANET scenario. To this end, Skip-HoVe considers a skipping542

mechanism coupled with mobility prediction, QoS- and QoE-aware decisions,543

meaning the handovers are made more reliable and less frequently. In this544

sense, Skip-HoVe reduced the I-frame loss rate and the number of handovers,545

especially the skip-handover, as discussed in the following. However, other546

handover algorithms lack at least one of these characteristics.547
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Figure 3: SSIM for videos delivered by different handover algorithms

Figure 4 shows the subjective video quality evaluation using the MOS548

metric for a video transmitted by different handover algorithms. The set of549

transmitted videos used for MOS evaluation is publicly available on YouTube3.550

3http://bit.ly/3aorpoG
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By analyzing the MOS results, it is possible to conclude that Skip-HoVe de-551

livered real-time videos over VANET scenario with frame losses ranging be-552

tween imperceptible to perceptible, but not annoying (i.e., MOS value of553

8). At the same time, the other handover algorithms delivered videos with554

frame losses between annoying and very annoying (MOS value ranging be-555

tween 1 (worse) and 3 (poor)). This is because ultra-dense scenarios lead to556

frequent handovers and ping-pong effect, increasing the packet losses, espe-557

cially of more important video frames, leading to a poor MOS. In this context,558

Skip-HoVe selected a reliable candidate cell for a vehicle to connect to, and,559

thus, download the video content considering multiple metrics coupled with560

a skipping-based handover decision. On the other hand, NC-Skipping, SER,561

SINR-based, and PGBT do not consider efficiently skipping-based handover562

decisions coupled with QoE and QoS information. Hence, MOS results show563

significant improvements in the quality level of the delivered video using564

Skip-HoVe compared to other handover algorithms.565
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Figure 4: MOS for videos delivered by different handover algorithms

Figure 5 shows the I-frame loss ratio of videos delivered via Skip-HoVe,566

NC-Skipping, SER, SINR-based, and PGBT handover algorithms, which help567

to explain the QoE results. Real-time video dissemination requires low frame568

loss, especially of more important video frames, i.e., I-frames, to support569

video dissemination with QoE support [15]. The loss of an I-frame causes570

severe video distortions based on the user perspective since the video quality571

only recovers when the decoder receives an unimpaired I-frame. Based on572

the simulation results, we concluded that Skip-HoVe reduced the losses of I-573

frames by approximately 94% compared to NC-Skipping, SER, SINR-based,574

and PGBT handover algorithms. Hence, Skip-HoVe transmitted priority575
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frames with high deliver probability compared to other evaluated handover576

algorithms, increasing the video quality level. On the other hand, state-of-577

the-art handover algorithms delivered I-frames with loss ratio ranging from578

60% to 80% regardless of the number of vehicles in the scenario, and, thus,579

the video takes longer to recover the QoE.580
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Figure 5: I-Frame loss ratio for videos delivered by different handover algorithms

We selected random frames (e.g., frame number 683) from the Highway581

video sequence with the highest (Figures 6(b) to 6(f)) and lowest (Figures582

6(g) to 6(k)) MOS values for each handover algorithm in order to show the583

impact of handover decision executed based on the user perspective, as shown584

in Figure 6. Specifically, the frame number 683, from the highway video se-585

quence, is a P-frame retrieved by a camera in a car driving in a highway586

with a black car on the left highway lane, as shown in Figure 6(a). In both587

cases, i.e., video with the highest and lowest MOS values, the frame de-588

livered by Skip-HoVe has the same quality compared to the original frame589

as can be seen in Figures 6(b) and 6(g), which clearly show the benefits of590

Skip-HoVe algorithm for video delivery over ultra-dense VANET scenario.591

On the other hand, the frame number 683 captured from the video with the592

highest MOS value has few distortions compared to the original frame, which593

was transmitted by NC-Skipping, SER, SINR-based, and PGBT handover594

algorithms. However, the black on the left highway lane does not appear,595

since this frame was lost and it was reconstructed based on the previously596

received one. For instance, Skip-HoVe, NC-Skipping, SER, SINR-based, and597

PGBT handover algorithms delivered the video with an I-frame loss ratio of598

4.48%, 97.03%, 98.51%, 13.43%, and 97.01%, respectively. Finally, for the599
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frame from the video with the lowest MOS value, the frame transmitted by600

