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Abstract

Single-task UAVs are increasingly being employed to carry out surveillance, parcel delivery, communication support,
and other specific tasks. When the geographical area of operation of single-task missions is common, e.g., in post-
disaster recovery scenarios, it is more efficient to have multiple tasks carried out as part of a single UAV mission. In
these scenarios, the UAVs’ equipment and mission plan must be carefully selected to minimize the carried load and
overall resource consumption. In this paper, we investigate the joint planning of multitask missions leveraging a fleet of
UAVs equipped with a standard set of accessories enabling heterogeneous tasks. To this end, an optimization problem is
formulated yielding the optimal joint planning and deriving the resulting quality of the delivered tasks. In addition, two
heuristic solutions are developed for large-scale environments to cope with the increased complexity of the optimization
framework. The joint planning is applied to a specific scenario of a flood in the San Francisco area. Results show the
effectiveness of the proposed heuristic solutions, which provide good performance and allow for drastic savings in the
computational time required to plan the UAVs’ trajectories with respect to the optimal approach, thus enabling prompt
reaction to the emergency events.
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1. Introduction

The usage of Unmanned Aerial Vehicles (UAVs) to ac-
complish different kinds of tasks in post-disaster recov-
ery scenarios has recently become the subject of investiga-
tion [1]. Fleets of UAVs performing environmental moni-
toring [2], dispatching medicines in rural/hardly accessible
areas [3], or ensuring mobile connectivity [4] have already
been envisioned. As a relevant example, UAVs are em-
ployed in Rwanda to deliver blood packs to 21 hospitals
located in remote and isolated areas on a regular basis,
even in the presence of harsh weather conditions [5].

To date, critical tasks such as those aforementioned
exploited dedicated UAVs, with equipment and resources
selected and dimensioned according to the needs of the
specific task [6]. However, in a post-disaster scenario,
fleets of UAVs are likely to be dispatched carrying out
different tasks over the same geographical area. For in-
stance, a UAV equipped with a video-camera may be dis-
patched to monitor a certain geographical area. At the
same time, another UAV equipped with an antenna may be
dispatched to provide communications support over a geo-
graphical area. If the latter UAV were also equipped with
a video-camera and had the needed additional resources
(e.g., enough battery), it could have carried out the sur-
veying task as well, eliminating the need for dispatching
the former UAV. Thus, a 50% savings in the number of
UAVs would be achieved at the cost of some increase in
the total required energy, to account for the video-camera

consumption and the increased load carried by the UAV.
Howver, this energy increase would be minimal, compared
to the energy required to fly the UAV and operate the an-
tenna and would be more than compensated for by saving
the engagement of another UAV. Another possible impli-
cation of a UAV carrying out two tasks instead of two
UAVs carrying out a single task each, is that the qual-
ity of service associated with each task may be lower in
the former case, as the UAV is now not dedicated to a
specific task only. For instance, surveillance of some re-
gion maybe delayed if providing communication support
in another region is prioritized. The aforementioned im-
plications of multitasking will be low if an effective joint
planning of multitask missions is devised. In addition, the
larger the number of candidate UAVs that can participate
in a specific task, the lower the impact of multitasking on
the quality of the delivered task is expected to be.

In this study, we investigate a joint planning of multi-
task missions leveraging a fleet of UAVs equipped with a
standard set of accessories i) a video monitoring system [7],
ii) a cellular communication interface, and iii) a mounting
frame for parcel carriage, to enable UAVs to perform het-
erogeneous tasks such as medicine/blood delivery, aerial
monitoring, and mobile connectivity provisioning. Such
planning must take into account the specific constraints
generated by every type of mission, i.e.: i) limited pay-
load capacity of the UAVs’ payload and restricted delivery
time windows for the parcel delivery tasks; ii) time-varying
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network connectivity requirements, due to the users’ move-
ments within the served area; iii) conflicting service needs
in the same area (e.g. both monitoring and connectivity
provisioning tasks compete for the usage of the upload
transmission bandwidth provided by an UAV). Mission
plans for each UAV can be crafted at a centralized entity,
e.g., the first responders’ control center, and then trans-
mitted to the individual UAVs via their wireless interface.

The usage of multi-purpose UAVs instead of UAVs spe-
cialized for a single mission is expected to improve the
overall mission service quality, for a given number of em-
ployed UAVs. To show the benefits achieved by the usage
of multi-purpose UAVs, we develop an optimization frame-
work based on Integer Linear Programming (ILP) to opti-
mally schedule UAVs tasks in a post-disaster environment.
Due to the necessity of performing heterogeneous tasks
with different requirements in terms of data transmission,
the model attempts to optimize the global task satisfaction
level (i.e., the fraction of service requests being satisfied by
the UAV fleet at every location and time epoch), while im-
posing that all the delivery tasks are fulfilled within their
respective time windows. Since the problem is NP-hard,
two heuristic algorithms for larger-scale environments are
developed to cope with the increased complexity of the
optimization framework. The aim of the two greedy ap-
proaches is to ensure fast computation of a feasible solu-
tion while limiting the required computational complexity,
which is a fundamental requirement to enable a fast reac-
tion to emergency situations. The case study is a simulated
flooding event in the San Francisco area, where UAVs de-
part from one of the depots surrounding the emergency
area and must return to a depot after completion of their
task to change/recharge batteries. Results show that our
heuristic algorithms provide good performance in compar-
ison to the optimum, while ensuring rapid calculation of
the UAVs’ trajectories. Furthermore, fully equipping all
UAVs, e.g., providing all of them with cameras and ra-
dios, implies greater flexibility that outweighs the result-
ing lower payload available for parcel delivery missions,
further increasing performance.

The main contributions of the paper can be summa-
rized as follows:

• a novel system model, synthetically and effectively
describing the main entities involved in multi-task
UAV management, along with the decisions to make
and their effects;

• an optimization formulation of the multi-task UAV
management problem, allowing us to assess whether
or not multi-task UAVs can attain the same perfor-
mance of single-purpose ones;

• two efficient and effective heuristics, providing dif-
ferent trade-offs between low complexity and high
quality decisions.

The remainder of the paper is organized as follows.
Sec. 2 briefly reviews the related literature. Sec. 3 presents

an optimization formulation of the multitask UAVs tra-
jectory planning problem. We present the heuristic ap-
proaches to tackle large instances in Sec. 4, providing a
worst-case ratio analysis. We discuss our reference sce-
nario in Sec. 5 and report our numerical evaluation in
Sec. 6. Conclusions are drawn in the final section.

2. Related Work

Beside military and security operations, the usage of
UAVs is envisioned in a plethora of civil applications, rang-
ing from agriculture to environmental monitoring and dis-
aster management (see [8] for a thorough taxonomy and
survey). According to the categorization of UAV-assisted
disaster management frameworks provided in [9, 1], our
work falls under the umbrella of medical applications, as
our UAVs can transport and deliver medicines and first-
aid items within the served area, and of damage assessment
frameworks, as the UAVs are also equipped with monitor-
ing systems to perform video inspections. Moreover, while
on flight, the UAVs can be integrated into the emergency
communication system if equipped with a cellular commu-
nication interface, thus providing connectivity across the
disaster area.

A critical comparison of different types of UAVs to be
adopted in emergency scenarios is provided in [1]: the au-
thors conclude that quadcopters offer a good tradeoff be-
tween flight autonomy, carried payload weight, and equip-
ment cost. Therefore, in this study, the characteristics of
the UAVs we adopt mimic those of typical quadcopters.

In the following, we focus on the three types of tasks
encompassed in the scenario under study.

