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RICERCANDQO: Data Mining Toolkit for Mobile
Broadband Measurements
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Abstract—Increasing reliance on mobile broadband (MBB)
networks for communication, vehicle navigation, healthcare,
and other critical purposes calls for improved monitoring and
troubleshooting of such networks. While recent advances in
monitoring with crowdsourced as well as network infrastructure-
based methods allow us to tap into a number of performance
metrics from all layers of networking, huge swaths of data remain
poorly or completely unexplored due to a lack of tools suitable for
rapid, interactive, and rigorous MBB data analysis. In this paper
we present RICERCANDO, a MBB data mining toolkit developed
in a unique collaboration of networking and data mining experts.
RICERCANDO consists of a preprocessing module that ensures
that time-series data is stored in the most appropriate form for
mining, a rapid exploration module that enables iterative analysis
of time-series and geomobile data, so that anomalies are detected
and singled out, and the advanced mining module that lets the
analyst deduce root causes of observed anomalies. We implement
and release RICERCANDO as open-source software, and validate
its usability on case studies from MONROE pan-European MBB
measurement testbed.

Index Terms—Mobile broadband networks, Data mining, Net-
work measurements, Anomaly detection.

I. INTRODUCTION

The advent of mobile wireless communication has had a
tremendous impact on numerous aspects of our lives — from
the way we navigate in unknown environments, communicate
on the move, over the way we pay our bills, to the way we
track our health and wellbeing. Underpinning and enabling all
of this are mobile broadband (MBB) networks. These networks
have witnessed rapid expansion recently — MBB subscriptions
have grown more than ten-fold in the last decade and have
reached 4.2 billion globally in 2017 [1]. Their performance is
improving drastically — a few Mbps download speeds enabled
by 3G technology at the break of the millennium appear
ancient in comparison with a few Gbps delivered by today’s
5G technology. Finally, MBBs are becoming more affordable
— worldwide MBB access prices halved between 2013 and
2016 [2]. Together with the expansion of novel paradigms that
depend on fast ubiquitous connectivity, such as the Internet of
Things (IoT), e-Health, smart cities and factories, the above
trends indicate that our reliance on MBB networks is to grow
even further.
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MBBs inherently have to be very complex to handle global
connectivity and a number of different applications for their
diverse clients. Networks must seamlessly handle internet-
working, user management, accounting, and other aspects of
connectivity. At the physical layer MBB networks support
different wireless transmission paradigms, such as TDMA,
CDMA, OFDM, different modulation and coding schemes,
power allocation methods, frequency bands, to name a few
technology aspects. Then, at higher levels of organisation,
MBB networks have to take care of resource sharing, mobile
terminal to base station association, user roaming, and others.
Mobile networks have to support different transport (e.g.
UDP, TCP) and higher-level protocols (e.g. HTTP, FTP, SIP,
etc.), and a wide range of applications — from online social
networking, to video conferencing, and augmented reality
applications.

The complexity of MBB networks challenges their trou-
bleshooting. Despite the advances in MBB performance mea-
surement methods [3], [4], [5], [6], [7] the problem of the
identification of performance anomalies and, even more, the
identification of root causes of network anomalies remains
unsolved. First, the sheer breadth of networks, both in terms
of the number of devices as well as the geography, requires
consideration of multiple views of the same phenomenon
before any conclusions can be made. Second, the multilayered
construction calls for a joint consideration of (meta) informa-
tion from different levels, from physical layer information on
signal strengths, over transport layer retransmissions, to packet
delay and jitter. To answer to these needs, MBB network
measurement approaches are progressing towards large-scale
testbeds capable of providing multifaceted views of network
phenomena [8].

Raw MBB measurement data needs to be carefully pro-
cessed and analysed before any conclusions can be drawn
from them. More specifically, mobile data processing pipelines
need to 1) detect and remove outliers; 2) consolidate the data
coming from different sources, so that they refer to the same
event of interest; 3) represent the data in a scalable way
that allows examination across different dimensions (e.g. time,
space, performance measurements); 4) implement a statistical
means for the automatic identification of network anomalies;
5) employ machine learning algorithms to identify factors that
might cause the detected network anomalies; and 6) automate
data analysis in close synchrony with networking experts and
thus support interactive data visualisation approaches.

In this paper we present RICERCANDO, a MBB network
data analysis framework developed in tight collaboration of
networking and data mining experts and designed to answer to
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the above-listed requirements. RICERCANDO enables multi-
staged and flexible data analysis. Our framework handles the
first stage of the analysis through a data representation scheme
that merges data of different types and from different sources,
and adapts them to time series-based organisation suitable for
querying with a different level of granularity. RICERCANDO
then enables scalable interactive visual analysis of big network
measurement data. Next, to facilitate rapid exploration of the
data we implement anomaly detection methods that pinpoint
measurements where network performance indicators signifi-
cantly deviate from the expected values. Finally, we implement
a processing pipeline to help with the identification of key
factors that might have caused the observed anomalies.

We begin the paper with an overview of the related work
(Section II) and then examine the characteristics of MBB
measurement data and identify criteria needed for successful
network data analysis (Section III). We proceed with the
description of the design and implementation of RICER-
CANDO (Section IV). We then demonstrate the usability of
our framework by using it to find anomalies and root causes
in data collected by MONROE, a Europe-wide MBB testbed
(Section V). In Section VI we present the most important
lessons we learnt while developing and using RICERCANDO.
We have released RICERCANDO as open-source software
and in Section VII we present concluding remarks and at the
same time invite the community to join our efforts towards
supporting rapid MBB network measurement data analysis.

