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Abstract In device-to-device (D2D) networks, multiple resource-limited mobile devices cooperate with  

one another to execute computation tasks. As the battery capacity of mobile devices is limited, the 

computation tasks running on the mobile devices will terminate once the battery is dead. In order to 

achieve sustainable computation, energy-harvesting technology has been introduced into D2D networks. 

At present, how to make multiple energy harvesting mobile devices work collaboratively to minimize 

the long-term system cost for task execution under limited computing, network and battery capacity 

constraint is a challenging issue. To deal with such a challenge, in this paper, we design a multi-agent 

deep deterministic policy gradient (MADDPG) based cost-aware collaborative task-execution (CACTE) 

scheme in energy harvesting D2D (EH-D2D) networks. To validate the CACTE scheme’s performance , 

we conducted extensive experiments to compare the CACTE scheme with four baseline algorithms, 

including Local, Random, ECLB (Energy Capacity Load Balance) and CCLB (Computing Capacity 

Load Balance). Experiments were accompanied by various system parameters, such as the mobile 

device’s battery capacity, task workload, the bandwidth and so on . The experimental results show that 

the CACTE scheme can make multiple mobile devices cooperate effectively with one another to execute  

many more tasks and achieve a higher long-term reward, including lower task latency and fewer dropped 

tasks. 

 

Keywords: D2D networks, collaborative task execution, cost-aware, partially observable Markov 

decision process, multi-agent deep deterministic policy gradient 

 

1. Introduction 

Mobile devices are typically constrained in their computation, network and battery resources[1][2]. 

Device-to-device (D2D) communication technology enables two physically proximate mobile devices  to 

directly communicate with each other [3]-[6]. In D2D communication networks, computation tasks can 

be collaboratively executed by offloading them from mobile devices with insufficient resources  to those 

with abundant resources to take full advantage of the available resources , called collaborative task 

execution. Existing works mainly focus  on the problem of collaborative task execution with limited  

computation resources [7]-[13]. However, the limited battery capacity of mobile devices still poses 

another critical challenge. For example, computation tasks running on a battery-powered mobile device 

will terminate once the battery is dead, which significantly impairs the quality of mobile services. 



The energy-harvesting technique has been introduced to empower energy-constrained mobile 

devices and promote better performance. By accessing harvested energy, the computation capacity of 

mobile devices can be enhanced to achieve sustainable collaborative task execution. The sustainable 

collaborative task execution enables the computation tasks to be processed in an edge network, which  

helps reduce the service latency and improve the service quality and avoids possible performance 

bottlenecks caused by offloading a large number of tasks to edge servers. However, integrating energy 

harvesting into D2D networks also introduces new challenges to collaborative task execution. For 

example, due to the unpredictable amount of harvested energy, it is hard to determine collaborative task-

execution solutions (e.g., the number of locally executed tasks, the number of offloaded tasks and the 

maximum number of received tasks) for mobile devices. 

Existing studies focus on collaborative task execution either with battery-powered devices in 

conventional D2D networks or with edge servers in wireless-powered mobile edge computing (MEC). 

However, there exist a few major problems:  

(1) Most studies have failed to consider that the battery in mobile devices is limited. For example, 

the authors in [14] and [15] mainly focus on solving the optimal task offloading schemes to optimize the 

energy consumption of systems but without considering the battery constraints; hence, these schemes are 

not suitable for solving the problem of collaborative task execution in energy harvesting D2D (EH-D2D) 

networks. 

(2) Most studies have failed to consider the unique requirements for collaborative task execution by 

multiple energy-harvesting mobile devices in D2D networks. For example, the authors in [16] [17] [18] 

and [19] mainly investigate that the scenario where tasks are collaboratively executed by edge servers in 

wireless powered MEC. However, there are many differences between the collaborative task execution  

in wireless powered MEC and EH-D2D networks. Firstly, in comparison with an edge server, the 

coverage area of mobile devices is much smaller. Secondly, the computing, communication and battery 

capacities of mobile devices are much lower than those of edge servers. Thirdly, the mobility of mobile 

devices makes collaborative task execution in D2D networks much more intractable compared to the 

MEC environment. 

(3) Most studies have failed to consider the long-term cost (e.g., the weighted sum of the average 

latency of task processing, the number of dropped tasks  and the battery energy penalty) for the 

collaborative task execution. 

This paper aims to address the above problems , with a particular focus on minimizing long-term 

system costs. We firstly present a system model, including EH-D2D system architecture, energy 

queueing and so on. We then formulate the multi-user collaborative task-execution problem as a partially  

observable Markov decision process (POMDP), where each mobile device is treated as an agent. The 

observation space for each agent in our model mainly includes the following: the execution queue’s state; 

the channel gain between mobile devices; the available battery energy of the mobile device; the channel 

gain between mobile devices and the power beacon; and the number of arrival tasks . In this model, each 

mobile device makes an optimal collaborative task-execution policy to minimize the long-term system 

cost based on its observable space. In this paper, we also describe our design for a cost-aware 

collaborative task-execution scheme (CACTE) based on a multi-agent deep deterministic policy gradient 

(MADDPG). Finally, in the total reward, the average latency of tasks processing, the number of dropped 

tasks and the battery energy penalty different performance metrics. We discuss the result of 

comprehensive experiments that were conducted to evaluate and compare the CACTE scheme with four 

baseline algorithms, including Local, Random, ECLB (Energy Capacity Load Balance) and CCLB 



(Computing Capacity Load Balance). The experimental results show that our proposed CACTE scheme 

achieves the highest total reward, the lowest average latency and the smallest number of dropped tasks . 

The preliminary work for this paper was accepted by HPCC in 2020. The major extension presented 

here includes model construction, the experiments conducted and discussion. In terms of the model’s  

construction, we further consider the influence of uplink and downlink transmission rates on 

collaborative task execution. Moreover, we add the uplink and downlink transmission rates to the state 

space, and we consider the effects of transmission rate constraints on executable action. As for the 

experiments, two new baseline algorithms were added, and we compared our proposed algorithm with  

baseline algorithms, using different experimental parameters, such as task arrival rate, battery capacity, 

task workload, bandwidth and the number of mobile users . Finally, we now present further discussion of 

the related experimental results  to validate our study. 

Here, we summarize the main contributions of our work, as follows: 

 We mainly focus on how to coordinate multiple energy-harvesting mobile devices  with limited  

battery capacity to execute computation tasks in EH-D2D networks. 

 We formulate the multi-user collaborative task-execution problem as a POMDP. Our goal is to 

minimize the long-term system cost, which is defined as the weighted sum of the average latency 

of task processing, the number of dropped tasks  and the battery energy penalty. 

 We propose a MADDPG-based CACTE scheme to solve this problem. Meanwhile, to validate 

the effectiveness of our proposed CACTE scheme, comprehensive experiments with different 

experimental parameters (such as battery capacity, bandwidth, number of mobile users and so on) 

have been conducted. 

The remainder of this paper is organized as follows: Section 2 reviews the related works. Section 3 

presents the system model. In Section 4, the multi-user collaborative task-execution problem is 

formulated. Section 5 describes the details of the CACTE scheme (based on the MADDPG). Section 6 

presents the simulation experiments and analyzes the experimental results . Finally, Section 7 concludes 

this paper. 

 

2. Related works 

Many studies on conventional battery-powered D2D networks have been dedicated to studying the 

collaborative task-execution problem from different optimization objectives . For example, in [14], a 

Lyapunov-based online task-offloading algorithm is designed to solve the task offloading problem in 

D2D networks to minimize the time-average energy consumption for the task executions of all users . In 

[20], an auction-based incentive mechanism is proposed to solve the collaborative task-offloading 

problem. The objective is  to optimize the long-term system welfare without knowledge of future 

information. In [21], a graph-matching-based optimal task-assignment policy is proposed to solve the 

collaborative task-execution problem and thereby significantly reduce the mobile devices' energy 

consumption. In [22], an alternating descent algorithm is proposed to solve the joint allocation problem 

of D2D networks, bandwidth, and power in the cognitive unmanned aerial vehicle (UAV)-enabled  

networks to support the ground terminals (GTs) while guaranteeing the quality-of-service for the D2D 

users. In [23], a non-orthogonal multiple-access (NOMA)-aided computing scheme is proposed to solve 

the task-offloading problem. The objective is to minimize energy consumption and maximize offloading  

data. However, it is realistic that the mobile device’s battery energy is limited. All the works mentioned 

above ignore the impact of limited battery energy on collaborative task execution. For example, when 

the mobile device’s battery energy is low, it will no longer accept offloaded tasks from other mobile 



devices, and it may offload its own tasks to other resource-rich mobile devices in the meantime. In the 

worse situation, tasks running on a battery-powered mobile device will be terminated when the battery 

is dead, which greatly impairs application performance. 

In order to enable sustainable computing for battery-constrained mobile devices, energy-harvesting 

technology has been introduced. For example, in [16], an online offloading framework based on deep 

reinforcement learning (DRL) is designed to learn an optimal task-offloading and wireless resource 

allocation scheme in wireless powered MEC to achieve near-optimal performance while significantly  

decreasing the computation time. In [17], two DRL-based algorithms are proposed to learn the optimal 

server selection, offloading ratio and local computation policy in MEC systems with energy-harvesting 

devices, the goal of which is to balance the time and energy consumed. In [18], an efficient cooperation 

method is proposed to optimize the amount of offloaded task data, the system time allocation, and the 

transmit power in wireless powered MEC systems to maximize the amount of processed data. In [24], 

the Lyapunov optimization theory is utilized to optimize the computation offloading strategy, 

transmission power and so on in the D2D-aided wireless powered MEC system, the goal of which is to 

maximize the long-term utility energy efficiency. In [25], convex optimization techniques are adopted to 

jointly optimize transmission energy allocation and task allocation to minimize total transmission energy 

consumption. However, all the above studies mainly investigate the collaborative task-execution problem 

between energy-harvesting mobile devices and edge servers in wireless powered MEC. They cannot be 

readily applied to EH-D2D networks. It is much more intractable to solve the collaborative task-

execution problem subject to the energy constraints of mobile device batteries  in EH-D2D networks 

compared with wireless powered MEC. 

Motivated by this, we investigate how cooperation between multiple energy-harvesting mobile 

devices can be facilitated to execute tasks in EH-D2D networks, which is to minimize the long-term 

system cost subject to the energy constraints  of mobile device batteries . 