2.1. UAV placement for wireless coverage

UAVs can be leveraged in a number of wireless net-
working applications, e.g., complementing existing cellular
systems by providing additional capacity where needed, or
ensuring network coverage in emergency or disaster scenar-
ios (see [10] for a comprehensive overview). The problem
of placing UAVs in terms of height and position in 3D envi-
ronments to provide wireless coverage has been addressed
by several studies: analytical frameworks to compute the
optimal height [11] or to maximize the associated revenue
[12] have been developed, as well as heuristic approaches
[13, 14, 15]. In [16], an algorithm controlling the deploy-
ment and positioning of UAVs within cells of a mobile
network has been implemented and demonstrated using
quadcopters. In [17], a two-tier emergency infrastructure-
less network aimed at providing connectivity in the imme-
diate aftermath of a natural disaster is proposed, where
the lower tier connects nearby survivors in a self-organized
mesh via short-range wireless technologies and the upper
tier creates long-range wireless links between UAVs explor-
ing the area of interest. Several game theoretic approaches
for the management of UAV-assisted networks have been
proposed [18]: the reader is referred to [19] for a com-
prehensive literature review on game-theoretic techniques
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adopted in UAV-based wireless networks. Metaheuristic
approaches such as local search algorithms [20] an parti-
cle swarm optimization [21] have been investigated to find
UAVs’ positions that provide better wireless coverage to
the victims in a post-disaster environment.

Differently from the above-mentioned studies, our model
jointly considers a dynamic selection of the areas to be cov-
ered depending on the evolution of the disaster over time
and based on the predicted mobility patterns of users. Ad-
ditionally, it jointly optimizes the scheduling of the UAV
moving, covering, monitoring, delivering and recharging
actions.

2.2. UAV-based post-disaster monitoring systems

As overviewed in [22, 23], fleets of UAVs operating as
distributed processing systems can be adopted as aerial
sensing infrastructures for various monitoring tasks includ-
ing, e.g., surveillance, object detection, movement tracking
and support to navigation. In [24], a game-theoretic ap-
proach for the distributed scheduling of monitoring and
wireless coverage tasks among a fleet of UAVs. In [25],
metaheuristic approaches based on stigmergy and flocking
have been proposed to optimize target searches of UAV
fleets, in absence of prior knowledge about their location
or about positions of potential obstacles. Prototypes of
UAV-based architectures for sensing operations have been
described in [26] and [27] with a specific focus on video
capture services.

In our paper, we consider a conceptually similar UAV
equipment of hardware and software modules, where each
UAV is equipped with on-board sensors, as well as process-
ing, coordination, and networking capabilities. Addition-
ally, we tackle some aspects not considered in [26], i.e.,
the scheduling of heterogeneous tasks of multiple UAVs
and the integration of the UAVs with a wireless service.
With respect to the study in [24], for the task allocation to
UAVs, we adopt a centralized scheduling approach instead
of a distributed game-theoretic framework.

2.3. UAVs for parcel delivery

Several recent studies have already investigated opti-
mization strategies for UAV-assisted delivery models (see
[28] for a literature review). In particular, variations of the
Traveling Salesman Problem [29], modular optimization
approaches [30] and heuristic algorithms [31, 32] leverag-
ing UAVs for last-mile delivery have been introduced, also
in tandem with traditional truck-based delivery [33, 34].
A game-theoretical framework complemented by machine
learning algorithms adopted for local UAV control is pro-
posed in [35] for the path planning under wind pertur-
bation. A comparative study of different metaheuristic
approaches for path planning is offered in [36], including
particle swarm optimization, artificial bee colony, invasive
weed optimization, lightning search and differential evolu-
tionary approaches.

Focusing on medicine delivery, the authors of [37] com-
pare two linear programming models that combine truck-
based transportation and UAV delivery. In our model, we
consider a relatively small geographical area affected by a
natural disaster and focus on the last-mile UAV assisted
delivery problem, assuming that medicines have been car-
ried beforehand at depots located at the border of the
target area.

Finally, note that a preliminary version of this study
appears in [38]. In this paper, we provide a more com-
prehensive discussion on heuristic approaches to tackle
the problem, including complexity analysis and proofs of
worst-case performance ratio, as well as a performance
comparison between two different heuristic algorithms. Such
algorithms have been specifically designed to capture the
peculiarities of the complex multitasking problem at hand,
while maintaining low computational complexity (indeed,
they exhibit either linear or quadratic dependencies on the
input sizes). We have therefore opted for not leveraging
well known metaheuristic approaches such as e.g. genetic
algorithms, whose complexity depends not only on the in-
put sizes but also exhibit linear dependency on the number
of generations and the population size.

3. System model and optimization problem

The notation we use in the remainder of the section is
summarized in Tab. 1. Lower-case Greek letters indicate
decision variables, lower-case Latin ones indicate param-
eters. Upper-case, calligraphic Latin letters indicate sets.
Upper-case, regular Latin letters with indices indicate a
specific element of the corresponding set, e.g., the location
of a UAV. Upper-case, regular Latin letters without indices
indicate design choices, e.g., UAV range, or system-wide
parameters. All indices are written between parentheses,
in lexicographic order.

Space and time. Time is discretized into a set K = {k}
of epochs, while space is discretized in a set L = {l}
of locations. The distance between two locations l1, l2
is indicated as v(l1, l2) (clearly, v(l, l) = 0). Some loca-
tions L̄ ⊆ L host depots.

Importantly, locations can be associated an elevation
as well as a latitude and longitude. It follows that, in
the scenarios that warrant it, multiple locations can cor-
respond to the same position, at different heights.

Binary variables λ(d, k, l) indicate whether UAV d is
at location l in epoch k. Clearly, UAVs can only be in one
location at a time and, given their maximum speed, in each
epoch they can only travel between locations closer than
a maximum distance V . This translates into the following
constraints, which hold for any d ∈ D and k ∈ K:∑

l∈L

λ(d, k, l) = 1, (1)

λ(d, k, l) ≤
∑

l′∈L : v(l′,l)≤V

λ(d, k − 1, l′) ∀l ∈ L. (2)
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The combined effect of (1) and (2) is that drones move
from a location to another, without disappearing and with-
out jumping across locations too far away from each other.

Payload. UAVs have a payload capacity Y and can carry
zero or more payload items p ∈ P, each with a mass
of w(p). Examples of payload items (payloads for short)
are blood packs or cameras. Binary decision variables
ω(d, k, p) express whether payload p is carried by UAV d
at time k.∑

p∈P
w(p)ω(d, k, p) ≤ Y, ∀d ∈ D, k ∈ K. (3)

UAV payload can only change at depot locations; thus, for
any d ∈ D, k ∈ K, and p ∈ P : L(d, k) /∈ L̂, we have:

ω(d, k, p) = ω(d, k − 1, p). (4)

Importantly, (4) implies that, as far as the model is
concerned, deliveries are not dropped at their intended
destination; this leads to an overestimation of the UAV
weight, hence, its energy consumption. This is intentional,
and enables our decisions to account for the fact that some
deliveries – in the worst case, all deliveries – may fail,
e.g., because local conditions prevent drones from land-
ing. Even in such a worst-case scenario, drones must still
have enough energy to go back to the base with all their
deliveries onboard.

In (4), we do not consider the fact that some payloads,
e.g., medicine packs, will be dropped somewhere during
the mission. This accounts for the worst-case event that
one or more drops fail, because, e.g., ground conditions are
not adequate for UAV landing; in such a case, UAVs must
have enough energy to bring all payloads back, if need be.