II. RELATED WORK

A systematic means of monitoring is crucial for assessing
the quality of service and troubleshooting in mobile broadband
networks. Recently, a wide range of approaches for MBB
measurements have been developed [9]. Approaches rely on
either passive [4], [7] or active measurements [10], or on a
hybrid measurement methodology that combines both [11],
[12], [13], [3]. Passive measurements merely observe the
existing network traffic, while active measurements inject
own packets in order to evaluate performance metrics. The
downside of active measurements is that the measurement
process may impact the actual network under test. In terms
of the measurement point locations, certain approaches, es-
pecially those initiated by national regulators, use dedicated
monitoring equipment and a small number of controlled nodes,
while others rely on crowdsourced measurements conducted
by a large number of often uncoordinated users [14]. The
former have the benefit of being unrestricted by the provider,
of viewing the network “as users", and of covering wide
geographical areas. OpenSignal, for instance, has more than
100 million users across the globe [15]. However, crowd-
sourced measurements suffer from unreliability due to the
lack of control over the measurement equipment. A mobile
app-based measurement software may be run on different
phone models, with different implementations of the operating
system, with devices running different applications in parallel
to the measurement app, with different hardware issues (e.g.
bent antennas), and with devices placed in various locations
during measurements (e.g. bag/pocket/hand), all of which may

impact measurement results [16], [17]. Recent commercial and
research initiatives hence use crowdsourced-like approach with
specialised equipment dedicated to network measurements [8].

Irrespective of the measurement approach, MBB measure-
ment data is large-scale, temporal, heterogeneous, and shaped
by a number of factors related to measurement methodology
and equipment. Storing, processing and reasoning upon such
data is challenging, and a number of solutions to assist
with the above tasks have been developed. Svoboda et al.
demonstrated the importance of using a well-defined method-
ology for delay measurement to obtain meaningful interpre-
tation of the results [11]. CoMo enables fast prototyping
of network measurement mining applications [18]. However,
mostly concerned with data storage and flow, CoMo does not
provide sufficient support for advanced analytics. In addition,
CoMo focuses on TCP and UDP and does not consider
measurements at the lower MAC and PHY layers, crucial
for troubleshooting MBB networks. Future efforts were aimed
at either increasing scalability, usability, or the number of
supported options for data analysis. ENTRADA, for instance,
converts pcap log file to Apache Parquet and enables stream
mining [19]. Similarly, DBStream was built to support rolling
big data analysis [20]. The tool’s utility has been demonstrated
on a few use cases, including on the analysis of signalling
and data transfer behaviour of different mobile device types
and different operating systems [21]. However, designed by
networking experts, these systems usually provide solutions
to network measurement data handling, yet stop at the point
where advanced data mining is needed.

Consequently, networking researchers often resort to ad-
hoc approaches to data mining. Baltrunas et al. show that
even simple correlation can help with network reliability
estimates [22]. In order to profile network coverage in Norway,
Lutu et al. perform hierarchical clustering of measurement
data collected via train-mounted probes [23]. Narayanan et
al. go a step beyond off-the-shelf data mining approaches
and propose a feature distribution similarity graph to analyse
spatio-temporal mobile measurement data [24]. The authors
show the utility of the approach in a case study of profiling
mobile users’ behaviour from call detail records.

More advanced approaches try to automate the mining pro-
cess, especially when it comes to anomaly detection, a key is-
sue in network data analysis. ADAM system detects anomalies
by calculating the Kullback-Leibler divergence between the
incoming and previously collected data [3]. Once an anomaly
is detected, the system performs factor analysis to identify
features exhibiting a similar abrupt change. RCA tool initially
detects change points by measuring the entropy of considered
features. It then considers the full statistical distribution of
the traffic features to characterise anomalies [25]. Ricciato et
al. suggested two approaches to bottleneck detection, the first
one based on statistical analysis of the aggregate rate, and the
second method based on TCP performance indicators [26].
Coluccia et al. proposed an anomaly detection methodology
that identifies statistically significant deviations from the past
behaviour using Maximum Entropy modelling [27]. In an-
other study, the authors investigated distributions of multiple
features to detect traffic anomalies, indicating that the alarm
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correlation across features may augment the accuracy of the
detector [28]. Other statistical methods for anomaly detection
were further proposed [29]. Unique to all approaches is
that they require a networking expert in the loop. This is
explicitly evident in Siekkinen et al. TCP RCA approach [30],
but also through subtle issues related to data collection and
interpretation process. For instance, Michelinakis et al. show
how peculiarities of packet scheduling at an LTE base station
impact capacity estimates inferred through measurements [31].

III. MOBILE BROADBAND MEASUREMENT DATA
CHARACTERISTICS AND DATA ANALYSIS REQUIREMENTS

In this work we develop RICERCANDO, a generally
applicable framework for mobile broadband measurement
data mining. The framework was built in collaboration with
MONROE [8] — an open access hardware-based platform for
independent, multihomed, large-scale experimentation in MBB
networks. RICERCANDO readily supports data formats used
by the MONROE project (other data sources might require
minor adjustments).