 

3. System model 

In this section, we firstly present the EH-D2D system architecture in which energy-harvesting mobile 

devices cooperate to execute computation tasks . We then introduce the task-queueing model, energy 

queue model and network model, respectively. The key notations used throughout this paper are listed 

in Table 1. 

 

Table 1. Key notations 

Symbols Semantics 

𝑛 

𝑀𝐷𝑖  

𝑁𝑖
𝐿 

𝑁𝑖
𝐻 

𝐹𝑖 ,𝐿
𝑚𝑎𝑥  

𝐹𝑖 ,𝐻
𝑚𝑎𝑥  

𝑃𝑖
𝑒𝑥  

𝑃𝑖
𝑡𝑟  

𝑃𝑖
𝑟𝑥  

𝐸𝑖
𝑚𝑎𝑥  

𝑇𝑠𝑙𝑜𝑡  

The number of mobile devices 

The ith mobile device 

The number of low-performance CPU cores for 𝑀𝐷𝑖  

The number of high-performance CPU cores for 𝑀𝐷𝑖  

The maximum computation capacity of a low-performance CPU core 

The maximum computation capacity of a high-performance CPU core 

The execution power of 𝑀𝐷𝑖  

The transmission power of 𝑀𝐷𝑖  

The received power of 𝑀𝐷𝑖  

The battery capacity of 𝑀𝐷𝑖  

The time slot duration 



𝑄𝑖
(𝜏) 

𝜆 𝑖 

𝑎𝑖
(𝜏) 

𝑏𝑖
(𝜏) 

𝜇𝑖𝑗
(𝜏) 

𝜂𝑖𝑗
(𝜏) 

𝐸𝑖
𝑚𝑎𝑥  

𝐸𝑖
𝐴(𝜏)  

𝐵𝑊𝑖
𝑈𝐿  

𝐷𝑖
(𝜏) 

𝑃𝑖
(𝜏) 

𝑅𝑖
(𝜏)  

The execution queue of 𝑀𝐷𝑖  in time slot 𝜏 

The task arrival rate of 𝑀𝐷𝑖  

The number of tasks arriving at 𝑀𝐷𝑖  in time slot 𝜏 

The number of tasks executed on 𝑀𝐷𝑖  in time slot 𝜏 

The number of tasks offloaded from 𝑀𝐷𝑖  to 𝑀𝐷𝑗  in time slot 𝜏 

The number of tasks offloaded from 𝑀𝐷𝑖  to 𝑀𝐷𝑗  in time slot 𝜏 

The battery capacity of 𝑀𝐷𝑖  

The available energy of 𝑀𝐷𝑖  in time slot 𝜏 

The uplink channel bandwidths of 𝑀𝐷𝑖  

The number of tasks dropped on 𝑀𝐷𝑖  in time slot 𝜏 

The battery energy penalty of 𝑀𝐷𝑖  in time slot 𝜏 

The immediate reward of 𝑀𝐷𝑖  in time slot 𝜏 

 

3.1 EH-D2D system architecture 

Fig. 1 shows an EH-D2D network that consists of a power beacon and 𝑛  mobile devices 𝑀𝐷 =

{𝑀𝐷1 , . . . , 𝑀𝐷𝑖 , … , 𝑀𝐷𝑛} . Each mobile device 𝑀𝐷𝑖  can be denoted by a multi-tuple 𝑀𝐷𝑖 =

(𝑁𝑖
𝐿 ,𝑁𝑖

𝐻 ,𝐹𝑖 ,𝐿
𝑚𝑎𝑥 , 𝐹𝑖 ,𝐻

𝑚𝑎𝑥 , 𝑃𝑖
𝑒𝑥 , 𝑃𝑖

𝑡𝑟 , 𝑃𝑖
𝑟𝑥, 𝐸𝑖

𝑚𝑎𝑥 ). Their definitions are as follows. 𝑁𝑖
𝐿 and 𝑁𝑖

𝐻 represent the 

number of low-performance and high-performance CPU cores, respectively. 𝐹𝑖 ,𝐿
𝑚𝑎𝑥  and 𝐹𝑖 ,𝐻

𝑚𝑎𝑥  are 

referred to as the maximum computation capacity of a low-performance core and a high-performance  

CPU core. 𝑃𝑖
𝑒𝑥 , 𝑃𝑖

𝑡𝑟  and 𝑃𝑖
𝑟𝑥  are the execution, transmission and received power of 𝑀𝐷𝑖 , respectively. 

Finally, 𝐸𝑖
𝑚𝑎𝑥  is the battery capacity for mobile device 𝑀𝐷𝑖 . The mobile device’s battery can be 

recharged by a power beacon.  

Each mobile device 𝑀𝐷𝑖  generates a series of independent tasks. Each task can be characterized 

by two-tuples 𝑡 = (𝑊, 𝐷), in which 𝑊 denotes the task workload (GHz ∙ s), and 𝐷  denotes the data 

size (in MB) per unit workload, respectively. In particular, each mobile device 𝑀𝐷𝑖  contains an 

execution queue used to store the tasks offloaded from other mobile devices and those tasks to be 

executed locally. 

Due to the limited computing resources and battery capacity of the mobile device, the arrival tasks 

can be selectively offloaded to other mobile devices nearby with sufficient energy and rich resources. 

Here, how to achieve collaborative task execution under limited battery capacity constraints is a critical 

issue. This paper mainly studies this problem and proposes an optimal collaborative task-execution  

scheme to minimize the long-term system cost.  

In EH-D2D networks, we adopt a discrete-time model and logically divide the time horizon into 

time slots of equal duration 𝑇𝑠𝑙𝑜𝑡 . Each time slot’s duration is 𝑇𝑠𝑙𝑜𝑡 = 1S. We denote the set of the time 

slot index 𝜏 by 𝒯 = {0, 1, … , 𝜏, … }. Each mobile device can be recharged by a power beacon in each 

time slot 𝜏. When the available energy of mobile devices is insufficient to execute their arrival tasks, 

these tasks can be offloaded to mobile devices  with sufficient energy. In each time slot 𝜏, each mobile 

device makes a coordinated decision, including task offloading, task receiving and task executing, under 

available energy constraints. 

 



 

Fig. 1. Collaborative task execution in EH-D2D networks 

 

3.2 Task-queueing model 

In EH-D2D networks, each mobile device 𝑀𝐷𝑖  maintains an execution queue 𝑄𝑖. The function of 𝑄𝑖 

is to store the tasks waiting to be executed locally. These tasks in an execution queue 𝑄𝑖  are not 

offloaded again. These tasks mainly consist of offloaded tasks from other mobile devices and those 

generated by mobile device 𝑀𝐷𝑖  and assigned to execute locally. As in existing studies, the tasks’ 

arrival process is assumed to follow a Poisson distribution with a parameter 𝝀 = (𝜆 1,… , 𝜆 𝑖 ,… , 𝜆 𝑛). At 

the beginning of time slot 𝜏 , 𝑨(𝜏) = (𝑎1
(𝜏) , … , 𝑎𝑖

(𝜏), … , 𝑎𝑛
(𝜏) ) computation tasks arrive at the 𝑛 

mobile devices. Some of them are offloaded to other mobile devices, and some of them are assigned to 

execute locally. Let 𝜇𝑖𝑗
(𝜏) denote the number of tasks offloaded from 𝑀𝐷𝑖  to 𝑀𝐷𝑗  in time slot 𝜏. 

Let 𝜂𝑖𝑗
(𝜏) denote the maximum number of tasks that 𝑀𝐷𝑖  can receive from 𝑀𝐷𝑗  in time slot 𝜏. Thus, 

according to the above descriptions, the execution queue 𝑄𝑖 evolves according to Eq. (1): 

𝑄𝑖
(𝜏 + 1) = max[𝑄𝑖

(𝜏) + 𝑎𝑖
(𝜏) 𝑊 − 𝑏𝑖

(𝜏)𝑊 − ∑ 𝜇𝑖𝑗
(𝜏)𝑊𝑖≠𝑗 , 0] + ∑ 𝜇𝑗𝑖

(𝜏)
𝑗≠𝑖 𝑊       (1) 

𝜇𝑗𝑖
(𝜏) ≤ 𝜂𝑖𝑗

(𝜏)                                     (2) 

∑ 𝜇𝑖𝑗
(𝜏)

𝑗∈𝑛 = 𝑎𝑖
(𝜏)                                  (3) 

∑ 𝜇𝑖𝑗
(𝜏)

𝑗≠𝑖,𝑗∈𝑛 ≤ 𝑎𝑖
(𝜏)                                 (4) 

∑ 𝜇𝑖𝑗
(𝜏)

𝑗≠𝑖,𝑗∈𝑛 + 𝑏𝑖
(𝜏) ≤ 𝑄𝑖

(𝜏) + 𝑎𝑖
(𝜏)                        (5) 

where 𝑏𝑖
(𝜏) denotes the number of tasks executed on 𝑀𝐷𝑖  in time slot 𝜏, and 𝜇𝑗𝑖

(𝜏) denotes the 

number of tasks offloaded from 𝑀𝐷𝑗  to 𝑀𝐷𝑖  in time slot 𝜏. Eq. (2) guarantees that the number of tasks 

offloaded from 𝑀𝐷𝑗  to 𝑀𝐷𝑖  cannot exceed the maximum number of tasks that 𝑀𝐷𝑖  can receive from 

𝑀𝐷𝑗  in time slot 𝜏. Eq. (3) denotes that the number of arrival tasks in time slot 𝜏 is the sum of the 

number of offloaded tasks and the number of locally executed tasks in time slot 𝜏. Eq. (4) denotes that 

the total number ∑ 𝜇𝑖𝑗
(𝜏)

𝑗≠𝑖,𝑗∈𝑛  of offloaded tasks must be less than or equal to the number 𝑎𝑖
(𝜏) of 

arrival tasks in time slot 𝜏. Eq. (5) denotes that the sum of the number of offloaded tasks and the number 

of locally executed tasks for 𝑀𝐷𝑖  must be less than or equal to the sum of the number of tasks in  𝑄𝑖 

and the number 𝑎𝑖
(𝜏)  of its arrival tasks. Since the length of the queue 𝑄𝑖 is constant, partial arrival 

tasks may be dropped due to insufficient storage space of the queue 𝑄𝑖. 