Energy and battery. Real variables β(d, k) express the bat-
tery level of UAV d at epoch k. Clearly, such variables
must be positive and can never exceed the battery capac-
ity E, i.e.,

0 ≤ β(d, k) ≤ E, ∀d ∈ D, k ∈ K. (5)

Next, we need to account for power consumption. Indi-
cating with D(d, k, p) ∈ {0, 1} whether drone d delivers
payload p at time k, we can write:

β(d, k) ≤ β(d, k − 1)− ev
∑
p∈P̂

D(d, p, k)

− e(L(d, k − 1), L(d, k))

W +
∑
p∈P

ω(d, k, p)w(p)

 ,

∀d ∈ D, k ∈ K : L(d, k) /∈ L̂. (6)

In (6), the energy consumed at time k is given by the
product between a factor e(l1, l2), accounting for the dis-
tance between the locations, i.e., for how far the UAV had
to travel, the total weight of the UAV, plus the vertical

Table 1: Notation
Symbol Type Meaning

a(p) ∈ K parameter Earliest epoch at which to
deliver payload p

b(p) ∈ K parameter Latest epoch at which to
deliver payload p

Y parameter Payload capacity of UAVs
D(d, p, k) shorthand Whether drone d delivers

payload p at time k
E parameter Battery capacity of UAVs
ev parameter Energy consumed for the

vertical ascent and descent
when making a delivery

e(l1, l2) parameter Energy consumed when
traveling between loca-
tions l1 and l2, per unit of
weight

f(p) ∈ L parameter Location at which pay-
load p shall be delivered

K set Epochs
L set Locations

L̂ ⊆ L set Locations with depots
L(d, k) ∈ L shorthand Location of UAV d at

epoch k
M set Non-delivery missions, e.g.,

coverage or monitoring
n(k,m, l) parameter Work per epoch for mis-

sion m needed by users in
location l

q(l,m) parameter Work quality for mission m
that a UAV at location l

r(m, p) ∈ {0, 1} parameter Whether payload p is nec-
essary to perform mis-
sion m

s(m) parameter Data generated by per-
forming one unit of work of
mission m

P set Payload items

P̂ ⊆ P set Payload items to be deliv-
ered

t(l1, l2) parameter Whether traffic can be
transferred between UAVs
at l1 and l2

T parameter Capacity (land-to-air) of
the UAVs’ on-board base
station

V parameter Maximum distance a UAV
can cover in one epoch

W parameter UAV weight
w(p) parameter Weight of payload p
v(l1, l2) parameter Distance between loca-

tions l1 and l2
β(d, k) real variable Battery level of UAV d at

epoch k
λ(d, k, l) binary vari-

able
Whether UAV d is in loca-
tion l at epoch k

µ(d, k,m) ∈ [0, 1] real variable Fraction of epoch k that
UAV d spends in mission m

σ(k,m, l) ∈ [0, 1] real aux.
variable

Satisfaction of users in lo-
cation l concerning mis-
sion m at epoch k

τ(d, k) binary vari-
able

Whether traffic generated
at UAV d at epoch k can
reach the cellular network

ω(d, k, p) binary vari-
able

Whether UAV d carries
payload p at epoch k
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energy consumption ev incurred if the drone performs a
delivery at time k. Importantly, e(l, l) > 0, i.e., energy
is also consumed by hovering over the same location. A
UAV weight is given by the weight W of the UAV itself
and the sum of the weight of the payload items it carries.
Note that (6) does not hold at depot locations in L̂, as
there UAVs can recharge or swap their batteries. The ac-
tual values of the e(l1, l2) parameters can be set according
to any energy model, e.g., [39]. Such energy models are
also able to account for the energy consumption due to
elevation changes across locations, if any, and to embed
such a consumption in the values of e(l1, l2). Also, notice
that the energy consumed to transmit/receive data is not
accounted for in our model, as it is negligible to the energy
needed to move the UAV.

Delivery missions. Some payload items P̂ ⊆ P must be
delivered at certain locations and times. Specifically, pa-
rameters f(p) ∈ L, a(p) ∈ K, b(p) ∈ K indicate the target
location (final point), as well as the earliest and latest
times at which the delivery can take place: the time in-
terval defined by the earliest and latest times will define
the delivery time window for a payload. The following
constraint imposes that all deliveries are carried out:

∑
d∈D

b(p)∑
k=a(p)

ω(d, k, p)λ(d, k, f(p)) ≥ 1, ∀p ∈ P̂. (7)

Eq. (7) can be read as follows: there must be at least one
epoch between a(p) and b(p) during which a UAV d vis-
its the target location f(p) while carrying payload p. It
is important to stress that associating a constraint with
delivery missions also implies that such missions must be
performed, and any additional tasks will be undertaken
only if it does not interfere with deliveries.

Additional missions. We consider a setM = {m} of addi-
tional missions, e.g., wireless network coverage and video
monitoring. We express the demand of each location l for
mission m at epoch k through parameters n(k,m, l), e.g.,
the traffic offered by the users1. Parameters q(l,m) ex-
press how well a UAV in location l can perform mission m,
e.g., the quality of coverage it can provide. Furthermore,
parameters r(m, p) ∈ {0, 1} express the fact that some
payload items p, e.g., radios, are needed for mission m.
Finally, parameters s(m) express how much data is gen-
erated by performing one unit of work in mission m. The
values of the n(k,m, l) parameters can be, depending upon
the situation, estimated a priori (e.g., the escape roads
from a given area are routinely planned in advance) and/or
detected during the disaster (e.g., the areas closer to the
coast need to be monitored during/after a flooding).

The main decision to make is how long UAVs per-
form additional missions. This is conveyed by variables

1For simplicity and without loss of generality, in this paper we
focus on uplink traffic.

µ(d, k,m) ∈ [0, 1], expressing the fraction of epoch k that
UAV d uses to perform mission m. The first constraint we
impose is that UAVs do not perform missions that they
are not equipped for:

µ(d, k,m) ≤ ω(d, k, p)

∀d ∈ D, k ∈ K,m ∈M, p ∈ P : r(m, p) = 1. (8)

Also, we cannot exceed the need of locations:∑
d∈D

µ(d, k,m)q(L(d),m) ≤ n(k,m, l)

∀k ∈ K,m ∈M, l ∈ L. (9)

Note that (9) also accounts for the quality with which
UAVs at different locations can perform the missions, e.g.,
the maximum network capacity or monitoring capability
that a UAV in location l can offer.

Next, we need to ensure that all the data traffic gen-
erated by additional missions is transferred to the in-field
deployed cellular network (denoted with Ω), so that it can
be offloaded to the backbone network infrastructure. To
this end, we denote with t(l1, l2) ∈ {0, 1} whether a UAV
in location l1 and one in location l2 can exchange data,
and by t(l,Ω) ∈ {0, 1} whether a UAV in location l can
send data to the in-field cellular network. Such informa-
tion can be obtained from existing models and/or experi-
mental measurements, as better detailed in Sec. 5 later. A
value of t(l1, l2) = 0 corresponds to the fact that it is im-
possible to send any data between l1 and l2, e.g., because
the locations are too far away.

Given the above, we can determine whether the data
generated by additional missions performed by UAV d at
time k can make its way to the cellular network, through
a binary variable τ(d, k):

τ(d, k) ≤ t(L(d, k),Ω) +
∑
d′ 6=d

τ(d′, k)t (L(d, k), L(d′, k)) .

(10)
Eq. (10) says that UAV d can route its data to the cellular
network if Ω can be reached directly from its location (first
term), or if d can reach another UAV d′ that, in turn, can
reach the cellular network (i.e., τ(d′, k) = 1). Given the τ
values, we impose that no UAV performs any mission that
generates data, unless such data can reach the network:∑

m∈M
µ(d,m, k)s(m) ≤ τ(d, k)T, ∀d ∈ D, k ∈ K. (11)

Eq. (11) also imposes that the quantity of data generated
by all missions performed by UAV d at epoch k does not
exceed the quantity T of data that can be transferred
through the onboard radio interface.

Objective and complexity. As a first step, we define the
satisfaction σ(k,m, l) of location l at epoch k for mis-
sion m. Such a value is the ratio between the amount of
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service that the location was actually provided over that
needed:

σ(k,m, l) =

∑
d∈D µ(d, k,m)q(L(d),m)

n(k,m, l)
. (12)

We then define our objective as maximizing the sum of the
σ-values defined in (12):

Θ = max
∑

k∈K,m∈M,l∈L

σ(k,m, l). (13)

The problem of optimizing (13) subject to the con-
straints (1)–(12) is combinatorial in nature and, like many
combinatorial problems, is NP-hard. Indeed, deciding the
payload of each UAV in each trip can be seen as an instance
of bin-packing – which is itself an NP-hard problem [40]
–, subject to additional constraints concerning energy and
delivery times. It follows that it is impractical to directly
solve the problem for all but small instances; therefore, we
devise several heuristic algorithms as detailed next.