The MONROE project aims to create a pan-national reliable
open-access measurement platform for MBB networks'. The
core of the system is a MONROE node, a custom-built device
fitted with a Debian-based single board computer and up
to three LTE modems connected to different providers. A
centralised experiment scheduling system allows MONROE
users to post custom-made experiments to distributed nodes
and remotely collect the measurement results. In addition, each
node independently executes certain background experiments,
such as periodic RTT measurements to MONROE servers.
Finally, all the experiment data and meta-data are collected
in a MONROE database implemented in Cassandra®. In 2018,
the project operated 150 measurement nodes in four European
countries, with more than a half of the nodes being mounted
on buses, trains, and delivery trucks.

MONROE data, similarly to other MBB measurement data
are characterised by:

 Spatio-temporality: measurement nodes are mobile;

o Multi-modality: multiple aspects of network performance
(RTT, throughput, etc.) and meta-data (location, CPU
load, etc.) are sampled in parallel;

o Heterogeneity of data granularity and the lack of syn-
chrony among different measured features;

o Impact of the measurement methodology, hardware, and
software on the measurement results;

o Lack of ground truth data.

On the implementation level, a MBB data analysis tool has
to cope with the above characteristics of the data. On the
higher level, the tool has to enable comprehensive analysis,
requirements of which have been discussed among the research
community before. For instance, in 2006 Ricciato indicated
that network traffic analysis should include statistical analysis
that goes beyond simple ad-hoc solutions, visualisation and
multidimensional exploration by networking experts, advanced

Uhttp://www.monroe-project.eu
Zhttp://cassandra.apache.org

machine learning modelling algorithms, and should allow the
data to be pipelined to other tools [32].

We design RICERCANDO after a careful consideration of
the existing work, open issues related to network measure-
ment analysis, and guidelines from the community [32]. In
RICERCANDO, we explicitly support interactive analysis and
put the user in the loop. Moreover, our data storage paradigm
is adapted to support rapid visualisation and experimentation,
so that the expert knowledge can be harnessed in the best
possible way. Similarly, identifying a need for automated
statistical analysis, we create a machine learning pipeline that
automatically detects and suggests explanations for network
anomalies. At the same time, the system’s visual component
maintains a close dialog with an expert enabling iterative
investigation until the root cause of the issue is identified.
Finally, recognising the uniqueness of each measurement setup
and varying goals of those who analyse networks, we do
not restrict RICERCANDO to particular mining techniques.
Rather, we integrate it with the popular data mining suite
Orange’, allowing a wide range of current and future data
mining approaches.

IV. RICERCANDO FRAMEWORK

RICERCANDO is structured around modules that together
create a data mining pipeline (Fig. 1). The framework assumes
that the data is stored in a key-value database, such as
Cassandra used by the MONROE project. Data Preprocessing
module transforms and stores the data so that it can be
quickly retrieved along the temporal dimension. Data Acqui-
sition Interface enables different views over the data. Rapid
Exploration module consists of three submodules that allow
interactive visualisation of time-series data, geomobile data
visualisation, and rapid anomaly detection in the data. Finally,
Advanced Mining module interfaces with Orange data mining
suite and enables sophisticated machine learning and data
visualisation methods.

RICERCANDO software implemention consists of a core
ricercando Python library*, data preprocessing scripts
written in Bash and Python, Jupyter Notebooks for visual
analysis of the data, and an add-on for Orange data mining
suite. All the code, together with the installation instructions
is available on GitHub’.

A. Data Preprocessing and Interfacing

MBB measurement data are often collected in relational
or key-value databases, as they enable easy and efficient
storage [33], [20], [3]. However, stored in such a manner,
data are not suitable for rapid interactive exploration. This is
especially true for data having a temporal dimension, which is
common in MBB measurements — nodes move in space/time,
RTTs are gathered with periodic pings, anomalies and glitches
impact subsequent node behaviour, to name a few time-
related aspects of the measurements. Key-value and traditional
relational databases severely limit the performance and the

3http://orange.biolab.si
4ricercando is also available via pip installer
Shttp://github.com/ivek1312/ricercando/
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Fig. 1. An overview of RICERCANDO framework. Boxes represent frame-
work’s modules, while arrows represent data movement. Darker (red) arrows
indicate that data is given in Python pandas format, suitable for interchange
among different data processing modules and tools.

flexibility of writing queries over time-series data. Second, the
volume of data and metadata gathered by MBB measurements
can be large. For instance, RTT measurements from MONROE
platform produce approximately 20 million entries per day.
Data storage needs to support data sampling to allow zooming
in and out on a selected chunk of data, or to support concurrent
analysis of data coming from multiple nodes. Finally, MBB
data comes from various sources — multiple nodes and multiple
processes within a measurement node — and are often not
aligned along the common time axis. Consequently, merging
the data in order to enable multidimensional analysis is chal-
lenging.