 

3.3 Energy-queueing model 

The mobile device’s battery can be recharged by a power beacon. The harvesting energy changes 

dynamically in different time slots. The main reason for this is that the mobility of mobile devices makes  

the channel gains between the power beacon and mobile devices change dynamically. The harvesting 
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energy of 𝑀𝐷𝑖  in time slot 𝜏 can be denoted by 𝐸𝑖
𝐻 (𝜏) = 𝜇𝑃ℎ𝑖

(𝜏)𝑇𝑠𝑙𝑜𝑡 , where 𝜇 ∈ [0,1] denotes the 

energy-harvesting efficiency. 𝑃  denotes the transmission power of the power beacon, and ℎ𝑖
(𝜏) 

denotes the channel gain between the power beacon and  mobile device 𝑀𝐷𝑖  in time slot 𝜏 . The 

harvested energy can be used for receiving tasks, executing tasks and offloading tasks . Additionally, 

high-power mobile devices can cooperate in executing tasks offloaded from low-power ones. The 

available energy of 𝑀𝐷𝑖  at the beginning of each time slot 𝜏  can be presented by 𝐸𝑖
𝐴(𝜏) , which 

evolves according to Eq. (6): 

𝐸𝑖
𝐴(𝜏 + 1) = max[𝐸𝑖

𝐴(𝜏) − 𝐸𝑖
𝑒𝑥(𝜏) − 𝐸𝑖

𝑡𝑟 (𝜏) − 𝐸𝑖
𝑟𝑐 (𝜏), 0] + 𝐸𝑖

𝐻 (𝜏)              (6) 

𝐸𝑖
𝑒𝑥(𝜏) + 𝐸𝑖

𝑡𝑟 (𝜏) + 𝐸𝑖
𝑟𝑐 (𝜏) ≤ 𝐸𝑖

𝐴(𝜏)                        (7) 

𝐸𝑖
𝐴(𝜏) + 𝐸𝑖

𝐻 (𝜏) ≤ 𝐸𝑖
𝑚𝑎𝑥                             (8) 

𝐸𝑖
𝐻 (𝜏) ≥ 0                                   (9) 

𝐸𝑖
𝑒𝑥(𝜏) ≥ 0                                  (10) 

𝐸𝑖
𝑡𝑟 (𝜏) ≥ 0                                  (11) 

𝐸𝑖
𝑟𝑐 (𝜏) ≥ 0                                  (12) 

where 𝐸𝑖
𝑒𝑥(𝜏) , 𝐸𝑖

𝑡𝑟 (𝜏)  and 𝐸𝑖
𝑟𝑐 (𝜏)  denote the amount of battery energy consumed by executing, 

transmitting and receiving tasks of 𝑀𝐷𝑖  in time slot 𝜏, respectively. To guarantee sustainable operation, 

the sum of energy used for receiving tasks, executing tasks and offloading tasks must not exceed the 

currently available energy of mobile devices. This constraint condition can be denoted by Eq. (7). Eq. (8) 

guarantees that the available energy of 𝑀𝐷𝑖  and the recharged energy of 𝑀𝐷𝑖  cannot exceed the 

maximum battery capacity of 𝑀𝐷𝑖 . Eqs. (9)–(12) are the constraint conditions of the recharged energy 

and the energy consumed in executing tasks, offloading tasks and receiving tasks  for 𝑀𝐷𝑖 , respectively. 

 

3.4 Network model 

In EH-D2D networks, mobile devices can communicate directly without interaction with edge servers. 

On account of mobile devices’ mobility, the transmission rate of the wireless channel changes 

dynamically across different time slots. Let 𝑟𝑖𝑗
𝑈𝐿(𝜏)  and 𝑟𝑖𝑗

𝐷𝐿 (𝜏)  denote the uplink and downlink 

transmission rates between 𝑀𝐷𝑖  and 𝑀𝐷𝑗  in time slot 𝜏, respectively. Then, 𝑟𝑖𝑗
𝑈𝐿(𝜏) and 𝑟𝑖𝑗

𝐷𝐿 (𝜏) can 

be calculated by Eqs. (13) and (14): 

𝑟𝑖𝑗
𝑈𝐿(𝜏) = 𝐵𝑊𝑖

𝑈𝐿 log2(1 + 𝑃𝑖
𝑡𝑟 𝐺𝑖𝑗

𝑈𝐿(𝜏) /𝜎 2), ∀𝑖 ∈ 𝒩                   (13) 

𝑟𝑖𝑗
𝐷𝐿 (𝜏) = 𝐵𝑊𝑖

𝐷𝐿 log2(1 + 𝑃𝑗
𝑡𝑟 𝐺𝑖𝑗

𝐷𝐿 (𝜏)/𝜎 2),∀𝑖 ∈ 𝒩                  (14) 

respectively, where 𝐵𝑊𝑖
𝑈𝐿  and 𝐵𝑊𝑖

𝐷𝐿  are the uplink and downlink channel bandwidths of 𝑀𝐷𝑖 , 

respectively; 𝑃𝑖
𝑡𝑟  denotes the transmission power of 𝑀𝐷𝑖 ;  𝜎 2  is the Gaussian noise power; and 

𝐺𝑖𝑗
𝑈𝐿(𝜏)  and 𝐺𝑖𝑗

𝐷𝐿 (𝜏)  denote the uplink and downlink channel gain between 𝑀𝐷𝑖  and 𝑀𝐷𝑗 , 

respectively. The channel gain is mainly related to the communication distance between mobile devices. 

Due to the same communication distance of the uplink and downlink between 𝑀𝐷𝑖  and 𝑀𝐷𝑗 , the 

channel gains 𝐺𝑖𝑗
𝑈𝐿(𝜏) and 𝐺𝑖𝑗

𝐷𝐿(𝜏)  can be calculated by 𝐺𝑖𝑗
𝑈𝐿(𝜏) = 𝐺𝑖𝑗

𝐷𝐿 (𝜏) = 𝑘(𝑑0/𝑑𝑖𝑗 )𝜃 , where 𝛼 is  

the path-loss parameter; 𝜃  is the path-loss exponent; 𝑑0  is the reference distance; and 𝑑𝑖𝑗  is the 

distance between 𝑀𝐷𝑖  and 𝑀𝐷𝑗 . 

 

4 Multi-user collaborative task execution problem formulation 

In the multi-user collaborative tasks execution scenario illustrated in Fig. 2, the prior knowledge of the 

system (including the execution queue state, the channel gain between mobile devices, the available 

battery energy, channel gain between the power beacon and mobile devices and the number of arrival 

tasks) is unknown in advance. To deal with such an optimization problem, we formulate it as a POMDP. 



Firstly, the state space and action space are described, respectively. We then design the reward function 

of the collaborative task-execution problem. Lastly, we formulate this problem. 

 

 

Fig. 2. Collaborative task execution based on the MADDPG 

 

4.1 State space of collaborative task execution 

Each mobile device 𝑀𝐷𝑖  acts as an agent to interact with the system environment [26][27]. At the 

beginning of time slot 𝜏, each agent’s observation space 𝑂𝑖
(𝜏)  (including the execution queue’s state, 

the channel gain between 𝑀𝐷𝑖  and others, the available battery energy, the harvesting energy, and the 

number of arrival tasks) can be observed. This can be denoted by Eq. (15). 

𝑂𝑖
(𝜏) = [𝑄𝑖

(𝜏), 𝐺𝑖
(𝜏) , 𝐸𝑖

𝐴(𝜏), 𝐸𝑖
𝐻 (𝜏), 𝑎𝑖

(𝜏)]                  (15) 

where 𝑄𝑖
(𝜏) denotes the number of remaining tasks in the execution queue of 𝑀𝐷𝑖  in time slot 𝜏; 

𝐺𝑖
(𝜏) = [𝐺𝑖1

(𝜏), … , 𝐺𝑖(𝑖−1) (𝜏), 𝐺𝑖(𝑖+1) (𝜏), … , 𝐺𝑖𝑛
(𝜏)] denotes the channel gain between 𝑀𝐷𝑖  and other 

mobile devices except itself in time slot 𝜏. 𝐸𝑖
𝐴(𝜏)  denotes the available energy of 𝑀𝐷𝑖  in the time slot. 

𝐸𝑖
𝐻 (𝜏) denotes the amount of harvesting energy of 𝑀𝐷𝑖  in time slot 𝜏, and 𝑎𝑖

(𝜏)  denotes the number 

of tasks arriving on 𝑀𝐷𝑖  in time slot 𝜏. All agents’ observation spaces constitute the whole system state. 

Thus, the system state 𝑆(𝜏) ∈ 𝕊 can be denoted by Eq. (16). 

                         𝑆(𝜏) = [𝑂1
(𝜏), … , 𝑂𝑖

(𝜏), … , 𝑂𝑛
(𝜏)]                         (16) 

The system state 𝑆(𝜏)  can be dynamically evolved according to transfer equations (1) and (6). 

 

4.2 Action space of collaborative task execution 

Each agent can choose an action 𝐴𝑖
(𝜏)  according to its own observation state 𝑂𝑖

(𝜏) . The actions for all 

agents form a joint action 𝑨(𝜏). The action 𝐴𝑖
(𝜏) consists of the number of locally executed tasks, the 

number of offloaded tasks and the maximum number of received tasks in time slot 𝜏 . It can be 

represented by Eq. (17) 

𝑨(𝜏) = [𝑨1
(𝜏), … , 𝑨𝑖

(𝜏) , … , 𝑨𝑁
(𝜏)]𝑇                         (17) 

𝑨𝑖
(𝜏) = [𝑏𝑖

(𝜏), 𝝁𝑖
(𝜏) , 𝜼𝑖

(𝜏)]                            (18) 

𝝁𝑖
(𝜏) = [𝜇𝑖1

(𝜏), … , 𝜇𝑖(𝑖−1) (𝜏), 𝜇𝑖(𝑖+1) (𝜏), … , 𝜇𝑖𝑛
(𝜏)]                 (19) 

𝜼𝑖
(𝜏) = [𝜂𝑖1

(𝜏), … , 𝜂𝑖(𝑖−1) (𝜏), 𝜂𝑖(𝑖+1) (𝜏), … , 𝜂𝑖𝑛
(𝜏)]                 (20) 

where 𝑏𝑖
(𝜏) denotes the number of tasks executed on 𝑀𝐷𝑖  in time slot 𝜏; 𝝁𝑖

(𝜏) denotes the vector 

for the number of tasks offloaded from 𝑀𝐷𝑖  to other (𝑛 − 1) mobile devices; and 𝜼𝑖
(𝜏)  denotes the 

vector for the maximum number of tasks that 𝑀𝐷𝑖  can receive from other (𝑛 − 1) mobile devices. 