4. Heuristic Algorithms

In this section we present two heuristic algorithms aimed
at tackling large instances of the considered post-disaster
scenario: the first one is a low-complexity greedy algo-
rithm, whereas the second one has higher complexity and
builds upon the insertion method first proposed in [41].

Both heuristic approaches leverage a graph-based rep-
resentation of the considered scenario, where every deliv-
ery location f(p) ∈ L : p ∈ P̂ is identified by a graph node
l(p). Additional nodes are added to identify the depots in
L̂. Here, for simplicity, we consider the case of a single
depot, i.e.,L̂ = {l∗}. Arc (l, l′)g represents route g ∈ Gll′
connecting delivery locations l(p) and l′(p′) (to simplify
the notation, the identifier (p) is omitted). Each route g
consists of a list νll

′

g = [l1, ..., lψ(l,l′)g ] of locations in L that
are visited at each time epoch while traveling from l(p) to
l′(p′), where ψ(l, l′)g is the travel duration, in number of
epochs (clearly, l1 = l(p) and lψ(l,l′)g = l′(p′)). Note that
hovering over the same location li is captured in the list
by replicating li once per every hovering epoch. In the
remainder of the section, we will indicate the location vis-
ited during the k-th epoch of route g ∈ Gll′ as νll

′

g (k),
with k = 1, ..., ψ(l, l′)g. Note that we consider a set Gll′

of alternative routes for each location pair, which include
the ξ shortest paths2 (i.e., |Gll′ | = ξ, where ξ is a system
parameter).

Each arc is associated with two weights: the travel
duration ψ(l, l′)g and the energy e(l, l′)g spent by the UAV
to travel from node l to l′ along route g ∈ Gll′ . Energy
is computed under the conservative assumption that the

2Note that opting for longer lightpaths could increase the satis-
faction level of additional missions, but might as well lead to infeasi-
bilities of the delivery missions due to violation of energy or delivery
windows constraints.

Figure 1: Example of graph topology with two nodes l1, l2 and a
depot node l∗. Arc weights and delivery time windows are also high-
lighted.

UAV’s payload is always fully loaded. An example of graph
topology with one depot and two delivery nodes is reported
in Figure 1.

Note that both algorithms determine a single tour for
each UAV. Consecutive tours can be obtained by run-
ning the algorithms for J consecutive non-overlapping time
horizons K1, ...,KJ , where time horizons are sized consid-
ering the maximum number of epochs a UAV can fly, ei-
ther hovering or cruising among locations, without being
recharged. In this case, the set of deliveries P̂ is split into
subsets P̂1, ...P̂J , such that ∪Jj=1P̂j = P̂, where each set

P̂j contains the deliveries p ∈ P̂ :
∑j−1
i=1 |Ki| ≤ b(p) ≤∑j

i=1 |Ki|.

4.1. Greedy heuristic

As reported in Algorithm 1, the proposed greedy algo-
rithm considers as inputs the sets of UAVs, time epochs
and locations associated to deliveries and to the depot, as
well as the UAVs’ battery capacity and transmission ca-
pacity on the onboard radio system. Moreover, for every
delivery, it takes as input the associated payload weight
and time window, whereas for every UAV it takes as input
the residual payload capacity available for parcels ∆(d) ≤
Y and the parameters αmd (defined below). Note that the
residual payload capacity of a UAV depends on the on-
board equipment (e.g., antenna and monitoring system).
In our greedy approach, the equipment of each UAV is
chosen a priori3. Therefore, the factors αmd are defined
as follows: if UAV d does not carry the equipment re-
quired to accomplish task m, then αmd = 0, otherwise

3In section 6, it will be shown that loading every UAV with the
necessary equipment to perform all the additional missions in M
leads to close-to-the-optimum performance.
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g = min
g∈Gl1l2

(1−
∑
m∈M

αmd)ψ(l1, l2)g −

 ∑
m∈M

αmd
∑

k=1,...,ψ(l1,l2)g

n(πd + k,m, νl1l2g (k))q(νl1l2g (k),m)

 (14)

φ1(li−1, l, li) = min
g∈Gli−1,l,g

′∈Gl,li

(
1−

∑
m∈M

αmd

)
·
(
ψ(li−1, l)g + ψ(l, li)g′ − ψ(li−1, li)ĝ

)
+ (15)

−
∑
m∈M

αmd

ψ(li−1,l)g∑
k=1

n(πd + k,m, νli−1l
g (k)) · q(νli−1l

g (k),m) +

ψ(l,li)g′∑
k=1

n(πd + k,m, νl,lig′ ) · q(νl,lig′ (k),m)+

+

u∑
j=i+1

ψ(lj−1,j)ĝ∑
k=1

n(πd + ψ(l, li)
′
g +

j−1∑
y=i+1

ψ(ly−1, ly)ĝ + k,m, ν
ly−1,ly
ĝ (k)) · q(νly−1,ly

ĝ (k),m)+

−
u∑
j=i

ψ(lj−1,lj)ĝ∑
k=1

n(πd +

j−1∑
y=i

ψ(ly−1, ly)ĝ + k,m, ν
ly−1,ly
ĝ (k)) · q(νly−1,ly

ĝ (k),m)



φ2(l̂il−1
, l, l̂il

) = max
g∈Gl∗,l̂

i
l

(
1−

∑
m∈M

αmd

)
· ψ(l∗, l̂il

)−

 ∑
m∈M

αmd

ψ(l∗,lî
l
)g∑

k=1

n(πd + k,m, ν
l∗,lî

l
g (k))q(ν

l∗,lî
l

g (k),m)

+

(16)

− φ1(l̂il−1
, l, l̂il

)

αmd = αm , where αm are predefined system weights such
that

∑
m∈M αm ≤ 1. Finally, the time and energy re-

quired to travel between every location pair, the mission
service requirements per location and epoch, the mission
work quality per location, and the amount of data per
epoch generated by each mission are provided as inputs
(line 1).

Deliveries are ordered (line 2) depending on their ur-
gency, i.e., the expiration of the delivery time window b(p).
Then UAVs are considered one at a time4 and the asso-
ciated lists TourLd and TourAd, respectively indicating
the locations and the arcs included in their tours, are ini-
tialized. The depot l∗ is set as tour departure location.
Moreover, their current battery consumption ed, carried
load hd, and flight time πd are initialized to 0 (line 4).

Then, for every UAV, the ordered list of (yet unserved)
deliveries is scanned one element at a time, the best route
g to reach the delivery location is identified and feasible
deliveries are assigned to the UAV (lines 5-11). For the
selection of the best route g, to incorporate the fulfillment
of additional missions, we adopt the multi-objective ap-

4In the case of a fleet of UAVs characterized by heterogeneous
equipment, the criterion adopted for UAV selection can be designed
according to the characteristics of the specific scenario. E.g., if de-
livery locations and their surroundings generate service requests for
additional missions as well, then UAVs carrying the equipment re-
quired to fulfil such additional missions should be picked first. Con-
versely, if the areas with highest service requirements for additional
missions do not include delivery points, then UAVs carrying no addi-
tional equipment should be selected first, since their residual payload
capacity (∆) is higher and thus they can carry a larger amount of
items to be delivered.

proach described in [42]: the arc to be traversed to reach
the delivery location is chosen by minimizing a weighted
function of traveling time and mission accomplishment lev-
els associated to the arc, as per Eq. (14), where l1 = l and

l2 = l̂ and parameters αmd are used as weights: the closer
αmd approaches 1, the more predominant the accomplish-
ment of mission m becomes w.r.t. the minimization of the
total time duration of the tour. Note that a delivery is
considered to be feasible (line 7) if:

(i) its delivery location l̂ can be reached before the time
window expiration and the UAV can return to the
depot before the end of the considered time horizon,
i.e., if it holds that πd+ψ(l, l̂)g ≤ b(p) and that πd+

ψ(l, l̂)g + ψ(l̂, l∗)g∗ ≤ |K|, where g∗ ∈ Gl̂,l∗ indicates

the shortest route from location l̂ to the depot;

(ii) the residual battery capacity is sufficient to allow the
flight to the delivery location and the return to the
depot, i.e., if ed + e(l, l̂)g + e(l̂, l∗)g∗ ≤ E;

(iii) the residual payload capacity is sufficient to accom-
modate the item to be delivered, i.e., if hd +w(p) ≤
∆(d).