In RICERCANDO we devise data transformation and data
storage schemas to transform MBB data into minable rep-
resentations. We use temporal data abstraction and feature
engineering guided by domain-specific knowledge, and we
construct scripts that implement various data transformation
tasks. To solve the temporal data mining problem we transform
the data to a time-series database®. We store time-series
data with the minimal temporal granularity (10 ms for the
MONROE data use case). Furthermore, we also sample and
store the data at different granularities (1 s, 1 min, and
30 min for the MONROE data use case). This is crucial
for enabling interactive visualisation — if a user requests to
visualise a whole day of data, we fetch data of a coarser
temporal granularity; for examining particular anomalies, we
zoom in and provide fine grain data. When sampling to
low resolution the aggregation of values within the period
depends on the type of data. Thus, with a few exceptions,
for categorical variables we use mode function that returns

SWe use InfluxDB (www.influxdata.com) in our implementation, other
time-series databases are also appropriate.

the most frequently observed value in the considered time
frame, while for numerical we use either min, max, or mean,
depending on the particular variable.
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Fig. 2. Data merging along the common time axis in RICERCANDO.

Data mining and modelling is performed on datasets consist-
ing of instances, where each instance represents a data point in
a multidimensional feature space. For example, a measurement
of the GPS location, RTT, and the state of the measurement
node at a point in time. As measurement data come from
various non-synchronised sources, we often have to merge
individual data streams along the same time axis. A sketch
of the merging process we implement in the Data Acquisition
Interface module is shown in Fig. 2. For each of the time series
(e.g. ping RTT, GPS coordinates, etc.) we find an intersection
with a selected moment on the common time axis. Depending
on the nature of the feature described by the time series
we apply a different strategy for getting the value at the
requested moment in time. For instance, for GPS coordinates
we perform interpolation between the last measurement before
and the first measurement after the given moment in time. For
RTT we take an average of the measurements recorded in a
time window preceding the current moment. For the feature
indicating events on a node we keep track of the node’s state
— for example, whether an experiment is currently running
at the node. Finally, RICERCANDO allows further tuning of
the merging process, for instance, by specifying the minimum
freshness value of the data before it is included in a data
instance — e.g. if no download speed measurements were taken
in the last 60 s, the instance will contain a null value for
download speed. While we steer away from a fully automated
merging and require input from a networking expert, this
guarantees that the further analysis is done on truly meaningful
data’.

B. Interactive Visualisation of Big MBB Measurements Data

Iterative examination of visualised data is crucial for net-
work data mining [32]. These data, however, are multidi-
mensional, temporal, and geo-mobile, and very large, thus
inappropriate for analysis using conventional data visualisation
tools that come with data mining packages, such as WEKA
or Orange [37], and they might even overburden specialised

"The inclusion of domain experts early on in the data preprocessing stage
is often emphasised as a crucial step in modern data mining [34], [35], [36].
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Fig. 3. Time-series visualisation in RICERCANDO. Y-axis represents RTT measured on each of the two interfaces of the same node, while colouring
corresponds to the cell id (CID). Vertical lines represent MONROE experiment start/stop/loading moments. Plots below each of the RTT series show the

frequency used by the interface.

tools, such as Tableau [38]. In RICERCANDO we develop
two modules for rapid interactive visualisation of MBB mea-
surement data — one for time-series visualisation, the other
for geographical data visualisation, both implemented in the
form of Jupyter Notebooks. We opted for this environment, as
opposed to custom stand-alone programs, as it allows quick
prototyping and tweaking according to specific user needs and
given datasets.

Time-Series Visualisation module, for a selected net-
work probe (node) and a time period, plots a target key
performance indicator (KPI) on a separate timeline for each
of the node’s interfaces. An additional dimension can be
represented through the colouring of each of the points (Figure
3). Finally, hovering over a point shows values of all the
other dimensions associated with the same data point. A
key property of the Time-Series Visualisation module is its
adaptability to the amount of to-be-shown data. It relies on
getdf function from ricercando Python module, which,
for the given zoom level retrieves data from the database with
an appropriate resolution, in order to preserve the interactivity
of the notebook. For example, viewing a whole week worth of
measurements might use data aggregated on 30 min intervals,
whereas zooming into a particular RTT anomaly might fetch
and show data with 10 ms granularity.

Geographical Data Visualisation module (Figure 4) sup-
ports visualisation of a selected KPI of geo-referenced data
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Fig. 4. Geographical visualisation of RTT measured on two interfaces of the
mobile node travelling through Oslo. The shades of the trace correspond to
different values of RTT. On the right image a selected region contains RTT
data stored for further analysis.

from a measurement node on a separate map for each of the
node’s interfaces, for the given time period. Such visualisation
is a key tool for the identification of issues affecting particular
geographic regions. Similarly to the Time Series Visualisation
module, hovering over a point shows values of all the other
dimensions associated with the same data point. Geographical
Data Visualisation module, too, relies on getdf function for
adaptive data retrieval, so that the retrieved data resolution is
adjusted to the current map zoom level.
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RICERCANDO modules, such as Time Series Visualisa-
tion, Geographical Data Visualisation, Anomaly Detection,
and Advanced Mining module are designed to fit into each
other just like LEGO® bricks and allow flexible data analysis
workflows. To support interoperability among modules we rely
on Python pandas DataFrame (dark/red lines in Figure 1).
Indeed, each of the Jupyter notebook-based modules allows
data selection (e.g. selecting a range of data points on a map)
and storage (as a DataFrame on local storage), and retrieval
from another module, e.g. in order to perform advanced mining
in Orange.