…

Reward 1

Agent 1

Agent 2

Agent n

State 1

Reward 2

State 2

Reward n

State n

Action 2

Action 1

Action n

Joint 

Action

Environment

MDnMD1

MD3
MD2 MDi

Energy-Harvesting D2D Communication Networks

Channel gain between 

mobile devices

The number of arrival 

tasks

Execution queue state

The average latency 

Reward 

State

The number of 

executed tasks

Action

Power Beacon

Available battery energy

Channel gain between 

power beacon and mobile 

devices

The number of dropped 

tasks

The  battery energy 

penalty

The  maximum 

number of 

received tasks

The number of 

offloaded tasks



Note that the total battery energy consumed by executing tasks, offloading tasks and receiving tasks  in 

time slot 𝜏 cannot exceed the available energy of 𝑀𝐷𝑖 . The execution energy, offloading energy and 

receiving energy can be calculated as follows: 

1) The execution energy consumption: Since the mobile device adopts an advanced dynamic voltage 

and frequency scaling (DVFS) technique, the CPU frequency can be automatically regulated in each time 

slot 𝜏. Therefore, the computation capacity 𝐶𝑖
𝑒𝑥(𝜏)  and computing power 𝑃𝑖

𝑒𝑥 (𝜏) of 𝑀𝐷𝑖  in time slot 

𝜏 can be denoted by Eq. (21) and Eq. (22): 

𝐶𝑖
𝑒𝑥(𝜏) = 𝑁𝑖

𝐿𝐹𝑖 ,𝐿
(𝜏) + 𝑁𝑖

𝐻 𝐹𝑖 ,𝐻
(𝜏)                               (21) 

𝑃𝑖
𝑒𝑥 (𝜏) = 𝛼𝑖 (𝑁𝑖

𝐿𝐹𝑖 ,𝐿
3 (𝜏) + 𝑁𝑖

𝐻 𝐹𝑖 ,𝐻
3 (𝜏))                             (22) 

where 𝛼𝑖 is a constant related to the chip architecture. 𝐹𝑖 ,𝐿
(𝜏) ∈ [0, 𝐹𝑖 ,𝐿

𝑚𝑎𝑥 ] and 𝐹𝑖 ,𝐻
(𝜏) ∈ [0, 𝐹𝑖 ,𝐻

𝑚𝑎𝑥 ]  

are the realistic computation frequency of a low-performance and a high-performance CPU core. When 

mobile device 𝑀𝐷𝑖  decides to execute 𝑏𝑖
(𝜏)  tasks in time slot 𝜏  locally, we calculate the local 

execution energy consumption 𝐸𝑖
𝑒𝑥 (𝜏) using Eq. (23): 

𝐸𝑖
𝑒𝑥(𝜏) = 𝑏𝑖

(𝜏)𝑃𝑖
𝑒𝑥 (𝜏) 𝐶𝑖

𝑒𝑥(𝜏)⁄                                (23) 

2) The offloading energy consumption : When mobile device 𝑀𝐷𝑖  decides to offload 𝜇𝑖𝑗
(𝜏) 

number of tasks to other mobile devices  in time slot 𝜏, the number 𝜇𝑖𝑗
′ (𝜏) of tasks actually offloaded  

can be denoted by Eq. (24). Thereby, the offloading energy consumption 𝐸𝑖
𝑡𝑟 (𝜏) can be calculated using 

Eq. (25): 

𝜇𝑖𝑗
′ (𝜏) = min (min (𝑟𝑖𝑗

𝑈𝐿(𝜏) 𝐷⁄ , 𝜂𝑗𝑖
(𝜏)) , 𝜇𝑖𝑗

(𝜏))                   (24) 

𝐸𝑖
𝑡𝑟 (𝜏) = 𝑃𝑖

𝑡𝑟 ∑ 𝜇𝑖𝑗
′ (𝜏) 𝐷 𝑟𝑖𝑗

𝑈𝐿(𝜏)⁄
𝑗∈𝑛,𝑗≠𝑖                         (25) 

3) The receiving energy consumption: When the maximum number of tasks that 𝑀𝐷𝑖  can receive 

from 𝑀𝐷𝑗  in time slot 𝜏 is 𝜂𝑖𝑗
(𝜏), the number 𝜂𝑖𝑗

′ (𝜏) of tasks actually received can be denoted by Eq. 

(26). Thereby, the receiving energy consumption 𝐸𝑖
𝑟𝑐 (𝜏) can be calculated using Eq. (27) 

𝜂𝑖𝑗
′ (𝜏) = min (min (𝑟𝑖𝑗

𝐷𝐿 (𝜏) 𝐷⁄ , 𝜂𝑖𝑗
(𝜏) ) , 𝜇𝑗𝑖

(𝜏) )                   (26) 

𝐸𝑖
𝑟𝑐 (𝜏) = 𝑃𝑖

𝑟𝑐 ∑ 𝜂𝑖𝑗
′ (𝜏) 𝐷 𝑟𝑖𝑗

𝐷𝐿 (𝜏)⁄
𝑗∈𝑛,𝑗≠𝑖                        (27) 

Based on the above description, when the available energy of mobile device 𝑀𝐷𝑖  is 𝐸𝑖
𝐴(𝜏) , the 

sum of energy consumed by executing tasks, offloading tasks and receiving tasks must meet the 

following constraint: 

𝐸𝑖
𝑒𝑥(𝜏) + 𝐸𝑖

𝑡𝑟 (𝜏) + 𝐸𝑖
𝑟𝑐 (𝜏) ≤ 𝐸𝑖

𝐴(𝜏)                        (28) 

 

4.3 Reward function 

In a multi-agent collaborative scenario, each agent 𝑀𝐷𝑖  can have its own reward 𝑅𝑖 . Each agent's  

reward 𝑅𝑖 is conditioned only on its own observation 𝑂𝑖
(𝜏) and action 𝐴𝑖

(𝜏) . The reward function 𝑅𝑖 

is defined to be the inverse of the system cost function 𝐶𝑖. We define 𝐶𝑖 as the weighted sum of the 

average latency 𝑄𝑖
(𝜏) of task processing, the number 𝐷𝑖

(𝜏)  of dropped tasks and the battery energy 

penalty 𝑃𝑖
(𝜏) in time slot 𝜏, and 𝐶𝑖(𝜏) is denoted by Eq. (29). In order to encourage multiple agents 

to cooperate with one another, all agents use the whole system’s reward 𝑅, which is the sum of each 

agent’s reward 𝑅𝑖. We denote the reward 𝑅 by Eq. (30). 

𝐶𝑖
(𝜏) = 𝜔1𝑄𝑖

(𝜏) + 𝜔2𝐷𝑖
(𝜏) + 𝜔3 𝑃𝑖

(𝜏)                             (29) 

𝑅(𝜏) = ∑ −𝐶𝑖
(𝜏)𝑛

𝑖=1                                        (30) 

where 𝜔1, 𝜔2  and 𝜔3  are the weighted coefficients of 𝑄𝑖
(𝜏), 𝐷𝑖

(𝜏) and 𝑃𝑖
(𝜏), respectively. We can 

calculate the number of dropped tasks 𝐷𝑖
(𝜏) according to Eq. (31). 



𝐷𝑖
(𝜏) = max(∑ 𝑢𝑗𝑖

(𝜏)𝑛
𝑗=1 − (|𝑄𝑖

| + 𝑏𝑖
(𝜏) − 𝑄𝑖

(𝜏)),0)                  (31) 

where |𝑄𝑖
| denotes the execution queue 𝑄𝑖’s length. (|𝑄𝑖

| + 𝑏𝑖
(𝜏) − 𝑄𝑖

(𝜏) ) is the available space of 

the execution queue 𝑄𝑖. In order to avoid the interruption of mobile applications due to exhaustion of 

mobile device’s battery energy, we set the battery energy penalty threshold ℎ𝑖 . When the ratio of the 

mobile device’s available energy 𝐸𝑖
𝐴(𝜏)  to the maximum battery capacity 𝐸𝑖

𝑚𝑎𝑥  is lower than ℎ𝑖 , the 

mobile device will be punished. The battery energy penalty 𝑃𝑖
(𝜏) in time slot 𝜏 can be denoted by Eq . 

(32). 

𝑃𝑖
(𝜏) = {

𝐸𝑖
𝑒𝑥 (𝜏) + 𝐸𝑖

𝑡𝑟 (𝜏) + 𝐸𝑖
𝑟𝑐 (𝜏),   𝐸𝑖

𝐴(𝜏) < ℎ𝑖𝐸𝑖
𝑚𝑎𝑥  

0,    𝐸𝑖
𝐴(𝜏) ≥ ℎ𝑖𝐸𝑖

𝑚𝑎𝑥
                (32) 

 

4.4 Problem formulation 

The multi-user collaborative task-execution problem is formulated to be a POMDP. Its main goal is to 

maximize the whole system’s long-term reward by dynamically coordinating multiple mobile devices to 

execute tasks. This problem is formulated as follows: 

       Maximize: −𝑅(𝜏)                                            (33) 

Subject to: 𝜇𝑗𝑖
(𝜏) ≤ 𝜂𝑖𝑗

(𝜏)                                    (33a) 

∑ 𝜇𝑖𝑗
(𝜏)

𝑗∈𝑛 = 𝑎𝑖
(𝜏)                                 (33b) 

∑ 𝜇𝑖𝑗
(𝜏)

𝑗≠𝑖,𝑗∈𝑛 ≤ 𝑎𝑖
(𝜏)                               (33c) 

∑ 𝜇𝑖𝑗
(𝜏)

𝑗≠𝑖,𝑗∈𝑛 + 𝑏𝑖
(𝜏) ≤ 𝑄𝑖

(𝜏) + 𝑎𝑖
(𝜏)                 (33d) 

𝑏𝑖
(𝜏) ≤ 𝐹𝑚𝑎𝑥 /𝑊                                    (33e) 

𝑢𝑖𝑗
(𝜏) ≤ 𝑟𝑖𝑗

𝑈𝐿(𝜏)/𝐷                                  (33f) 