After the assignment of a delivery, the traversed arc
and the delivery location are added to the UAV’s tour.
Moreover, traveling time, consumed energy, and residual
payload capacity are updated (line 8) and the delivery is
added to the set of served ones. Finally, the mission ser-
vice requirements per epoch of every location n(k,m, l)

traversed to reach location l̂ starting from location l are
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Algorithm 1 Greedy Algorithm

1: on input of D; K;M; L; P̂; E; T ; w(p), a(p), b(p), f(p)∀p ∈
P̂; l∗; ψ(l, l′)g, e(l, l

′)g, ν
ll′
g , ∀l = f(p), l′ = f ′(p′) ∈ L, g ∈

Gll′ ; ∆(d), αmd, n(k,m, l), q(l,m), s(m) ∀m ∈ M, d ∈ D,
l ∈ L;

2: create ordered list X of items to be delivered in ascending
order of b(p)

3: for all d ∈ D do
4: TourLd ← [l∗], TourAd ← [], ed ← 0, πd ← 0, hd ←

0, l← l∗

5: for all p ∈ X do
6: l̂ ← l(p); find best route g from location l to location

l̂
7: if inserting location l̂ in TourAd is feasible then
8: Append arc (l, l̂)g to TourAd and location l̂ to

TourLd, ed ← ed+e(l, l̂)g, πd ← πd+ψ(l, l̂)g, hd ←
hd + w(p), l← l̂, remove p from X

9: ∀m ∈ M, k ∈ K, l ∈ L µ(d,m, k), n(k,m, l) ←
update(K,M,L, T, πd ,ψ(l, l̂)g, ν

ll̂
g , αmd, n(k,m, l),

q(l,m), s(m) ∀m ∈M, l ∈ L, k ∈ K)
10: end if
11: end for
12: if TourLd contains at least one location different than

l∗ then
13: find best route g from location l to location l∗

14: Append arc (l, l∗)g to TourAd and location l∗ to
TourLd

15: ∀m ∈ M, k ∈ K, l ∈
L µ(d,m, k), n(k,m, l) ←update(K,M,L, T, πd
,ψ(l, l∗)g, ν

ll∗
g , αmd, n(k,m, l), q(l,m), s(m) ∀m ∈M,

l ∈ L, k ∈ K)
16: end if
17: end for
18: if X 6= � then
19: return no feasible solution found
20: else
21: ∀d ∈ D,m ∈M, k ∈ K µ(d,m, k)← conn check(K; D;

M; L; TourAd∀d ∈ D; t(l, l′)∀l, l′ ∈ L; µ(d,m, k)∀d ∈
D,m ∈M, k ∈ K)

22: return µ(d,m, k), T ourLd, T ourAd∀d ∈ D,m ∈
M, k ∈ K

23: end if

recomputed by means of the update routine (line 9) to
reflect the residual needs after being served by the cur-
rent UAV. The update criteria depend on the maximum
transmission capacity of the onboard wireless interface of
the UAV, T , on the data transmission requirements of each
mission, s(m), and on the parameters αmd. More in detail,
if the total data rate required in location l at time k to fully
accomplish all the additional missions does not exceed T ,
then n(k,m, l) are set either to 0, if the mission quality pa-
rameters are sufficiently high, or decreased by the amount
q(k,m) for every mission m ∈ M (lines 4-6). Otherwise,
the maximum transmission capacity is partitioned among
the missions, proportionally to the product αmds(m) (i.e.,
the data rate required by mission m weighted by the im-
portance of fulfilling mission m). During the routine ex-

Algorithm 2 update routine (updates mission require-
ments per epoch)

1: on input of K;M; L; ψ(l, l′)g, ν
ll′
g , αmd, n(k,m, l), q(l,m),

s(m) ∀m ∈M, l ∈ L, k ∈ K, T , πd;
2: for all k = 1, ..., ψ(l, l′)g do

3: if
∑
m∈M q(νll

′
g (k),m)s(m) ≤ T then

4: for all m ∈M do
5: µ(d,m, πd + k) ← 1, n(πd + k,m, νll

′
g (k)) ←

max(0, n(πd + k,m, νll
′

g (k))− q(νll
′

g (k),m))
6: end for
7: else
8: for all m ∈M : αmd > 0 do
9: µ(d,m, πd + k) ← αmds(m)∑

m′∈M αm′ds(m
′) , n(πd +

k,m, νll
′

g (k)) ← max(0, αmds(m)∑
m′∈M αm′ds(m

′)n(πd +

k,m, νll
′

g (k))− q(νll
′

g (k),m))
10: end for
11: end if
12: end for

13: return µ(d,m, k), n(k,m, l)∀d ∈ D,m ∈M, k ∈ Kl ∈ L

Algorithm 3 conn check routine (checks connectivity
among UAVs)

1: on input of K; D; M; L; TourAd∀d ∈ D; t(l, l′)∀l, l′ ∈ L;
µ(d,m, k)∀d ∈ D,m ∈M, k ∈ K;

2: for all d ∈ D, k ∈ K do
3: cd ← 0
4: for all d′ ∈ D : d′ 6= d do
5: if t(L(d, k),Ω) > 0 ∨

(t(L(d, k), L(D′, k′)) > 0 ∧ t(L(d′, k),Ω) > 0) then
6: cd ← 1
7: end if
8: end for
9: if cd = 0 then

10: µ(d,m, k)← 0∀m ∈M
11: end if
12: end for
13: return µ(d,m, k)∀d ∈ D,m ∈M, k ∈ K

ecutions, the values of variables µ(d,m, k) are also com-
puted according to the mission fulfillment share of every
UAV.

When the delivery list scan is concluded, the best arc
to return to the depot is selected according to Eq. (14),
where l1 = l and l2 = l∗, providing that the conditions
ed + e(l, l∗)g ≤ E and πd + ψ(l̂, l∗)g ≤ |K| are satisfied;
parameters n(k,m, l) are again updated and the UAV tour
is terminated (lines 12-17).

If some unserved deliveries remain after considering
every available UAV, then the algorithm stops and no-
tifies that it was unable to find a feasible solution (lines
18-19). Otherwise, the routine conn check is executed
to perform connectivity checks among UAVs. If a UAV
cannot directly communicate with the cellular network,
i.e., t(L(d, k),Ω) = 0, nor with another UAV having cel-
lular network connectivity, i.e., 6 ∃ d′ ∈ D : d′ 6= d ∧
t(L(d, k), L(d′, k) > 0) ∧t(L(d′, k),Ω) > 0, then no data
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generated by any mission can be transmitted; therefore,
variable µ(d,m, k) is set to 0 for every mission m ∈ M.
Finally, the tour assigned to every UAV is returned (lines
20-21).

On the contrary, if some UAVs remain unused, they can
perform additional missions, even if they are not assigned
to any delivery mission. Thus, the algorithm can be exe-
cuted again after enlarging the set of payload items P by
generating fake delivery payloads (i.e., with w(p) = 0) and
no restriction on the delivery time window (i.e., a(p) = 1
and b(p) = |K|). The delivery locations L(p) can be chosen
randomly or placed where n(k,m,L(p)) have the highest
values.

4.2. Insertion-based heuristic

Similarly to the greedy heuristic, the insertion-based
heuristic aims at sequentially building the tours of each
UAV by adding one delivery location at a time. How-
ever, here insertions are allowed at any point of the tour,
whereas in the greedy heuristic new deliveries can be ap-
pended only at the end of a UAV’s current tour.

