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Abstract

The 5G communication standard is characterized by an increased softwarization, allowing a higher flexibility able to cope with
different requirements and services. In particular, Network Function Virtualization (NFV) is a recently introduced technology that
enables a software implementation of different network functions exploiting virtualization techniques, hence, enabling their flexible
deployment upon system requirements. Boosted by NFV, the concept of network slicing is gaining great attention in 5G networks.
The idea is that physical communication and computing resources are sliced in multiple end-to-end logical networks, each one
tailored to best support a specific service. The advantages of NFV, in the network slicing context, are even more evident in dis-
tributed computing environments, such as the edge-to-cloud continuum, recently introduced for enabling a flexible deployment of
multiple functions. In particular, thanks to the introduction of cloud-native technologies, based on the usage of containerization and
microservice technologies, the virtual network functions (VNFs) deployment and their orchestration is an easy operation, allowing
the on-the-fly network configuration. Gaining from the NFV, Network Slicing and Edge-to-Cloud continuum paradigms, we pro-
pose a new network function allocation problem for multi-service 5G networks, able to deploy network functions on a distributed
computing environment depending on the service requests. The proposed approach jointly considers Radio Access Network (RAN)
and Core Network (CN) functions and, differently from other approaches, introduces an option able to bias the function placement
depending on the service requirements, allowing a fast-and-easy operator-side deployment of the network functions. We propose to
solve the problem through a Genetic Algorithm able to approach the optimal solution but with reduced complexity and execution
time. The performance is compared with two other heuristic algorithms and with an exhaustive search algorithm, introduced as
benchmarks, showing the benefits of the selected solution in terms of performance, flexibility and complexity.

Keywords: 5G, Network Slicing, Edge Computing, Network Function Placement, Genetic Algorithms

1. Introduction

5G technology aims to create a fully digital connected soci-
ety by enabling a large number of network services and appli-
cations. The 2021 Ericsson Mobility Report forecasts that by
2026 there will be 3.5 billion of 5G subscriptions, accounting
for 40 percent of all mobile subscriptions [1]. Consequently,
an increasing number of heterogeneous devices such as smart-
phones, tablets, wearable, sensors, will require pervasive con-
nections and a wide range of services characterized by different
requirements in terms of performance (e.g., latency, data rate,
reliability), and network functionalities (e.g., security, mobility,
radio resource management).

In order to support this high variety of requirements, a flex-
ible network architecture with reduced time-to-market for new
services is required. Toward this goal, network softwarization
is an emerging key approach in 5G systems, that uses technolo-
gies like Network Function Virtualization (NFV), and Network
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Slicing for providing programmability, flexibility, and modular-
ity in different parts of the network [2]. NFV decouples network
functions from proprietary hardware (HW) and runs them as
software instances through proper virtualization techniques [3],
thus overcoming the lack of flexibility of traditional HW-based
network functions. Network slicing allows to create multiple
end-to-end logical networks, through the composition of chains
of physical and virtual network functions (VNFs), to run on top
of a common physical network infrastructure [2]. Each logical
network is tailored to provide specific services and/or a particu-
lar tenant with a certain level of guaranteed network resources.

The 5G network architecture is composed of several func-
tions that can be roughly grouped into Radio Access Network
(RAN) and Core Network (CN) functions. While CN functions
are historically placed in centralized nodes, it is only in the re-
cent years that an effort has been done for moving all or part
of the RAN functions to a central point in order to enhance
the network management. Indeed, at RAN level, flexibility and
softwarization are supported by the Centralized or Cloud-Radio
Access Network (C-RAN) concept that allows to exploit cloud
technologies in the access network [4]. Moreover, Multiaccess
Edge Computing (MEC) has been recently identified as a 5G-
RAN key technology for supporting services with reduced la-
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tency and massive access [5]. Through MEC, mobile opera-
tors can deploy a set of nodes equipped with computational and
storage capacity in the RAN, bringing cloud services closer to
users, thus reducing delays in the process and backhaul over-
load. However, MEC computational/storage capacity is lim-
ited if compared to a central cloud, thus in 5G systems the two
approaches can be paired to accommodate emerging services.
MEC can be integrated with the classical Cloud Computing ap-
proach leading to a new distributed scenario, often referred to
as Edge-to-Cloud continuum [6], where the processing capabil-
ities are distributed along the path from the user to the central
cloud [7].

Starting from NFV, Network Slicing and Edge-to-Cloud con-
tinuum paradigms, this paper proposes a new solution for a
flexible placement of network functions in network elements,
for supporting different service classes. The fast-and-easy pro-
posed solution can cope with the complexity of the 5G scenario,
aiming at minimizing a properly defined preference-weighted
cost, while respecting network and services constraints. In par-
ticular, network nodes are organized in multiple hierarchical
layers and the optimization of the network functions placement
is performed in a 3D scenario where services (i.e., slices), func-
tions and layers are jointly considered. We propose to use a
Genetic Algorithm (GA) that almost approaches the optimal
solution in a reasonable amount of time. The proposed solu-
tion takes into account a bias factor in the function placement,
later named as preference, enabling the possibility of favour-
ing some function deployments specific for each slice, while
keeping the problem simple. This factor allows a function de-
ployment based on the operators view and experience.