𝑢𝑗𝑖
(𝜏) ≤ 𝑟𝑖𝑗

𝐷𝐿(𝜏) /𝐷                                   (33g) 

𝑏𝑖
(𝜏)𝑊 /𝑁𝑖𝐹𝑖 (𝜏) ≤ 𝑇𝑠𝑙𝑜𝑡                               (33h) 

∑ 𝜇𝑖𝑗
(𝜏)

𝑗≠𝑖,𝑗∈𝑛 𝐷/𝑟𝑖𝑗
𝑈𝐿(𝜏) ≤ 𝑇𝑠𝑙𝑜𝑡                         (33i) 

∑ 𝜂𝑖𝑗
(𝜏)

𝑗≠𝑖,𝑗∈𝑛 𝐷/𝑟𝑖𝑗
𝐷𝐿(𝜏) ≤ 𝑇𝑠𝑙𝑜𝑡                         (33j) 

𝐸𝑖
𝑒𝑥(𝜏) + 𝐸𝑖

𝑡𝑟 (𝜏) + 𝐸𝑖
𝑟𝑐 (𝜏) ≤ 𝐸𝑖

𝐴(𝜏)                     (33k) 

𝐸𝑖
𝑒(𝜏) ≤ 𝐸𝑖

𝐴(𝜏)                                      (33l) 

𝐸𝑖
𝑡𝑟 (𝜏) ≤ 𝐸𝑖

𝐴(𝜏)                                    (33m) 

𝐸𝑖
𝑟𝑐 (𝜏) ≤ 𝐸𝑖

𝐴(𝜏)                                      (33n) 

where Eq. (33) is the goal function of this paper. Eq. (33a) denotes that the number of tasks offloaded 

from 𝑀𝐷𝑗  to 𝑀𝐷𝑖  cannot exceed the maximum number of tasks  𝑀𝐷𝑖  receiving from 𝑀𝐷𝑗 . The 

constraint on the relationship between the number of arrival tasks and the number of offloaded tasks can 

be denoted by Eqs. (33b) and (33c). The constraint on the sum of the number of offloaded tasks and the 

number of executed tasks  can be denoted by Eq. (33d). All equations between Eqs. (33e) and (33h) 

denote the constraints of the network transmission rate on the number of executed tasks, the number of 

offloaded tasks and the maximum number of received tasks , respectively. Eqs. (33i) and (33j) denote the 

constraints of time slot duration on the number of executed tasks, the number of offloaded tasks, and the 

maximum number of received tasks. Eq. (33k) guarantees that the sum of the execution energy, the 

offloading energy and the receiving energy cannot exceed the available battery energy of the mobile 

device. Eqs. (33l)–(33n) denote the constraints on the execution energy, offloading energy, and receiving  

energy, respectively. 

 

5. Algorithm implementation 



To solve the multi-user collaborative task-execution problem, we design the CACTE scheme based on 

the MADDPG algorithm [28][29][30] to maximize the whole system’s long-term reward. The mult i-

agent policy gradient algorithm is a centralized training and decentralized execution framework in which  

each agent can learn the cooperation policy and improve the efficiency of the system. The CACTE 

scheme based on the MADDPG algorithm is described in detail. 

The MADDPG algorithm, based on a policy gradient, consists of multiple collaborative agents. 

Each agent 𝑀𝐷𝑖  consists of the evaluated networks, the target networks and the replay memory 𝛺𝑖. Its 

evaluated networks mainly include an evaluated actor-network 𝜇𝑖(𝑂𝑖
(𝜏)|𝜃𝑖

𝜇𝑖) and an evaluated critic  

network 𝒬𝑖 (𝑂𝑖
(𝜏) , 𝐴𝑖

(𝜏) |𝜃𝑖
𝒬𝑖 ). Based on the local observation 𝑂𝑖

(𝜏) , the evaluated actor-network 

generates an action 𝐴𝑖
(𝜏) . Based on the local observation 𝑂𝑖

(𝜏)  and the action 𝐴𝑖
(𝜏), the evaluated 

critic network calculates the evaluated 𝒬𝑖
′ value. The target actor-network and target critic network are 

a copy of their own evaluated networks, 𝜇𝑖
′ (𝑂𝑖

(𝜏)|𝜃𝑖
𝜇𝑖

′
)  and 𝒬𝑖

′(𝑂𝑖
(𝜏), 𝐴𝑖

(𝜏)|𝜃𝑖
𝒬𝑖

′
)) , respectively. 

Based on the target networks, the target 𝒬𝑖  value can be calculated. Each agent 𝑀𝐷𝑖 ’s transition 

experience (𝑂𝑖
(𝜏) , 𝐴𝑖

(𝜏) , 𝑅𝑖
(𝜏), 𝑂_𝑖

(𝜏)) is stored in its own replay memory 𝛺𝑖. Based on its transition 

experiences, the learned networks and the target networks of each agent 𝑀𝐷𝑖  are updated. The proposed 

multi-agent reinforcement learning-based approach mainly consists of the interaction stage, training 

stage and testing stage. Its detailed processes are described in Algorithm 1.  

During the interaction stage, we firstly initialize each agent’s learned networks, target networks and 

memory capacity (lines 1–3). In addition, we initialize each agent’s environment parameters, such as the 

execution queue, the channel gain between mobile devices, the available energy, and the channel gain 

between the power beacon and the mobile devices  (line 4). We then initialize each agent’s local 

observation 𝑂𝑖
(𝜏)  (line 6). Based on the initial state 𝑂𝑖

(𝜏) , each agent determines its action 𝐴𝑖
(𝜏)  

(line 11). After taking the action 𝐴𝑖
(𝜏) at the current local observation 𝑂𝑖

(𝜏) , each agent 𝑖 obtains the 

immediate reward 𝑅𝑖
(𝜏) and observes its new local state 𝑂_𝑖

(𝜏 + 1) in the next time slot (𝜏 + 1) . 

Lastly, each agent 𝑖  stores its transition experience (𝑂𝑖
(𝜏), 𝐴𝑖

(𝜏), 𝑅𝑖
(𝜏), 𝑂_𝑖

(𝜏 + 1) ) into its replay 

memory 𝛺𝑖. 

During the entire training stage, each agent 𝑖 firstly randomly samples a mini-batch of transition 

experiences 𝑈𝑖  from its replay memory 𝛺𝑖 (line 15). Each agent 𝑖 then computes its target action 

value 𝜇𝑖
′ (𝑂_𝑖

(𝜏 + 1)|𝜃𝑖
𝜇𝑖

′
)  and target 𝒬  value 𝒬𝑖

′ (𝑂_𝑖
(𝜏 + 1), 𝜇𝑖

′ (𝑂_𝑖
(𝜏 + 1)|𝜃𝑖

𝜇𝑖
′
) |𝜃𝑖

𝒬𝑖
′
)  for its 

next observation state 𝑂_𝑖
(𝜏 + 1) , respectively. The target 𝒬  value for its observation 𝑂𝑖

(𝜏)  is 

updated to be 𝑦𝑖 (𝜏) = 𝑅𝑖
(𝜏) + 𝛾𝒬𝑖

′ (𝑂_𝑖
(𝜏 + 1), 𝜇𝑖

′ (𝑂_𝑖
(𝜏 + 1)|𝜃𝑖

𝜇𝑖
′
) |𝜃𝑖

𝒬𝑖
′
) in its target critic network. 

The value 𝑦𝑖 (𝜏) is transmitted to its evaluated critic network. After receiving 𝑦𝑖 , the evaluated critic  

network is updated by minimizing the loss function 𝐿𝑖 = ∑ (𝑦𝑖 (𝜏) − 𝒬𝑖 (𝑂𝑖
(𝜏) , 𝐴𝑖

(𝜏) |𝜃𝑖
𝒬𝑖 ))2

𝑈𝑖
𝑈𝑖⁄ . 

Based on the parameter 𝜃𝑖
𝒬𝑖 , the actor-network parameter 𝜃𝑖

𝜇𝑖  is optimized with the policy gradient 

∇𝜃𝜇 ℐ . Lastly, we adopt the soft update scheme to update the target network parameters  to achieve 

learning stability. 

During the testing stage, the learned network parameters are loaded first. Each agent’s local state is 

observed and fed into its evaluated actor-network. Each agent’s action is then generated based on its 

trained actor-network. According to each agent’s state and action, its immediate reward can be calculated. 

In order to make multiple agents cooperate with one another, the immediate reward for the whole system 

is obtained by summing all agents’ rewards.  

 



Algorithm 1: CACTE Scheme 

BEGIN 

01: For each agent 𝑖, initialize the weight 𝜃𝑖
𝒬𝑖 of the evaluate critic network 𝒬𝑖 (𝑂𝑖 , 𝐴𝑖 |𝜃𝑖

𝒬𝑖) and 

the weight 𝜃𝑖
𝜇𝑖  of the evaluate actor-network 𝜇𝑖(𝑂𝑖|𝜃𝑖

𝜇𝑖); 

02: For each agent 𝑖, initialize the weight 𝜃𝑖
𝒬𝑖

′
 of the target critic network 𝒬𝑖

′(𝑂_𝑖 , 𝐴_𝑖|𝜃𝑖
𝒬𝑖

′
) with  

𝜃𝑖
𝒬𝑖

′
= 𝜃𝑖

𝒬𝑖  and the weight 𝜃𝑖
𝜇𝑖

′
 of the target actor-network 𝜇𝑖

′ (𝑠|𝜃𝑖
𝜇𝑖

′
) with 𝜃𝑖

𝜇𝑖
′

= 𝜃𝑖
𝜇𝑖; 

03: For each agent 𝑖, initialize its experience replay memory 𝛺𝑖 with size 𝑈𝑖  and the mini-batch  

𝛺𝑖 ⊂ 𝛺𝑖 with size 𝑈𝑖; 

04: For each agent 𝑖, initialize the task arrival rate 𝜆 𝑖, the execution queue 𝒬𝑖 , the channel gain 𝑔𝑖𝑗  

between mobile devices, the available energy 𝐸𝑖 , and the channel gain between mobile devices 

and power beacon. 

05: for cur_ep = 1, MAX_EPISODES do 

06:  For each agent 𝑖, reset its local environment and observe its initial local observation 𝑂𝑖
(𝜏). 