As reported in Algorithm 4, the insertion-based heuris-
tic takes as input the same data of the greedy algorithm
(line 1). The algorithm considers the UAVs sequentially
and it first initializes the lists of tour locations and arcs,
and the variables indicating the current battery consump-
tion ed, carried load hd, and flight time πd (line 3).

If no delivery has yet been scheduled, as tour initial-
ization criterion the insertion of the delivery with earliest
deadline p, located in l = L(p), is used (lines 8-13 - this
criterion was chosen among those proposed in [41]). The
route g used to travel from the depot l∗ to location l is se-
lected (lines 9-11) as per Eq. (14), where l1 = l∗ and l2 = l,
provided that the following conditions are satisfied:

(i) the energy availability constraint, i.e., ed+e(l∗, l)g+
e(l, l∗)g∗ ≤ E;

(ii) the delivery time window satisfaction, i.e., πd+ ψ(l∗, l)g
≤ b(p);

(iii) the condition on the return to depot, i.e., πd+ψ(l∗, l)g
+ψ(l, l∗)g∗ ≤ |K| where (l, l∗)g∗ is the shortest route
from l to the depot;

(iv) the constraint on the maximum payload weight, i.e.,
hd + w(p) ≤ ∆(d).

Next, the backward route to return from location l to the
depot is selected with analogous procedure (lines 12-13),
though in this case no constraints on the payload max-
imum weight nor on delivery time windows satisfaction
need to be imposed to ensure the feasibility of the selected
route.

Then the algorithm iteratively operates as follows. Let
len be an operator that, on input of a vector, returns
the number of its elements. We define u =len(TourLd),
where TourLd = [l0, l1, ..., lu] is the current route, with

l0, lu = l∗ (line 16). For each unserved delivery, the best
insertion position in the UAV’s tour îl ∈ {1, .., u} is eval-

uated by minimizing the function φ1(li−1, l, li) as per Eq.
(15), where ĝ is the route from li−1 to li currently included
in TourAd (lines 17-20). Again, the insertion of the detour
is considered as infeasible if either:

(i) inserting the detour required to reach location l in
the tour leads the overall energy consumption to ex-
ceed the UAV battery capacity;

(ii) the arrival epoch of the UAV at each delivery loca-
tion does not meet the delivery time window con-
straint of the corresponding delivery task;

(iii) the time necessary to return to the depot exceeds
|K|.

Note also that the computation of φ1(li−1, l, li) takes into
account the variations in the mission satisfaction levels per
each epoch of the tour after the insertion of the candidate
location l, as service requirements may vary from epoch to
epoch and inserting a new delivery point in the tour post-
pones the completion of the successive deliveries already
inserted in the tour.

Once the value îl = arg mini∈1,..,m φ1(li−1, l, li) has
been found (line 21), to choose the best unserved deliv-
ery to be inserted in the tour, the function φ2(l̂il−1

, l, l̂il
)

is computed as per Eq. (16) for every unserved delivery
(line 22). Such function quantifies the improvements in
the mission satisfaction levels obtained by adding deliv-
ery l in the current tour, as opposed to direct service of
delivery l in a new, dedicated tour starting from the de-
pot. If maxl φ2(l̂il−1

, l, l̂il
) ≥ 0 (line 24), it means that

inserting the delivery in the current tour improves the
mission satisfaction levels more than serving the deliv-
ery by means of a new tour. Therefore, delivery l̂ =
arg maxl∈Lu

φ2(l̂il−1
, l, l̂il

) is added to the current tour (lines

25-27) and the insertion procedure is repeated from the
start. Otherwise, a new tour is initialized (line 28-29)
and parameters n(k,m, l) are recomputed via the update

routine based on the locations visited during the previous
tour. The algorithm ends when all the delivery tasks are
inserted in a tour, or when no more UAVs are available.
In this case, if there are remaining unserved deliveries, the
algorithm notifies that no feasible solution can be found
(lines 36-41).

4.3. Complexity analysis

If we consider only the parcel delivery tasks and no ad-
ditional missions, the problem described in Sec. 3 can be
modeled as a Vehicle Routing Problem with Time Win-
dows (VRPTW), which has been extensively studied in
the literature (a survey on heuristic and meta-heuristic
approaches to VRPTW can be found in [43]). However,
since the existing studies do not consider multitasking ve-
hicles such as our UAVs, the complexity of the surveyed
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heuristic approaches cannot be directly compared to that
of our proposed algorithms.

The complexity of Algorithm 1 is O(|D|·|P̂|·ξ·|M|·|K|),
as it is dominated by the two nested for loops at lines
3 and 5 and the minimization at line 6 within the in-
ner loop. Conversely, the complexity of Algorithm 4 is
O(|D| · |P̂2| · ξ2 · |M|2 · |K|2). It follows that the complex-
ity of both algorithms depends linearly on the number of
UAVs, but Algorithm 1 (resp. Algorithm 4) exhibits lin-
ear (respectively quadratic) dependency on the remaining
input sizes.

4.4. Analysis of worst-case ratio

In this section, we derive performance bounds under
some simplifying assumptions. It should be clarified that
we are interested in bounding Θ, i.e., the satisfaction of the
service demands generated by additional missions (defined
as per Eq. (13)) that can be achieved by any solution that
successfully supports all delivery missions. Consequently,
in deriving the bounds it will be assumed that the delivery
tasks are met (at some time epoch) and the focus will be
on the derivation of upper and lower bounds of Θ, respec-
tively indicated as Θ and Θ. In what follows, we focus
on problem instances that admit at least one feasible so-
lution. Moreover, we do not assume any specific delivery
time windows, i.e., a(p) = 1 and b(p) = |K| ∀p ∈ P̂. This
way, maximum flexibility in choosing the delivery epochs
is allowed, so that no limitation on the satisfaction of the
additional missions is imposed, e.g. by forcing some deliv-
ery locations to be visited earlier than others.

Let I(k,m, l) be a binary parameter defined as follows:

I(k,m, l) =

{
1 if n(k,m, l) > 0 ∧

(k < ψg(l∗, l) ∨ k > |K| − ψg(l, l∗))
0 otherwise

(17)

where ψg(l
∗, l) is the duration of the shortest path from

the depot to location l. The parameter indicates if mission
m in location l requires any service at epoch k and if such
location can be feasibly reached by a UAV, assuming that
the UAV starts its trip at the first epoch of the time hori-
zon from the depot l∗, follows the shortest trajectory to
l, and returns to the depot by the last epoch. Moreover,
let X (k)ord = [n1(k,m, l), n2(k,m, l), . . . , n|M|·|L|(k,m, l)]
denote the ordered list of n(k,m, l) for a given epoch k,
in ascending order, and let Jk = j ∈ {1, · · · , |M| · |L|} :∑j
i=1 ni(k,m, l) · Ii(k,m, l) ≤ |D| · T ∧

∑j+1
i=1 ni(k,m, l) ·

Ii(k,m, l) > |D| · T . This way, Jk counts the maximum
number of missions that can be fully satisfied at every time
epoch, considering the limitation imposed by the maxi-
mum transmission capacity T that each UAV can provide.