C. Anomaly Detection Tool

Anomalies occur frequently in computer network measure-
ment data and can be caused by anything from misconfigura-
tions to cyber attacks [39], [40]. Anomaly detection plays a
central role in RICERCANDO. We implement a Jupyter Note-
book that enables automatic detection and visual inspection of
anomalies in the data (Figure 8). Numerous detection methods
relying on a range of techniques, from mining association
rules [41], to modelling with Markov processes[42], have
been proposed for anomaly inference (see [43] for a survey
of anomaly detection approaches). In RICERCANDO we
implement three anomaly detection methods:

 Rolling mean — a method based on a rolling window that
compares data in the current window with the long-term
mean of the measurements. Data points that are a number
of standard deviations away from the rolling mean are
regarded as outliers and a large enough cluster of outliers
is deemed an anomalous region. With this method abrupt
falls or rises (spikes) are treated as anomalies, while, for
example, a gradually rising RTT due to increased network
congestion would not be considered an anomaly.

o Baseline comparison — a detector that compares the
actual value of a data point with the value predicted
based on a pre-constructed model. Such a method can,
for example, learn the expected RTT for a node using
4G technology experiencing a certain RSRQ in a certain
area, and correctly attribute changes in RTT to either
contextual changes — like fallback from 4G to 3G — or to
an unexplained anomaly. Due to a large parameter space
the observed data point might come with a previously
unseen context. To cope with such a case, RICER-
CANDO builds the model using the quantile regression
forest technique [44] that predicts the dependent variable
value even if the context has not been observed before.
Furthermore, we build a model by using top N (by default
10) percent of the best performing measurements from a
given context. This ensures that well performing points
are not misclassified as anomalies.

« Distribution comparison® — a detector that empirically
infers distributions of the same variable in different
segments of the data using kernel density estimation
technique, and then compares the distributions using

8This method is not suitable for “running” data analysis, therefore, we
implement it in the Anomaly Detection module, but do not expose it through
our GUL

Kullback-Leibler divergence. Significant difference be-
tween the previous and currently observed data distribu-
tions may indicate an anomaly.

What is an anomaly?

Without any knowledge of the underlying system that
generates the data, an anomaly detection system aims to
find “sufficiently different” measurements in a stream of
data. Alternatively, the data are labelled as “anomalous”
if they do not follow the patterns that a domain expert
expects, based on her mental model of how the MBB
network “should” behave. While the first definition leaves
us struggling to find parameter values that would define
“sufficiently different” behaviour in automated anomaly
detection systems (Romirer and Ricciato have pondered
on this question in the context of delay measurements in
3G networks [45]), the second definition is limited by the
expert’s (mis)understanding of the network phenomena.
Thus, in RICERCANDO we aim to judiciously guide
an expert in reasoning about the observed deviations.
The rolling mean and distribution comparison methods
we implement allow automated labelling of “sufficiently
different” measurements, while the methods’ parameters
allow the experts, guided by an immediate visual feed-
back, to adapt the labelling to the situation at hand. Base-
line comparison method, on the other hand, “encodes”
the knowledge learnt on previously seen data, and labels
as anomalous only those values that do not conform to
the constructed model, therefore, moving the automation
closer to the “expert” side of the spectrum.

The developed notebook allows the user to select a measure-
ment node, a target KPI, and a time span in which the data is
analysed. Additionally, the user can set a number of parameters
that control the operation of the tool, i.e. the sensitivity
of anomaly detection. In the first step the developed tool
automatically detects the anomalies in measured data based
on one of the above detection methods selected. Besides these
methods, the tool supports simple integration of new anomaly
detectors. After one or more anomalies are detected, the tool
enables informative visualisation of regular and anomalous
data. Based on visual results a domain expert may adjust initial
parameters to control the shape of the highlighted anomalies.
This is demonstrated in Figure 5, where tuning of parameters
produced two different anomaly regions within the same data.
Descriptive visualisation also allows the experts to quickly find
important aspects in the data. The data can then be saved so
that anomalous regions are automatically labelled for further
processing.

An important feature of the anomaly detection tool is
concurrent anomaly detection. MBB data often contains mea-
surements from a large number of nodes connected to a
few different network providers, and detecting anomalies that
simultaneously appear at all interfaces connected to the same
provider is crucial for identifying whether the anomaly is
isolated or affecting the whole network. In RICERCANDO
we implement an optional concurrent analysis that takes into
account all probes connected to a particular network. The
output of the tool is a time diagram showing a cumulative
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Fig. 5. Anomaly detector determined two different anomaly regions (higher
RTT values shaded grey) within the same data by using distinct values of
detection parameters in each case.

count of anomalies over time for the selected network —
moments when such a count is high indicate network-wide
issues (see Section V-D).

D. Advanced Mining

Identifying root causes of the observed MBB behaviour is
the final goal of data analysis. The existing tools for MBB
data analysis were mostly developed by computer networking
experts and support data preprocessing, visualisation, and
simple statistical analysis [18], [30], [22], [3]. RICERCANDO
is developed in close collaboration with highly experienced
data mining experts — one of the RICERCANDO authors is
leading a 19-member data mining research lab with more than
20 years of practical data mining experience in a range of
domains. This synergy enables us to support advanced data
mining for root cause analysis in RICERCANDO.