07:  Observe the whole system’s initial state 𝑆(𝜏) = [𝑂1
(𝜏) , … , 𝑂𝑖

(𝜏) , … , 𝑂𝑛
(𝜏)] ∈ 𝕊 which is a 

two-dimensional array consisting of 𝑛 agents’ initial local state; 

08:  Initial the total reward 𝑒𝑝_𝑟𝑒𝑤𝑎𝑟𝑑 = 0; 

09:  For each agent 𝑖, initialize its noise object 𝑜𝑟𝑛𝑖 to explore its action; 

10:  for 𝜏 = 1, MAX_EP_STEPS do 

11:    For each agent 𝑖, select action 𝐴𝑖
(𝜏) = 𝜇𝑖

(𝑂𝑖
(𝜏) |𝜃𝑖

𝜇𝑖) + 𝑜𝑟𝑛𝑖  based on its current policy  

𝜇𝑖
(𝑂𝑖

(𝜏) |𝜃𝑖
𝜇𝑖) and exploration noise 𝑜𝑟𝑛𝑖 ; Observe other (𝑛 − 1) agents’ joint action 

𝑎𝑐𝑡_𝑛𝑖 (𝜏) = [𝐴_1
(𝜏), … , 𝐴_(𝑖−1)

(𝜏), 𝐴_(𝑖+1)
(𝜏), … , 𝐴_𝑛

(𝜏)]; 

12:    For each agent 𝑖 , execute its actions 𝐴𝑖
(𝜏) , calculate its immediate reward 𝑅𝑖

(𝜏)  and 

observe its new state 𝑂_𝑖
(𝜏) ; 

13:    For each agent 𝑖, store the experience transition (𝑂𝑖
(𝜏), 𝐴𝑖

(𝜏), 𝑅𝑖
(𝜏), 𝑂_𝑖

(𝜏 + 1)) into its 

replay memory 𝛺𝑖; 

14:    Update the long-term system reward 𝑒𝑝_𝑟𝑒𝑤𝑎𝑟𝑑 += ∑ 𝑅𝑖
(𝜏)𝑛

𝑖=1  and the current system 

state 𝑆(𝜏) = 𝑆_(𝜏 + 1); 

15:    For each agent 𝑖, randomly choose a mini-batch of experiences 𝑈𝑖 from 𝛺𝑖; Compute the 

actor value 𝐴_𝑖
(𝜏 + 1) for next state 𝑂_𝑖

(𝜏 + 1) ; Observe other (𝑛 − 1)  agents’ joint  

action 𝑎𝑐𝑡_𝑛𝑖 (𝜏 + 1) = [𝐴_1
(𝜏 + 1), … , 𝐴_(𝑖−1)

(𝜏 + 1), 𝐴_(𝑖+1)
(𝜏 + 1), … , 𝐴_𝑛

(𝜏 + 1)]; 

16:    For each agent 𝑖, compute its target actor value 𝜇𝑖
′ (𝑂_𝑖

(𝜏 + 1)|𝜃𝑖
𝜇𝑖

′
) and the target 𝒬 

value 𝒬𝑖
′ (𝑆(𝜏 + 1), 𝑎𝑐𝑡_𝑛𝑖

(𝜏 + 1), 𝜇𝑖
′ (𝑂_𝑖

(𝜏 + 1)|𝜃𝑖
𝜇𝑖

′
) |𝜃𝑖

𝒬𝑖
′
) for the next state 𝑠_(𝜏 +

1); 

17:    For each agent 𝑖, update its target 𝒬 value 𝑦𝑖
(𝜏): 

 𝑦𝑖
(𝜏) = 𝑅𝑖

(𝜏) + 𝛾𝒬𝑖
′ (𝑆(𝜏 + 1), 𝑎𝑐𝑡_𝑛𝑖

(𝜏 + 1),𝜇𝑖
′ (𝑂_𝑖

(𝜏 + 1)|𝜃𝑖
𝜇𝑖

′
) |𝜃𝑖

𝒬𝑖
′
); 

18:    For each agent 𝑖, update its target critic network by minimizing the loss 𝐿: 

𝐿 =
1

𝑈
∑ (𝑦𝑖

(𝜏) − 𝒬𝑖 (𝑆(𝜏), 𝑎𝑐𝑡_𝑛𝑖 (𝜏),𝐴𝑖
(𝜏) |𝜃𝑖

𝒬𝑖))2
𝜏 ; 

19:    For each agent 𝑖, update its target actor-network: 

∇𝜃𝑖
𝜇𝑖 ℐ ≈

1

𝑈
∑ 𝛻𝐴𝑖 (𝜏) 𝒬𝑖(𝑂𝑖

(𝜏), 𝐴𝑖
(𝜏)|𝜃𝑖

𝒬𝑖)|𝑂𝑖 (𝜏),𝜇𝑖(𝑂𝑖 (𝜏))
𝜏

∇𝜃𝑖
𝜇𝑖𝜇𝑖

(𝑂𝑖
(𝜏) |𝜃𝑖

𝜇𝑖)|𝑂𝑖 (𝜏) 

20:    Update the target network: 

𝜃𝑖
𝒬𝑖

′

← 𝒯𝑖𝜃𝑖
𝒬𝑖 + (1 − 𝒯𝑖

)𝜃𝑖
𝒬𝑖

′

 

𝜃𝑖
𝜇𝑖

′
← 𝒯𝑖𝜃𝑖

𝜇𝑖  + (1 − 𝒯𝑖)𝜃𝑖
𝜇𝑖

′
 



21:  end for 

22: end for 

END 

 

 

6. Performance evaluations 

To evaluate the performance of the CACTE scheme, we conducted extensive simulation experiments . 

We first explain the related parameter settings in detail and then introduce the four baseline algorithms  

(including Local, Random, ECLB and CCLB). Finally, we discuss our comparison of the proposed 

CACTE scheme with these four baseline algorithms in terms of the task arrival rate, the battery capacity 

and so on, and we analyze the experimental results  in detail. 

 

6.1 Parameter settings 

This paper focuses on the scenario where 𝑛 mobile devices cooperate with one another to execute the 

computation tasks in EH-D2D networks. To solve the multi-user collaborative task-execution problem, 

we propose the CACTE scheme and implement it in Python with TensorFlow 2.0. We list the parameter 

configurations of different types of mobile devices in Table 2. Experimental parameters are assigned in 

consistence with numerous existing studies, such as [31][32] and [33]. 

 

Table 2. Parameter configurations of different types of mobile devices 

𝑇𝑦𝑝𝑒𝑖  𝑁𝑖
𝐿 𝑁𝑖

𝐻 𝐹𝑖 ,𝐿
𝑚𝑎𝑥  (GHz) 𝐹𝑖 ,𝐻

𝑚𝑎𝑥 (GHz) 

𝑇𝑦𝑝𝑒1 4 4 1.8 2.6 

𝑇𝑦𝑝𝑒2  4 4 1.7 2.9 

𝑇𝑦𝑝𝑒3  6 2 1.7 2 

𝑇𝑦𝑝𝑒4  4 2 1.6 2.5 

 

In our model, the number of mobile devices is initialized to be 𝑛 = 4. The four mobile devices are 

of different types. Initially, the types of mobile devices 𝑀𝐷1 , 𝑀𝐷2 , 𝑀𝐷3  and 𝑀𝐷4  are set to be 

𝑇𝑦𝑝𝑒1 , 𝑇𝑦𝑝𝑒2 , 𝑇𝑦𝑝𝑒3  and 𝑇𝑦𝑝𝑒4, respectively. This means that the number of low-performance cores 

of 𝑀𝐷1 , 𝑀𝐷2 , 𝑀𝐷3  and 𝑀𝐷4  are 𝑁1
𝐿 = 4 , 𝑁2

𝐿 = 4 , 𝑁3
𝐿 = 6  and 𝑁4

𝐿 = 4 , respectively. The 

maximum CPU-cycle frequencies of four low-performance CPU cores are 𝐹1 ,𝐿
𝑚𝑎𝑥 = 1.8GHz , 𝐹2 ,𝐿

𝑚𝑎𝑥 =

1.7GHz , 𝐹3,𝐿
𝑚𝑎𝑥 = 1.7GHz  and 𝐹4 ,𝐿

𝑚𝑎𝑥 = 1.6GHz, respectively. At the same time, the number of high-

performance cores of 𝑀𝐷1 , 𝑀𝐷2 , 𝑀𝐷3  and 𝑀𝐷4  are 𝑁1
𝐻 = 4, 𝑁2

𝐻 = 4, 𝑁3
𝐻 = 2 and 𝑁4

𝐻 = 2 , 

respectively. The maximum CPU-cycle frequencies of four high-performance CPU cores are 𝐹1,𝐻
𝑚𝑎𝑥 =

2.6GHz , 𝐹2,𝐻
𝑚𝑎𝑥 = 2.9GHz , 𝐹3 ,𝐻

𝑚𝑎𝑥 = 2GHz  and 𝐹4,𝐻
𝑚𝑎𝑥 = 2.5GHz , respectively. The CPU frequency 

level of each mobile device can be dynamically adjusted by the DVFS technique. The constant 𝛼𝑖 of 

each mobile device is set as 𝛼𝑖 = 0.1125  W/(GHz)3 [14][34]. 

As for the task model, we assume that the task arrival process for each mobile device will follow a 

Poisson distribution with 𝜆 𝑖. Each mobile device’s task arrival rate 𝜆 𝑖 varies within the range [0,12]. 

Initially, the task arrival rates for four mobile devices  are set as 𝜆1 = 3, 𝜆 2 = 1, 𝜆 3 = 7 and 𝜆 4 = 10, 

respectively. Each task’s workload 𝑊 varies within the range [0.6, 1.4]Gycles, with an initial value of 

𝑊 = 1GHz ∙ s. Each task’s data size is 𝐷 = 1MB. 

In our network communication model, the communication distance between any two mobile devices 

is set to within 200 m. The uplink and downlink channel bandwidths of each mobile device are 𝐵𝑊𝑖
𝑈𝐿 =



10MHz  and 𝐵𝑊𝑖
𝐷𝐿 = 10MHz , respectively. The additive white Gaussian noise power 𝜎 2  is set to 

−174dbm/Hz . In addition, we set the path-loss constant 𝑘 to 0.01, the path-loss exponent 𝜃 to 4, 

and the reference distance 𝑑0 to 1m [31] [35], respectively. The transmission power and receiving the 

power of each mobile device are 𝑃𝑖
𝑡𝑟 = 0.25W and 𝑃𝑖

𝑟𝑐 = 0.1 [36]. 