Note that, if
∑j
i=1 ni(k,m, l) · Ii(k,m, l) < |D| · T , the

(Jk + 1)-th element of X (k)ord constitutes a partially sat-
isfied mission. Therefore, the overall satisfaction Θ is en-
sured to be strictly lower than Jk + 1. Θ can then be
expressed as:

Θ =
∑
k∈K

min

Jk + 1,
∑

m∈M,l∈L

I(k,m, l)

 (18)

Under the aforementioned conditions, Θ may be ob-
tained by considering the briefest cycle S (where the cycle
duration is measured in time epochs) that passes through
the depot and all delivery locations. Note that, by defini-
tion, the briefest cycle cannot include hovering epochs. If
the duration of S, |S|, exceeds |K|, more that one UAV is
needed to reach all delivery locations; we denote by ρe the
minimum number of required UAVs, due to the UAVs’ en-
ergy constraints. Furthermore, if the briefest cycle S can-
not satisfy the specific time intervals restraining the time
of deliveries, more than one UAV is needed to reach all de-
livery locations in a timely fashion. Let ρt be the minimum
number of required UAVs, meeting those time constraints.
Finally, let R = max(ρe, ρt) ≥ 1be the minimum number
of UAVs required to satisfy all delivery missions. Based
on triangular inequality arguments, it is evident that |S| ≤∑R
i=1 |Si|, where |Si| denotes the duration of the path fol-

lowed by the ith UAV.
Moreover, let [Nm

min, N
m
max] be the range of values of

n(k,m, l) for a given mission m; we define Nord = [Nm1
max,

Nm2
max, . . . , N

mM
max ] as the ordered list of Nm

max, in descending
order. Then Θ can be calculated as:

Θ = |S| ·min

|M|∑
i=1

min

(
1,

max(T −
∑i−1
j=1N

mj
max, 0)

N
mi
max

)
, |M|

 (19)

which quantifies the minimum satisfaction level that a
single UAV can ensure to every mission while visiting any
location at any time epoch. More in detail, if the ca-
pacity T of one UAV is sufficient to satisfy the require-
ments per epoch of all the additional missions in any lo-
cation during any epoch, then the (minimum) number of
fully-served additional missions per epoch is |M|. Oth-

erwise, the term min

(
1,

max(T−
∑i−1

j=1N
mj
max,0)

N
mi
max

)
counts the

minimum satisfaction level that can be achieved under the
worst-case assumption. That is, considering that in the
location traversed by the UAV at epochs 1, 2, ..., |S| all the
additional missions exhibit their highest service require-
ment Nmi

max and that capacity T is partitioned among them
so that the most capacity-demanding missions are served
first, until exhaustion of T .

Notice that |S| is lower-bounded by twice the distance
(in epochs) between the depot location l∗ and the farthest
delivery location, lf ; that is, |S| ≥ ming∈Gl∗lf

2ψg(l
∗, lf ).

Consequently, if |S| is unknown, a looser lower bound
could be obtained by replacing |S| with ming∈Gl∗lf

2ψg(l
∗, lf )

in (19).
Conversely, for the cases in which R > 1 distinct cy-

cles are needed to meet all deliveries in a timely manner
(where each cycle is covered by one of the R UAVs), an
alternative lower bound could be derived as follows. Let
{l1, l2, ..., lR−1} denote the locations of the closest R − 1
delivery locations to the depot. Then, the minimum cu-
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Figure 2: The reference topology we consider. Blue dots correspond to locations in L. Blue lines connect locations between which UAVs
can travel in one epoch. The shadowed area corresponds to the small-scale topology we use for our comparison against the optimum.

Table 2: Simulation parameters

Quantity Small
scenarios

Large
scenarios

Number of locations, |L| 28 40

Number of deliveries, |P̂| 7 20
Number of UAVs, |D| 10–15 20–30
Number of epochs, |K| 20
Epoch duration [min] 10
UAV max. speed [km/h] 6
UAV battery capacity
[Wh], E

230

mulative flying time of the UAVs is given by:

R−1∑
i=1

2 min
g∈Gl∗li

ψ(l∗, li) + min
g∈Gldlf

ψ(ld, lf )

since the farthest location lf must be reached by at least
one UAV and the remaining R − 1 UAVs will necessarily
serve at least one delivery during their trip. Thus, the
duration of their trip must exceed the time required to fly
from the depot to the R−1 nearest delivery locations and
return. In this case, |S| can be replaced in (19) with the
latter quantity.

Finally, an upper bound on the worst-case performance
ratio can be obtained by computing the ratio of Eq. (18)
to Eq. (19).

5. Reference Scenarios

For our reference scenarios, we consider a flood in the
area of the city of San Francisco, as depicted in Fig. 2. The
flooding event has been simulated through the software
Hazus [44], and, given the disaster area, we identify |L| =
40 locations. UAVs have to perform a total of |P̂| = 20
deliveries of blood or medicine packs, due at randomly-
selected locations out of the L set (the f -parameters),

over a time window of 10 epochs for medicine packs and
5 epochs for blood packs (our a- and b-parameters). Loca-
tions associated with a delivery have zero elevation, all oth-
ers have an elevation of 50 meters. Also notice how [45] el-
evation changes have a limited impact on the overall power
consumption. We generate a total of 20 scenarios, sharing
the same topology and disaster, but with different delivery
time windows.

UAVs can also perform |M| = 2 additional missions:
i) providing network coverage for users escaping from the
disaster, whose mobility is simulated through the MatSim
simulator [46], as detailed in [45]; ii) video monitoring,
e.g., to assess the level of the flooding and damage in a
certain area.

The quantity of needed service (the n-parameters) is
determined as follows. For the coverage mission, we use
the values computed in [45], based on the expected flow of
vehicles. For video monitoring, a subset of 50% randomly-
selected locations are deemed to need service, i.e., n(l) = 1,
while all others have n(l) = 0. Coverage and monitoring
missions require additional payloads, respectively, the ra-
dio [47] and the camera system [7], each weighting 1 kg.
The maximum throughput values achievable between any
two locations, i.e., the t-parameters, are obtained with ref-
erence to LTE micro-cells through the methodology in [45].

We consider a set of UAVs of variable cardinality, whose
features mimic those of lightweight Amazon UAVs [48].
Specifically, they have an empty weight of W = 4 kg, and a
maximum payload of Y = 2.5 kg. They are equipped with
a battery of capacity E = 230 Wh, and the energy con-
sumed to fly between locations is e(l1, l2) = 3.125 Wh/km/kg.
As a result, the range of a UAV carrying its maximum pay-
load is around E

e(C+W ) = 11.3 km. Interestingly, such a

figure matches the 10-km range envisioned for lightweight
UAVs in [49, Tab. 1]. Finally, we consider |K| = 20 epochs,
each corresponding to 10 minutes.

The main scenario features and simulation parameters
are summarized in Tab. 2.
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Figure 3: Small-scale scenarios, optimal decisions: performance (a) and payload (b) when payload assignment is flexible, static, and when
all UAVs always carry radio and camera (“everything”). Performance is normalized by the total demand, payload by the total capacity Y ,
and used energy by the battery capacity E.
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Figure 4: Small-scale scenarios: performance (a) and energy/performance trade-off (b) yielded when decisions are made optimally (yellow
lines/markers), through the insertion heuristics (blue), and through the greedy heuristics (red). Performance is normalized by the total
demand, payload by the total capacity Y , and used energy by the battery capacity E. Confidence intervals, omitted from the figure for sake
of readability, are narrower than 0.08 in all cases.
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Figure 5: Large-scale scenarios: performance (a) and energy/performance trade-off (b) for the insertion-based and greedy heuristics.
Performance is normalized by the total demand, payload by the total capacity Y , and used energy by the battery capacity E.
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6. Numerical Assessment

We first investigate the relationship between payload
and equipment assignment to UAVs and the resulting cov-
erage and monitoring performance. To this end, in Fig. 3
we focus on the small-scale scenarios, derive the optimal
solution via the off-the-shelf commercial solver Gurobi,
and compare the following three alternatives:

• flexible: no constraint about the ω-variables is im-
posed. Hence, UAVs carry whatever payloads maxi-
mize the objective (13);

• static: one third of UAVs always carry a radio, one
third a camera, and one third neither of them;

• everything: all UAVs always carry both a camera
and a radio.

Fig. 3(a) shows the performance obtained by the above
payload assignment strategies, as the number of UAVs
changes. The flexible assignment is always associated with
very good performance for both coverage (dashed lines)
and monitoring (dotted lines), as well as the values of the
objective function in (13) (solid lines). More interestingly,
when all UAVs carry both cameras and radios (“every-
thing”), the performance is almost the same as in the flex-
ible case, within 7% for any number of UAVs. Conversely,
the static payload assignment is associated with a notice-
ably worse performance, up to 22% off.