NC-Skipping, SER, SINR-based, and PGBT handover algorithms are very601

impaired compared to the original frame, which makes it impossible to see602

anything. This is because this frame was lost, and also many previous ones,603

making it impossible to reconstruct the frame based on the previously re-604

ceived frames. For instance, the video with the lowest MOS value delivered605

by Skip-HoVe, NC-Skipping, SER, SINR-based, and PGBT handover algo-606

rithms experienced an I-frame loss ratio of 19.4%, 100%, 100%, 16.19%, and607

100%, respectively. Note that even in the best cases, videos usually are not608

graded with the best score, this is because the resolution of the original video609

is already limited. As mentioned before, the loss of an I-frame causes severe610

video distortions based on the user perspective, since QoE only recovers when611

the decoder receives an unimpaired I-frame. Since the I-Frames contain the612

most amount of information for the image, and given that the videos were613

reconstructed using the frame-copy method, algorithms NC-Skipping, SER,614

and PBGT only reconstruct the image with the information that changes615

from one frame to the other, decreasing QoE. Hence, we can conclude that616

Skip-HoVe performs well to deliver videos with the excellent quality com-617

pared to state-of-the-art handover algorithms.618

Figure 7 displays the SSIM of each frame that composes the video se-619

quences used in Figure 6 transmitted by the evaluated handover algorithms620

and helps to explain the results of Figure 6. When analyzing the results, we621

can observe that Skip-HoVe algorithm provided seamless and reliable han-622

dover decisions for vehicles to download the video in both cases, i.e., Skip-623

HoVe algorithm delivered almost all frames with SSIM close to 1, and all624

above 0.8. For the video with the highest MOS value, existing handover algo-625

rithms started with a bad connection (i.e., SSIM below 0.7), after some han-626

dover decisions, such algorithms increased the SSIM up to 0.9, but the SSIM627

reduced afterward. Finally, such handover algorithms delivered the frames628

with SSIM raging from 0.3 to 0.7 for the video with the worst MOS value.629

This is because state-of-the-art algorithms experience many handovers, es-630

pecially ping-pong handovers, which worsen the QoE of delivered videos.631

For results of Figure 7(a), Skip-HoVe, NC-Skipping, SER, SINR-based, and632

PGBT handover algorithms experienced 25, 7, 35, 25, and 2 handovers, re-633

spectively. Out of these handovers, 5, 2, 13, 7, and 0 were considered ping-634

pong handovers for Skip-HoVe, NC-Skipping, SER, SINR-based, and PGBT635

handover, respectively. Besides, state-of-the-art algorithms do not consider636

multiple metrics coupled with a skipping-based handover decision to perform637
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(a) Original

Frames from video with the highest MOS value:

(b) Skip-HoVe (c) NC-Skipping (d) SER (e) SINR-based (f) PBGT

Frames from video with the lowest MOS value:

(g) Skip-HoVe (h) NC-Skipping (i) SER (j) SINR-based (k) PBGT

Figure 6: 683th frame from highway video transmitted via different handover algorithms

reliable handover decisions. Hence, we can see that Skip-HoVe is the only al-638

gorithm capable of providing a seamless experience, with no QoE drops at all639

for the evaluated scenarios, by delivering the essential packets and assuring640

high fidelity to the original video sequence.641
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Figure 7: SSIM for all frames that compose the Highway video sequence delivered by
different handover algorithms, with the frame depicted in Figure 6 marked in blue
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Figure 8 shows the number of handovers executed during the simulation642

by each handover algorithm. We can see that performing the least amount643

of handovers is not necessarily the best approach, as PBGT delivers videos644

with poor QoE while performing almost no handovers since it keeps users645

connected to the full macrocell in the scenario. On the other hand, the skip-646

ping technique employed by NC-Skipping is inefficient in providing acceptable647

QoE without a multi-criteria decision. SER has a QoE-aware handover deci-648

sion, but it does not consider the skipping-based scheme, accumulating the649

negative effect of the high number of handovers. SINR-based, on the other650

hand, performs fewer handovers than Skip-HoVe but is highly susceptible to651

the occurrence of ping-pong. Interestingly, this causes SINR-based to have652

similar results to the ones of SER, showing the significant impact of frequent653

handovers even in SER’s QoE-based decision. Finally, we can see that even654

though NC-Skipping and Skip-HoVe perform roughly the same amount of655

handovers, NC-Skipping fails to deliver acceptable QoE and QoS levels.656
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Figure 8: Number of handovers executed by different handover algorithms