The weights for the average latency of task processing, the number of dropped tasks  and the power 

penalty are 𝜔1 = 1, 𝜔2 = 15 and 𝜔3 = 90. 

In our deep neural network model, we construct the evaluated actor-network, the evaluated critic  

network, the target actor-network and the target critic network for each agent. The structures of the 

evaluated actor-network and the evaluated critic network are the same as those of their own target 

networks, respectively. The evaluated actor-network is composed of two hidden layers. There are 30 

neurons in each hidden layer. The evaluated critic network is composed of three hidden layers . There are 

also 30 neurons in each hidden layer. We adopt the Adam optimizer to update the target networks, in 

which the actor-network’s learning rate is 0.0001, and the critic network’s learning rate is  0.003. The 

reward discount factor 𝛾 is set to be 0.9. Lastly, the capacity of the replay memory is set to be 10000, 

and the mini-batch size to be 16. 

 

6.2 Experimental results  

To validate the performance of CACTE, we implement four baseline algorithms (including Local, 

Random, ECLB and CCLBs) and compare these with CACTE in terms of performance metrics, such as 

the total cost, the total average delay in task processing and the total number of dropped tasks. 

 Local Execution (Local)：The arrival tasks for each mobile device are executed locally. There is no 

cooperation between different mobile devices. 

 Random Cooperation (Random): In each time slot 𝜏, each mobile device randomly selects another 

one to execute its tasks collaboratively. 

 Energy Capacity Load Balance (ECLB)：In each time slot 𝜏, all mobile devices’ arrival tasks  are 

distributed evenly according to their battery energy. The number of tasks offloaded from 𝑀𝐷𝑖  to 

𝑀𝐷𝑗  can be denoted by Eq. (33). 

𝑜𝑓𝑓𝑖𝑗
(𝜏) = ⌊

𝐸𝑗
𝐴 (𝜏)

∑ 𝐸𝑘
𝐴 (𝜏)𝑛

𝑘 =0

⌋ 𝑎𝑖
(𝜏)                               (33) 

Based on the above description, the residual tasks 𝑎𝑖
(𝜏) − ∑ 𝑜𝑓𝑓𝑖𝑗

(𝜏)
𝑗∈𝑛,𝑗≠𝑖  can be locally executed 

on the 𝑖th mobile device. 

 Computation Capacity Load Balance (CCLB)：In each time slot 𝜏, the arrived tasks are evenly 

distributed to all mobile devices according to their computing capacity. The number of tasks 

distributed to the 𝑗th mobile device by the 𝑖th mobile device can be denoted by Eq. (34) 

𝑜𝑓𝑓𝑖𝑗
(𝜏) = ⌊

𝑁𝑖𝐹𝑖
𝑚𝑎𝑥

∑ 𝑁𝑖𝐹𝑖
𝑚𝑎𝑥𝑛

𝑖 =0

⌋ 𝑎𝑖
(𝜏)                             (34) 

Note that 𝑜𝑓𝑓𝑖𝑗
(𝜏)   is an integer, and the number of tasks executed on 𝑀𝐷𝑖   is 𝑎𝑖

(𝜏) −

∑ 𝑜𝑓𝑓𝑖𝑗
(𝜏)

𝑗∈𝑛,𝑗≠𝑖 . 

 

6.2.1 The impact of task arrival rate 𝝀 

To examine the effect of 𝝀, we vary 𝝀 from [1, 0, 5, 8], [2, 0, 6, 9], [3, 1, 7, 10], [4, 2, 8, 11] to [5, 3, 9, 

12] with an increment of [1, 1, 1, 1]. In Fig. 3(a), we can see that the total reward obtained by the CACTE 

scheme outperforms the Local algorithm, Random algorithm, ECLB algorithm and CCLB algorithm. 

This is because, in the CACTE scheme, each mobile device can make an optimal coordinated decision, 



according to the changing environmental factors (e.g., the number of arrival tasks, available space in the 

execution queue, transmission rate, available battery energy and charging energy). Hence, each mobile 

device can process many more tasks and obtain a higher long-term reward. In contrast, the Local, 

Random, ECLB and CCLB algorithms cannot perceive the dynamically changing environment in order 

to make an optimal decision for collaborative task execution. In addition, it is evident that when the task 

arrival rate increases, the total rewards of the CACTE scheme and four baseline algorithms  all decrease 

gradually. This is because the system’s total processing capacity is bounded by mobile devices’ limited  

computing, network and battery energy resources. Therefore, the higher the task arrival rate, the more 

tasks arrive, and the more dropped tasks result, accordingly. 

In Figs. 3(b) and (c), we see that when the task arrival rate increases, the total average latency and 

the total number of dropped tasks  for the CACTE scheme and four baseline algorithms  increase. 

Moreover, the CACTE scheme can achieve lower total average latency and fewer dropped tasks than the 

other four baseline algorithms. This is due to the CACTE scheme being able to take advantage of mobile 

devices’ limited computing, network and battery energy resources to execute more tasks collaboratively. 

In Fig. 3(d), we see that the total battery energy penalty of the CACTE scheme is lower than that of 

the Local, Random and CCLB algorithms, but it is higher than that of the ECLB. This is because the 

ECLB can evenly distribute all arrival tasks according to the available battery energy . The available 

battery energy of each mobile device is higher than the battery energy penalty threshold, and therefore 

the total battery energy penalty is  the lowest, with a value of 0. In general, this result indicates that in 

comparison with the other four algorithms, the CACTE scheme can achieve the lowest total average 

delay, the lowest total number of dropped tasks  and a lower total battery energy penalty. 

 

  

               (a) The total reward                    (b) The total average latency of task processing 

  

  (c) The total number of dropped tasks              (d) The total battery energy penalty 

Fig. 3. The impact of task arrival rate 

 



6.2.2 The impact of mobile devices’ battery capacity 𝐸𝑖
𝐴(𝜏)  

To investigate the performance impact of the mobile devices’ battery capacity 𝐸𝑖
𝐴(𝜏) , we vary mobile 

devices’ battery capacity 𝐸𝑖
𝐴(𝜏)  from 40 energy units to 60 energy units, with an increment of 5. As 

shown in Fig. 4(a), we can see that when the battery capacity is less than 55, with an increase in battery 

capacity, the total rewards of the CACTE scheme and four baseline algorithms  all increase. This is 

because when a mobile device’s battery capacity increases, the computing capacity of the mobile device 

improves as well. High-performance mobile devices can process more tasks and drop fewer tasks, 

thereby obtaining a higher total reward. However, the curves of all algorithms are flat when the mobile 

device’s battery capacity is equal to or larger than 55. This is because when the mobile device’s battery 

capacity reaches 55, the battery energy is no longer a bottleneck restricting collaborative  task execution. 

With such computing and network capacity, the system can process the maximum number of tasks . 

Additionally, in Fig. 4(a), we can confirm that the CACTE scheme achieves a higher total reward than 

the other four baseline algorithms because the CACTE scheme can take advantage of mobile devices’ 

limited resources to execute many more tasks collaboratively. 

Fig. 4(b) exhibits the total average latency of task processing for all algorithms. In Fig. 4(b), we can 

see that when the battery capacity of the mobile device increases, the total average latency of task 

processing gradually decreases and becomes stable. This is because when the battery capacity is less than 

or equal to 55, the tasks cannot be executed collaboratively on time due to insufficient battery energy. 

With an increase in battery capacity, collaborative task execution is no longer restricted due to 

insufficient battery energy. With such battery capacity, the system can reach its upper processing limit . 

Meanwhile, the total average latency of tasks processing for the CACTE scheme is lower than that of the 

other four algorithms. The reason for this is the same as that given above.  

In Fig. 4(c), we can observe that when the battery capacity of the mobile device increases, the 

CACTE scheme and the other four baseline algorithms drop fewer tasks. Specifically, when the battery 

capacity is equal to or greater than 50, there are almost no dropped tasks under the CACTE scheme. 

Moreover, the CACTE scheme has fewer dropped tasks than the other four baseline algorithms. An 

explanation for this is  that under the CACTE scheme, each mobile device makes an optimal coordinated 

decision according to its observed system state, thereby enabling multiple mobile devices with limited  

resources to cooperate with one another to execute more tasks. In Fig. 4(d), the total battery energy is 

lower than that of the Local, Random and CCLB algorithms, but it is higher than that of the ECLB. The 

reason for this is the same as that discussed in Section 6.3.1. 

 

  

            (a) The total reward                       (b) The total average latency of task processing 



  

 (c) The total number of dropped tasks              (d) The total battery energy penalty 

Fig. 4. The impact of mobile devices’ battery capacity 

 

6.2.3 The impact of task workload 𝑊 

To examine the effect of 𝑊, we vary 𝑊 in the range of 0.6 to 1.4. The experimental results are given 

in Fig. 5. It is evident that when task workload 𝑊 increases, the total reward obtained by the CACTE 

scheme gradually decreases (as in Fig. 5(a)). Clearly, with limited computing, network and battery energy 

resources, when the task workload increases, the system will process fewer tasks and drop more tasks in 

a time slot, thereby achieving a lower total reward. Additionally, it can be seen that the CACTE scheme 

achieves a higher total reward than the other four baseline algorithms. This is because that the CACTE 

scheme takes full advantage of mobile devices’ computing, network and battery energy resources to 

execute more tasks collaboratively.  

In Fig. 5(b), we can see that the total average latency of the CACTE scheme firstly increases and 

then becomes stable when the task workload increases. When the task workload increases, the system 

processes fewer tasks in a time slot, thereby resulting in a higher total average latency. Moreover, we 

also see that the total average latency of the CACTE scheme is lower than that of the other four baseline 

algorithms. This is due to the CACTE scheme being able to perform an optimal collaborative execution  

policy according to the environmental dynamics , thereby processing many more tasks. 

In Fig. 5(c), we can observe that when the task workload increases, the system drops more tasks. 