A key enabler of advanced mining in RICERCANDO is
Orange — a popular GUI-based data mining toolbox where
data processing workflows are constructed through visual
programming by combing widgets. A widget is a computa-
tional unit with interactive visual interface that performs a
particular function related to data preprocessing, visualisation,
and modelling. Orange supports a range of machine learning
methods, from unsupervised (clustering), to supervised (clas-
sifiers, regressions), from basic (e.g. naive Bayesian) to more
complex state-of-the-art ones (e.g. neural networks). Figure 6
depicts MONROE measurement data analysis using an Orange
workflow of widgets.

However, Orange is limited in the amount of data it can
handle. Thus, we use it as the last step of RICERCANDO
analysis. We develop an Orange widget to import the data
from RICERCANDO rapid exploration notebooks. Users can,
thus, perform preliminary visualisation and analysis of a larger
dataset in a Jupyter Notebook before selecting a particularly
interesting dataset and analysing it further in Orange. In
addition, we develop a widget for direct access to MONROE
data stored in a time-series database.

One of the main questions a network analyst is interested
in is which factors may cause a particular anomaly? [46].

To answer this, we develop an Orange widget that identi-
fies Significant Groups of features that differentiate between
regular and anomalous data. Note that a dataset containing
labelled regular and anomalous data is automatically created
by our Anomaly Detection module and imported to Orange
via the iPython Connector widget. The main test implemented
within the Significant Groups widget is the hypergeometric
test. The test traverses all subsets of features and calculates the
enrichment each subset brings to the anomalous data region.
Sorting the subsets according to the enrichment, while also
taking into account their significance levels, gives us a list of
most probable causes for the detected anomaly. In addition,
the widget supports other comparison tests that may help with
root cause analysis, such as the permutation test and the z-test.

V. CASE STUDIES

The MONROE project provides large amount of data of
various MBB network parameters. Irregular patterns in the
data can quickly be spotted using the visualisations. However,
to precisely define visually observed anomalies and to discover
hidden anomalies that are not easy to illustrate, we devel-
oped an automatic anomaly detector. Beside identification of
anomalies the computer tool also facilitates the determination
of their root causes. Among multiple occurrences of anomalies
that we found, selected case studies focused on RTT data are
thoroughly described in this section.

A. Connection Mode Change

The first “anomaly" we identified by using our automatic
detection tool’s rolling mean method is depicted in Figure 7
(top). The figure shows how after 11:30 the RTT mean
changes drastically from below 100 ms to approximately
250 ms. The anomaly detector automatically recognised the
shift and marked it as an anomaly (grey region). Running
the hypergeometric test and calculating the enrichment each
feature subset brings to the anomalous data region, we found
out that a change in the device’s connectivity mode is the
culprit. A switch from LTE to 3G perfectly coincides with
the anomaly, as shown in Figure 7 depicting the RTT and the
interface’s mode on the common time axis. Note, however,
that by automating the significant feature search we remove
the need for comprehensive visual analysis.

This initial example shows the limitations of the automated
approach relying on domain-agnostic data deviation detection
(see discussion in Section IV-C). In Section V-C we present
a model-based approach, which, armed with the knowledge
based on the previously seen data, correctly considers the
above example to be non-anomalous, as it can be easily
explained through the network interface mode change.

B. Measurement System Interference

In many instances we encountered sudden short-lasting
drops in the measured RTT. Figure 8 shows RTT measure-
ments within two hours from 20:00 to 22:00 on one of the
interfaces. The majority of measurements have values near
100 ms, but between 21:05 and 21:20 there is a concentrated
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11:30 and the bottom image shows how the shift correlates with the change
of parameter DeviceMode. The vast majority of RTT values before 11:30 are
around 100 ms, so the relatively rare outliers at that time do not form an
anomaly.

group of measurements with values around 80 ms. The shaded
area marks an anomalous group which was identified by our
rolling mean detector. Many dispersed outliers can be seen
in Figure 8, yet only a cluster with a sufficient number of
outliers composes an anomaly. In such situations the detection
using the computer tool is more accurate than just a visual
observation of data.
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Fig. 8. The anomaly detected via rolling mean method is marked with a
shaded area. Occasional outliers are coloured grey, however, they do not
necessarily compose an anomaly.

Scheduling.Task.Started (Figure 9), indicating
that a start of an experiment on a node causes the anomaly. It
seems that running an experiment on a node triggers a drop
in measured RTT values.

We hypothesise that the cause of such behaviour is the
discontinuous reception (DRX) mode. DRX allows interfaces
to save energy by going to a low power mode when no data
is being transmitted [47]. However, DRX may lead to the
RTT increase if the ping packets, before the transmission,
have to wait for the interface to go back to a high power
state. MONROE platform pings are sent out with 1 second
inter-packet time, while operators often set the DRX kick-
in threshold to around 100ms. Consequently, we expect that
most of the MONROE ping packets, unless an interface is
already active because of an experiment, indeed have to
wait for the interface to go to the high power state before



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 14, NO. 8, AUGUST 2015 9

the RTT measurements can be performed. To confirm the
existence of DRX we conducted our own ping experiments
on the MONROE platform with variable inter-packet times.
As expected, once ping packets were sent out with a higher
frequency, the measured RTT dropped.