Figure 9 shows the ping-pong handover rate by Skip-HoVe, NC-Skipping,657

SER, SINR-based, and PGBT handover algorithms. It is essential to high-658

light that we consider a ping-pong handover as soon as a user leaves a cell659

and returns to it within a window of 4 seconds. By analyzing the results,660

we can conclude that Skip-HoVe keeps the ping-pong rate around 2%, which661

is an indication of a better decision policy that avoids such a phenomenon.662

As mentioned before, PBGT performs a smaller amount of handovers, and,663

consequently, has a smaller ping-pong probability within the considered win-664

dow. On the other hand, NC-Skipping, SER, and SINR-based algorithms665

have higher ping-pongs, due to the fact they do not have a transparent bar-666

rier against it. Even with a skipping mechanism, these approaches are not667
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coupled with a multiple criteria strategy and are then also susceptible to668

ping-pong.669
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Figure 9: Ping-Pong Handover ratio by different handover algorithms

Table 4 summarizes the experimental results obtained for each of han-670

dover algorithms for the case of one randomly sampled vehicle. We can671

see that in terms of QoE, given in MOS, Skip-HoVe had the highest score672

out of all the tested algorithms. Followed by SINR-based, PBGT, SER,673

and NC-Skipping, respectively. This happens because Skip-HoVe performs a674

QoE-based decision, and also only Skip-HoVe’s decision supports the particu-675

larities of ultra-dense networks, such as the high number of cells. On average,676

Skip-HoVe performed fewer handovers, except the PBGT algorithm, in which677

vehicles only left one macrocell for another. Skip-hove, out of the 38 possible678

connections, Skip-Hove only made 8 handovers, this is because these han-679

dovers were evaluated in order to maintain high QoE, while performing the680

fewest possible handovers. NC-Skipping performs almost the same amount681

of handovers as Skip-HoVe, but fails to maintain acceptable QoE and QoS.682

In the case of SER, the algorithm is very sensitive to fluctuations on QoE,683

performing then, a great number of disconnections and ping-pong handovers.684

As well as a high I-Frame loss ratio. The SINR-based algorithm, on the other685

hand, is very sensitive to random signal fluctuations. Under this algorithm,686

when a node is in overlapping coverage areas, handovers are very frequent.687

The PBGT algorithm is less sensitive to fluctuations, and generally prefers688

macrocells, under this algorithm, the two macrocells that the vehicle crossed689

triggered a connection.690
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Table 4: Results Summary for a Vehicle in the Scenario

Algorithm MOS
Number of
Handovers

Ping-Pong
Handovers

I-Frame
Loss Ratio

Small Cells
Passed

Macrocells
Passed

Skip-HoVe 8 8 0 5% 38 2
NC-Skipping 1 10 3 66% 44 1
SER 1 36 21 64% 43 1
SINR-based 2 25 13 67% 43 2
PBGT 2 2 0 67% 39 2

Skip-HoVe prevents unnecessary handovers and delivers a seamless expe-691

rience to end-users.692

5. Conclusion693

This article introduced a multi-criteria skipping-based handover algo-694

rithm for video distribution over ultra-dense VANET scenarios, called Skip-695

HoVe. Skip-HoVe provides seamless handover decisions, by coupling a han-696

dover skipping technique and a multi-criteria handover decision to improve697

the QoE of video transmissions and reduce the ping-pong rates. In this ar-698

ticle, Skip-HoVe considers ARIMA for vehicles mobility prediction, PDR as699

a QoS criterion, hybrid QoE estimation as the QoE parameter, and RSRQ700

as the radio parameter. For the handover decision, Skip-HoVe computes the701

quality level for each cell to select the appropriate cell for the vehicle to702

connect to by considering AHP to assign different degrees of importance for703

each criterion. Through these approaches, Skip-HoVe prevents unnecessary704

handovers and delivers a seamless experience to end-users. Our performance705

evaluation analysis revealed that Skip-HoVe improved the video delivery up706

to 14% in SSIM compared to NC-Skipping, SER, SINR-based, and PBGT707

handover algorithm, and MOS results showed up to 30% better subjective708

evaluation, while kept the ping-pong rate lower than 2%. For future work,709

we plan to extend the Skip-HoVe in the following directions: Extend the710

mobility prediction technique and integrate the handover algorithm for all711

users on the network, either pedestrians or vehicles; and analyze and corre-712

late the mobility patterns of several users to predict the area congestion and713

perform efficient offloading of cells and edge services. Finally, another direc-714

tion is to design integrated solutions where applications can benefit from the715

Skip-HoVe algorithm and assess their better performance.716
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