When the size of the mobile device’s execution queue is constant, the system processes fewer tasks in a 

time slot, thereby dropping more tasks. Moreover, in comparison with the other four algorithms, fewer 

tasks are dropped by the CACTE scheme. This is because that more tasks are collaboratively executed 

by multiple energy-harvesting mobile devices. In Fig. 5(d), it can be seen that the total battery energy of 

the CACTE scheme is higher than that of the ECLB but is lower than that of the Local, Random and 

CCLB algorithms. The reason for this is the same as that given in Section 6.3.1. 

 

  



            (a) The total reward                        (b) The total average latency of task processing 

  

   (c) The total number of dropped tasks               (d) The total battery energy penalty 

Fig. 5. The impact of task workload 

 

6.2.4 The impact of task data size 𝐷  

To examine the effect of the parameter 𝐷 , we vary 𝐷  in the range of 0.6 to 1.4. The experimental results 

are given in Fig. 6. In Fig. 6(a), it can be seen that the total reward obtained by the CACTE scheme 

gradually decreases with an increase in task data size. The main reason for this is that when the task data 

size increases, the system with limited network and battery energy resources  transmits fewer computation 

tasks in a time slot, which results in a larger average latency of task processing. Specifically, the total 

reward of the CACTE scheme is higher than that of the four baseline algorithms. This is due to the 

CACTE scheme being able to make an optimal decision to collaboratively execute many more 

computation tasks according to dynamic changes in the system. Therefore, the long-term reward obtained 

by the CACTE scheme is higher than that obtained by the other four algorithms. 

In Fig. 6(b), it can be seen that when the task data size increases, the total average latency of task 

processing increases. The main reason for this is that when the data size of the computation task increases, 

the number of transmitted tasks decreases , which results in fewer tasks being executed collaboratively. 

Moreover, the total average latency of task processing for the CACTE scheme is lower than that for the 

other four algorithms. This  is because the CACTE scheme can take full advantage of limited resources 

to execute more tasks collaboratively. 

In Fig. 6(c), it can be seen that when the task data size increases, the total number of dropped tasks 

increases. This is because when fewer tasks are executed collaboratively, more tasks are dropped. In 

particular, the CACTE scheme drops fewer tasks in comparison with the other four baseline algorithms  

because more tasks are executed collaboratively under the CACTE scheme compared with the other four 

algorithms. In Fig. 6(d), the total battery energy is lower than  that of the Local, Random and CCLB 

algorithms, but it is higher than that of the ECLB. The reason for this is the same as that discussed above. 

 



  

             (a) The total reward                        (b) The total average latency of task processing 

  

     (c) The total number of dropped tasks               (d) The total battery energy penalty 

Fig. 6. The impact of task data size 

 

6.2.5 The impact of bandwidth 𝐵𝑊𝑈𝐿(𝜏) 

In our experiments, the bandwidth of the mobile devices’ uplink is set to be equal to their downlink. Fig. 

7 shows the effect of bandwidth 𝐵𝑊𝑈𝐿(𝜏) on the total reward. The experimental results  are plotted 

when the bandwidth 𝐵𝑊𝑈𝐿(𝜏) varies from 5 MHz to 15 MHz, with an increase of 0.25. Fig. 7(a) shows 

that when the bandwidth increases, the total reward of the CACTE scheme increases and stabilizes. This 

is because that when the bandwidth of a mobile device is less than or equal to 10, the larger the bandwidth 

is, the higher the transmission rate between mobile devices  is. Hence, more tasks can be executed 

collaboratively to obtain a higher total reward. However, when 𝐵𝑊𝑈𝐿(𝜏) is larger than 10, the curves 

of the CACTE scheme are flat. An explanation for this is  that the transmission rate between mobile 

devices is no longer a bottleneck restricting collaborative task execution when the bandwidth is larger 

than 10. With the current computing and network capacity, the system reaches its upper processing limit 

and can process the maximum number of tasks. Moreover, the CACTE scheme achieves a higher total 

reward in comparison with the other four baseline algorithms. This is due to the CACTE scheme taking 

advantage of system resources to execute more tasks collaboratively. Therefore, the long-term reward  

obtained by the CACTE scheme is higher than that obtained by the other four algorithms. 

In Fig. 7(b), we can see that when the bandwidth increases, the total average latency of task 

processing gradually decreases and stabilizes. An explanation for this is that when the bandwidth 

increases, the system transmits mores tasks in a time slot, thereby executing more tasks collaboratively  

and resulting in the lower average latency of task processing. Moreover, the total average latency of task 

processing for the CACTE scheme is lower than that for the other four algorithms. This is because the 

CACTE scheme can use limited resources to execute more tasks collaboratively in a time slot. 



In Fig. 7(c), we can see that when the bandwidth increases, the total number of dropped  tasks 

decreases. This is because when the bandwidth increases, the system executes more tasks collaboratively, 

thereby dropping fewer tasks. The CACTE scheme drops fewer tasks than the other four baseline 

algorithms because it executes more tasks collaboratively. In Fig. 7(d), we can see that the CACTE 

scheme obtains lower total battery energy than the Local, Random and CCLB algorithms, and it obtains 

higher total battery energy than the ECLB algorithm. The reason for this is explained above. 

 

  

            (a) The total reward                        (b) The total average latency of task processing 

  

   (c) The total number of dropped tasks               (d) The total battery energy penalty 

Fig. 7. The impact of bandwidth 

 

6.2.6 The impact of the number 𝑛 of mobile devices 

In order to examine the effect of 𝑛, experiments with 𝑛 being 3, 4, 5 and 6 are conducted, respectively. 

The related experimental results are shown in Tables 3 to 6. In the collaborative task-execution scenario 

consisting of three mobile devices with 𝑇𝑦𝑝𝑒1 , 𝑇𝑦𝑝𝑒2  and 𝑇𝑦𝑝𝑒4  parameter configurations, the 

CACTE scheme achieves a higher total reward, the lower total average latency of tasks processing and 

the lower total number of dropped tasks , compared with the Local, Random, CCLB and ECLB algorithms. 

This is due to the CACTE scheme taking advantage of the limited resources to execute more tasks 

collaboratively. When more tasks are executed, fewer tasks are dropped, resulting in a higher long-term 

reward. Meanwhile, in the collaborative task-execution scenario consisting of four mobile devices with  

𝑇𝑦𝑝𝑒1 , 𝑇𝑦𝑝𝑒2 , 𝑇𝑦𝑝𝑒3  and 𝑇𝑦𝑝𝑒4 parameter configurations, we can see that the CACTE scheme also 

outperforms the other four algorithms. The experimental results indicate that in the case of a different  

number of mobile devices, the CACTE scheme can achieve the highest long-term reward, the min imum 

average latency of task processing and the fewest number of dropped tasks, compared with the Local, 

Random, CCLB and ECLB algorithms. Moreover, in the scenario, which consists of two mobile devices 

with 𝑇𝑦𝑝𝑒4  parameter configurations, and the other three mobile devices with 𝑇𝑦𝑝𝑒1 , 𝑇𝑦𝑝𝑒2  and 



𝑇𝑦𝑝𝑒3  parameter configurations, we can see the same phenomenon. In the scenario, which consists of 

two mobile devices with 𝑇𝑦𝑝𝑒1 parameter configuration, two mobile devices with 𝑇𝑦𝑝𝑒4 parameter 

configuration, and other two mobile devices with 𝑇𝑦𝑝𝑒2, 𝑇𝑦𝑝𝑒3 parameter configurations , the same 

phenomenon can be also observed. The reason for this is the same as that discussed above. 

 

Table 3. The impact of three mobile devices        Table 4. The impact of four mobile devices  

 

Table 5. The impact of five mobile devices        Table 6. The impact of six mobile devices  

 

7. Conclusions and future work 

In this paper, we have mainly studied the multi-user collaborative task-execution problem under the 

limited computing, networks and battery capacity conditions in EH-D2D networks. To cope with this 

problem, we first designed a system model that included EH-D2D system architecture, an energy-

queueing model and so on. The multi-user collaborative task-execution problem was then formulated . 

Finally, a CACTE scheme based on the MADDPG algorithm was developed, enabling multiple mobile 

devices to cooperate with one another to achieve a lower average delay in task processing and fewer 

dropped tasks. In comparison with four baseline algorithms (including Local, Random, ECLB and 

CCLB), our proposed CACTE scheme can achieve a higher total reward, lower total average delay and 

fewer dropped tasks. We also conducted comprehensive experiments to evaluate the performance of the 

CACTE scheme using different experimental parameters, such as task arrival rate, battery capacity, task 

workload, bandwidth and the number of mobile users . The experimental results demonstrated that the 

CACTE scheme can maximize the total reward and minimize the average delay and the number of 

dropped tasks. In conclusion, our work has provided useful guidelines which can be used to achieve 

collaborative task execution under conditions of limited computing, networks and battery capacity in 

mobile devices in EH-D2D networks. 

 

Performance  

    Metrics 

Different 

Algorithms 

The 

Total 

Reward 

The 

Total 

Average 

Latency 

The Total 

Number of 

Dropped 

Tasks 

Local -50771.3 8564.0 2555.8 

Random -50771.3 8564.0 2555.8 

CCLB -45420.3 5151.1 2622.3 

ECLB -39509.1 8838.6 2044.7 

CACTE -15262.0 2677.6 299.1 

 

Performance  

    Metrics 

Different 

Algorithms 

The 

Total 

Reward 

The 

Total 

Average 

Latency 

The Total 

Number of 

Dropped 

Tasks 

Local -28107.9 3263.1 1197.1 

Random -45004.7 7113.3 2250.4 

CCLB -43969.1 6012.2 2265.7 

ECLB -36763.8 7395.3 1957.5 

CACTE -16771 2922 599 

 

Performance 

Metrics 

Different 

Algorithms 

The 

Total 

Reward 

The 

Total 

Average 

Latency 

The Total 

Number of 

Dropped 

Tasks 

Local -12379.5 1339.1 565.8 

Random -18355.6 3856.1 812.9 

CCLB -15203.9 3415.8 608.2 

ECLB -16654.9 4302.4 823.5 

CACTE -1505 623.3 0 

 

Performance  

    Metrics 

Different 

Algorithms 

The 

Total 

Reward 

The 

Total 

Average 

Latency 

The Total 

Number of 

Dropped 

Tasks 

Local -15844.6 1911.7 637.3 

Random -28433.7 5423.3 1322.8 

CCLB -26075.2 4150.4 1286.4 

ECLB -24963.4 5878.9 1272.3 

CACTE -4346.3 771.5 7 
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