It can be noticed that, even when the number of UAVs
is significant, the normalized performance remains below
60% in most cases. This is due to the fact that, in all cases,
coverage and monitoring have lower priority compared to
deliveries, and are performed (so to say) on a best-effort
basis. This also explains the frequently different perfor-
mance associated with coverage and monitoring, in spite
of being weighted equally in the objective function: UAVs
will perform whichever task happens to be closer to their
destination, catching, in a way, the low-hanging fruit.

Fig. 3(b) representing how the UAVs’ payload capacity
is used, sheds further light on the decisions made under the
three strategies. We can observe that, when the payload
assignment is flexible (solid bars), almost all UAVs carry
both a camera and a radio, just like in the “everything”
case (vertical hatches). Under the static assignment (hor-
izontal hatches), there is often a significant portion (20–
30%) of the UAVs’ payload capacity that is left unused,
except when the number of UAVs is very small. This con-
tradicts the intuition that carrying a radio and/or a cam-
era is somehow detrimental to the UAVs’ ability to perform
delivery missions, and motivates us to set our heuristics so
that all UAVs always carry both a camera and a radio.

Still focusing on the small-scale scenarios, in Fig. 4
we compare the optimal performance to that of the two
heuristics introduced in Sec. 4. The values of the parame-
ters αmd leading to highest Θ have been identified before-
hand by performing a sensitivity analysis with step 0.1,

whereas ξ is set to 10. Moreover, we report results for
the case αmd = 0 ∀m ∈ M, d ∈ D: under this setting,
the computations in Eq. (14)-(16) only consider the travel
duration between locations, disregarding the amount of
service provided for additional missions. These results can
therefore be considered as a benchmark case where only
the timely accomplishment of delivery task is taken into
account. Fig. 4(a) shows how the performance of both
heuristics compares to the optimal one. Heuristics with
optimized choice of the αmd parameters tend to perform
similarly (or, indeed, better) in terms of coverage, and
worse in terms of monitoring. Among the two heuristics,
the insertion-based one always outperforms, by 10–20%,
the greedy heuristic in both coverage and monitoring. Set-
ting parameters αmd to 0 leads to significant performance
degradations, and in this case the two heuristic approaches
exhibit similar performance.

Fig. 4(b) summarizes the energy/performance trade-
offs achieved by each alternative. Each marker therein
corresponds to a value of the number of UAVs: its x- and y-
position represent, respectively, the total used energy and
the average performance, computed summing the normal-
ized performance for coverage and monitoring, and then
dividing the result by two. It is possible to observe how,
for the same number of UAVs, the optimal solution tends
to consume more energy (see, as an example, the right-
most yellow markers). Since UAVs weight virtually the
same, such a difference is due to the fact that, under the
optimal solution, UAVs make longer trips. Indeed, recall
that under both heuristics UAVs only move from a deliv-
ery location to another along one of the ξ shortest paths,
which limits the length of their trips.

In Fig. 5, we move to the large-scale scenarios, and
compare the performance and behavior of the two heuris-
tics. Fig. 5(a) shows that the relationship between their
performance is more complex than in Fig. 4(a). Specifi-
cally, the insertion-based heuristic performs up to 20% bet-
ter than the greedy one for coverage, but around 10% worse
for monitoring. The reason becomes evident in Fig. 5(b),
highlighting how the greedy heuristic yields longer trips
(and it consumes more energy). Notice that, owing to the
scenario size, the optimal solution could be computed.

It is important to stress that in the small scenarios
making optimal decisions takes several hours on the Xeon-
based server we used for our simulations, while the tim-
ings of the greedy and insertion-based heuristics ranged
within [0.49, 1.46] seconds and [19.70, 137.99] seconds, re-
spectively. In the large scenarios, timings ranged within
[3.03, 7.98] seconds and [218.29, 795.77] seconds, respec-
tively. As a reference, optimization times ranged within
[2820, 32482] seconds.

Thus, we can conclude that the heuristics represent an
excellent trade-off between computational complexity and
decision quality.
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7. Conclusions

We addressed the challenging problem of jointly plan-
ning the missions of multitask UAVs and applied it to a
post-disaster scenario. In such cases, tasks are expected to
be associated with a common geographical area (i.e., the
disaster area). Hence UAVs carrying out such tasks would
largely geographically overlap. To this end, we developed
an optimization formulation and two heuristic approaches
that effectively cope with the computational complexity
posed by the task.

Our performance evaluation, carried out leveraging a
realistic model of a flood in the San Francisco area, as well
as realistic parameters for the operational equipment and
tasks, confirmed our main intuition, that is, that the flex-
ibility of multi-task UAVs allows better performance than
single-purpose ones, in spite of the higher weight they have
to carry. Furthermore, our heuristics have shown remark-
ably good performance, consistently close to the optimum
in spite of their very low complexity.
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Algorithm 4 Insertion-based Algorithm

1: on input of D; K;M; L; P̂; E; T ; w(p), a(p), b(p), f(p)∀p ∈
P̂; l∗; ψ(l, l′)g, e(l, l

′)g, ν
ll′
g , ∀l = f(p), l′ = f ′(p′) ∈ L, g ∈

Gll′ ; ∆(d), αmd, n(k,m, l), q(l,m), s(m) ∀m ∈ M, d ∈ D,
l ∈ L;

2: for all d ∈ D do
3: TourLd ← [l∗], TourAd ← [], ed ← 0, πd ← 0, hd ← 0
4: end for
5: d← 1
6: while d ≤ |D| ∧ P̂ 6= � do
7: if TourAd is empty then
8: p← arg min b(p), l← l(p)
9: find best route g from l∗ to l

10: Append location l to TourLd and arc (l∗, l)g to
TourAd

11: ed ← ed + e(l, l∗)g, πd ← πd + ψ(l, l∗)g, hd ← hd +
w(p), P̂ ← P̂ \ p

12: find best route g from location l to location l∗

13: Append location l∗ to TourLd and arc (l, l∗)g to
TourAd

14: else
15: for all l(p) ∈ L : p ∈ P̂ do
16: u←len(TourLd)
17: for all i ∈ {1, ..., u} do
18: (li−1, li)ĝ ← TourAd[i]
19: compute φ1(li−1, l, li)
20: end for
21: îl ← arg mini∈{1,..,u} φ1(li−1, l, li)

22: compute φ2(l̂i
l
−1, l, l̂i

l
)

23: end for
24: if maxl φ2(l̂i

l
−1, l, l̂i

l
) ≥ 0 then

25: l̂← arg maxl φ2(l̂i
l
−1, l, l̂i

l
)

26: Insert location l in TourLd and arc (l∗, l)g in
TourAd after position i

27: ed ← ed + e(l, l∗)g, πd ← πd + ψ(l, l∗)g, hd ← hd +
w(p), P̂ ← P̂ \ p

28: else
29: d← d+ 1,πd ← 0
30: for all (l, l̂)g ∈ TourAd do
31: ∀m ∈ M, k ∈ K µ(d,m, k) ←update(K, M, L,

T , πd, ψ(l, l̂)g, ν
ll̂
g , αmd, n(k,m, l), q(l,m), s(m)

∀m ∈M, l ∈ L, k ∈ K); πd ← πd + ψ(l, l̂)g
32: end for
33: end if
34: end if
35: end while
36: if P̂ 6= � then
37: return no feasible solution found
38: else
39: ∀d ∈ D,m ∈M, k ∈ K µ(d,m, k)← conn check(K; D;

M; L; TourAd∀d ∈ D; t(l, l′)∀l, l′ ∈ L; µ(d,m, k)∀d ∈
D,m ∈M, k ∈ K)

40: return µ(d,m, k), T ourLd, T ourAd∀d ∈ D,m ∈
M, k ∈ K

41: end if
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