Iccid,Variable Y count Y count|class Y enrichment Y p-value

8934041514050774028 EventType=Scheduling Task Started 1791 366 1.15067 7.0252e-21
8934041514050774028 Host=130.243.27 221 6289 372 1 0
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8934041514050774028,IP_Address=10.41.236.41 6289 372 0
8934041514050774028 Band=3 6287 372
8934041514050774028,CID=72209510 6289 372 0
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1
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1

1

1
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8934041514050774028 LAC=65535 6287 372 1

1

8934041514050774028,PCI=65535 6287 372

event
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Fig. 9. Significance analysis determines the
Scheduling.Task.Started as the root cause of the
shown in Figure 8.

C. Baseline Model Anomaly Detection

The rolling mean anomaly detection method is limited in
its ability to adapt to well understood changes in the observed
variable. For instance, in the case examined in Section V-A
the jump in ping RTT measurements is not unusual, having
in mind the device connection mode change. On the other
hand, the baseline method for anomaly detection uses a
pre-constructed quantile regression tree model to infer the
expected value of the observed parameter in the light of the
given context, i.e. values of selected remaining parameters.
Consequently, the method does not mark as anomalous those
measurements that can be explained with the pre-constructed
model. This greatly reduces the number of false positives, as
an “anomaly" can, in fact, be explained by the model.

In Figure 10 we show model-predicted values of ping RTT
(black line) and the observed values (grey dots). The baseline
model takes in to account RSSI (Received Signal Strength
Indicator), RSRQ (Reference Signal Received Quality) and
RSRP (Reference Signal Received Power) as independent
variables. The prediction was created by quantile regression
forests algorithm, taking into account the top 10th percentile
of predicted RTT values. Here the higher percentile indicates
better/smaller RTT value. The outliers are the points distant
from the baseline, meaning that their actual value highly
disagrees with predicted value. In top image are two shaded
anomaly regions formed by outliers high above the baseline.

The first anomaly can be explained by further refining the
model with the information on the expected RTT at different
cell IDs (CID) that a device connects to. This is clarified in
bottom image in Figure 10, where the baseline was constructed
by quantile regression forests algorithm that predicts RTT
values with respect to CID. The three steps in the baseline
function in the bottom image correspond to three different
cells that a device connected to. Therefore, the first anomaly
constructed in top image is not considered an anomaly, if
the CID parameter is taken into account. Note that the figure

still does not explain why RTT measurements differ across
different CIDs — this requires further investigation that goes
beyond the capabilities of the collected dataset. The second
anomaly on the right side of both images in Figure 10,
however, is not due to different CID, so its root cause is the
variation in parameters other than CID, RSSI, RSRQ, or RSRP.
In this way the baseline anomaly detector not only uncovers
anomalies that are impossible to detect visually, but can also
explain anomalies by choosing the appropriate independent
variables for the quantile regression forests algorithm.
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Fig. 10. In the image on top the baseline is the predicted value of RTT

with respect to parameters RSSI, RSRQ, and RSRP. The detector marked
two anomalies. The first anomaly is resolved by using CID to construct the
baseline as shown on bottom image.

D. Network and System Wide Anomalies

We are further interested to determine whether a certain
anomaly appears only at a particular network interface or,
perhaps, at a number of interfaces connected to the same
Internet service provider (ISP), or even beyond — in a number
of devices across the measurement system. Such case could
indicate systemic causes of the anomalies. In order to study
such examples we enhanced our anomaly detection tool to
support concurrent anomaly detection over a number of in-
terfaces — essentially, it counts all anomalies happening at the
same time at nodes connected to the same ISP. Figure 11 shows
the number of anomalies that occurred simultaneously at all
nodes connected to ISP YOIGO on June 3rd 2018. A pattern
of periodic spikes can be observed. This anomaly is due to
an RTT drop caused by a running experiment, similarly to the
case examined in Section V-B. The large number of concurrent
anomalies at spikes correspond to experiments scheduled to
run on different nodes of the same operator at the same time.

We further examined potential network-wide anomalies.
Through exploratory analysis at a few interfaces we noticed an
anomaly caused by missing data. We then ran the concurrent
anomaly detection tool for all the interfaces connected to a few
different ISPs. In Figure 12 we show the cumulative anomaly
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Fig. 11. Number of simultaneously occurring anomalies at all nodes con-

nected to the same ISP.

count for two different ISPs — Vodafone IT and YOIGO. We
see that both operators exhibit simultaneous peaks that are
more than two standard deviations above the mean anomaly
count. The same peak is observable with other ISPs (not shown
in the figure). This indicates a system wide anomaly, likely
caused by a glitch in the measurement system.
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Fig. 12. A system-wide anomaly due to the missing RTT data at approxi-
mately 17:30 on January 1st 2018.

VI. LESSONS LEARNT

Continuous experimentation and revising has marked the
process of RICERCANDO design and development. Different
prototypes have been developed, applied on the data, and
evaluated, while at the same time the underlying measurement
platform (MONROE) kept evolving, essentially making our
goal a moving target. In this section we present some of the
main lessons learnt through the development process.

Need for appropriate data preprocessing and representa-
tion. At the time RICERCANDO started in June 2016 the
MONROE platform was producing only a modest amount of
(meta) data from a limited number of nodes. However, over the
course of the project the amount of collected data grew both
because additional nodes were deployed, as well as because
of the additional information that was collected on each node
(e.g. different background experiments). MONROE data are by
default stored in a Cassandra no-SQL database. This, however,
severely limits large-scale data mining of the platform data.
While Cassandra enables easy storage of key-value pairs,
it is inappropriate for mining temporal data. Most of the
collected data indeed have a temporal dimension, thus time-
based querying remains crucial. Another issue with Cassandra
is that it does not support data sampling. In MONROE, data
are often collected with very fine granularity (e.g. a ping every

second), which makes (visual) inspection over a larger time
period impractical — there are simply too many points to be
shown on a graph. In the early stages of RICERCANDO we
tried to adapt to the given database. However, in the next
step, in order to enable efficient temporal large data analysis
we devised a solution that relies on InfluxDB, a database
specifically targeting time series data querying.

Joining tables over the common timestamp field is another
challenge we have faced. Since timestamps are asynchronous,
some tolerance on timestamp joining had to be accounted
for. One solution was sampling data at rounded timestamps
directly on the database, which we also used for visuali-
sation. Another solution was provided by pandas library —
mergeasof, function similar to a left-join except that we
match on nearest backward timestamp with defined time
tolerance. This helped us obtain more meaningful data point
instances with fewer missing values. Data preprocessing and
representation is usually the most difficult step, especially
when dealing with large amounts of data. Our contribution,
released in a form of processing scripts makes this step a lot
easier for MONROE platform users.

Available data imposes explanation capacity limits. The
interpretation of some encountered anomalies eluded us. One
of these is depicted in Figure 13. A drop in mean RTT value
occurs around 7:00, similar to the case of ping experiment
running on the node (Figure 8). However, there were no
scheduled experiments in the case in Figure 13, so they are
ruled out as root-cause of the anomaly. Also, the 2-hour extent
of this anomaly is longer than the 10-minute duration of
an experiment. Furthermore, the anomaly appeared only at
one interface of the same node. The available data is simply
insufficient for explaining this anomaly and more information,
perhaps those coming from the specific logs of operation of
this particular device, is needed.
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Fig. 13. Anomaly occurs only at one interface (bottom image) of the same
node.

Effects of mobile broadband measurement system on the
results. Uncovering the role of seemingly unrelated system
design decisions on KPI values is one of the key observations
we arrived to, as we tested RICERCANDO on MONROE
data. For instance, after significant amounts of meta-data
started arriving from MONROE nodes we discovered that RTT
exhibits occasional spikes (going above 5X the usual value) in-
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terspersed with lost ping packets. Further analysis with Rapid
Exploration tools uncovered correlation between the observed
anomaly and the node resource utilisation spikes, indicating
potential executions of CPU-heavy experiments. Consequently,
our suggestion to include experiment execution information
in the metadata was implemented by the MONROE team,
which later allowed us to pinpoint a particular experiment
that resulted in the observed RTT behaviour. This is just one
example where the measurement system, in this case through
heavy resource usage by an experiment, resulted in anomalous
measurements. The impact of the background traffic on RTT
measurements via DRX mode toggling is another example
of the coupling of the measurement methodology and the
recorded result, and is explained in Section V.

All interfaces sent the ping probe to the same destination
host IP of a server at Karlstad University, Sweden. We noticed
that the nodes located in Norway and Sweden often had mean
RTT of the ping probe from 40 to 60 ms, while it was not
uncommon for the nodes in countries far from destination
host server to encounter mean RTT close to 100 ms. This
observation reveals that the anomalies emerge because of
relative changes in feature values at one node rather than by
comparing the absolute difference of feature values among
distant nodes.

MBB measurement data analysis requires multidisciplinary
expertise. While we were already aware of the need for
interdisciplinary expertise at the time we laid out plans for
RICERCANDO, this need became even more evident as we
progressed with development. First, MBB data is often anal-
ysed by computer networking domain experts. The need for
expertise in data mining, in particular in data representation,
statistical analysis, and geographical data analysis proved
crucial and the data mining part of our team got several
enquiries to help with other projects’ data analysis issues. The
two fields, data mining and computer networking, are seldom
directly collaborating, and it is our hope that RICERCANDO
results might facilitate this collaboration. Second, even when
the general knowledge of networking is present, MBB mea-
surement data mining requires in-depth knowledge of lat-
est practices in broadband networks’ implementation. Such
knowledge is often available only with a close collaboration
with relevant industrial players. Specifically, our identification
of the DRX-related anomaly would not be possible without
close collaboration with an industry professional experienced
with LTE networks.

VII. CONCLUSIONS

In this paper we presented RICERCANDO — an MBB mea-
surement data mining toolkit developed in close collaboration
of networking and machine learning experts. RICERCANDO
goes beyond the existing tools by allowing rapid iterative
visual analysis and rigorous advanced data mining of MBB
data. In this paper we present a few use cases demonstrating
the usability of the framework for anomaly detection and
root cause explanation. Although the framework was designed
primarily for the analysis of data collected in MONROE
testbed, its usability is by no means restricted to a particular

dataset. We have already harnessed RICERCANDO for mining
MBB measurement data gathered by the Slovenian Agency
for Telecommunications (AKOS) with the goal of inferring
Internet neutrality violations in Slovenia. RICERCANDO tool-
box has a great potential to assist commercial telcos and
government regulators with monitoring and understanding
MBB traffic, and we invite interested parties to download
RICERCANDO?, adapt it to their needs, enrich it with addi-
tional functionalities, and further contribute towards improved
MBB measurement data analysis and understanding.
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