1.1. Related Literature
Network slicing and VNFs placement problems are widely

addressed in the literature, but very often the focus is only on
one of the two concepts without considering the close relation-
ship with the other. For example, several existing works focus
on basic slicing concepts and design, key enablers and chal-
lenges as [2, 8, 9] without proposing VNFs placement solu-
tions. Similarly, the resource allocation problem (i.e., capacity,
computation and storage) among slices has received a wide at-
tention, as in [10–14]; however, in this context, some papers
consider only spectrum resources (e.g., [10, 11]), while others
take into consideration also the computing resources requested
by VNFs whose placement is, however, fixed or not consid-
ered (e.g., [12, 13]). In [14], the authors survey and analyse sev-
eral resource allocation solutions. At the same time several pa-
pers address the problem of providing an efficient VNFs place-
ment with different goals, such as reducing the computation
and communication resource wastage, increasing the energy-
efficiency or the network throughput while reducing the end-
to-end delay, although without considering the network slicing
concept and the presence of heterogeneous services [15–17].
In [18] a survey on resource allocation and VNFs placement
problems is provided.

Since network slices can be deployed as a chain of VNFs,
the two concepts are strictly related and have to be jointly in-
vestigated. Consequently, VNFs placement problem over het-

erogeneous network slices with different objectives and con-
straints is gaining attention [19–22]. In [19], the authors study
the optimal deployment of VNFs and allocation of computa-
tional resources in a hybrid two-clouds C-RAN infrastructure,
considering different 5G service requirements and specific 5G
RAN functions. The goal is to minimize the overall used com-
putational resources by imposing constraints on VNFs. The
problem is reformulated as an integer linear problem (ILP) and
solved through a standard solver. Similarly, [20] deals with the
optimal VNFs placement problem in C-RAN. VNFs are placed
over virtual resources spread across multiple clouds, compos-
ing a centralized base-band unit (BBU), with the goal of mini-
mizing latency and cost. The proposed solutions are based on
the branch-and-bound and simulated annealing methods. How-
ever, in this paper the network slicing concept is not analysed in
depth, and service constraints are not considered: only different
data rates requested by different services are taken into account.
The NFV problem in a C-RAN infrastructure is also considered
in [21] where a formulation of a C-RAN system that deploys
VNFs on an edge data center is presented analysing six differ-
ent requirements. Here, different network slices with heteroge-
neous requirements/constraints are considered, while VNFs are
placed in the edge data center. VNFs placement, traffic routing
and resource allocation in multiple network slices while con-
sidering VNFs sharing is investigated in [22]. The aim is to
minimize the amount of required bandwidth and computational
resources; a heuristic solution is proposed for solving the prob-
lem.

Different problems are addressed in [23, 24]. In particu-
lar, [23] studies VNFs placement when VNFs are decomposed
into multiple-sub functions that can be reused by different net-
work slices to reduce the substrate network cost. Network slices
and functions are non specialized, and slices constraints are not
considered. Conversely, in [24] the goal is to minimize the re-
liability degradation and the cost, while respecting the delay
constraint when parallel VNF processing is considered. The
solution is based on a Tabu-search algorithm. Here, only one
delay-constrained slice is considered.

1.2. Paper Contribution
As previously shown a vast literature exists on network slic-

ing and VNFs placement, however:

• in many papers the two concepts are separately investi-
gated even if they are strictly related, as for example in
[2, 8–13, 15–17];

• the majority of papers jointly considering slicing and
VNFs placement focuses on a hybrid RAN infrastructure
with a central cloud and several edge clouds that provide
computational capacity to execute functions closer to the
users [19–21, 24]. Only a few papers consider both CN
and RAN functions [22, 23];

• existing papers often propose high-level system models,
where a set of generic functions can be executed on a set
of generic nodes [21–24], while only a few consider a real
5G network, with different network elements and specific
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5G functions with their characteristics and constraints, and
mainly focused on RAN [19, 20];

• even when network slices are considered in the system
modelling, many papers do not impose specific constraints
and requirements on services and VNFs, while consider
generic heterogeneous services, characterized by a certain
data-rate [20], or consider only one slice, while no coexis-
tence of multiple slices [24].

Differently from previous approaches, in this paper we propose
a model that considers the VNFs placement problem supporting
different network slices characterized by specific requirements
and constraints. The paper takes into account the coexistence of
multiple slices on the same physical network, and, hence, the
cross-slice impact. The considered architecture is end-to-end
(E2E), including both RAN and CN functions as well network
elements, specifically referring to the 5G architecture. More-
over, the E2E infrastructure includes MEC facilities that are
generally considered only when RAN is analysed, so that the
Edge-to-Cloud continuum is considered.

Finally, the proposed approach introduces the concept of
preference that is not present in the literature, at the best of
our knowledge. The idea is that of a bias factor that can be
managed by the operator (e.g., depending on its own view and
experience, and/or on business revenues) allowing to pick some
function deployments specific for each slice, while keeping the
problem simple. Moreover, the preference can also be used to
impose some constraints on VNFs deployment (e.g., the Radio
Frequency functions cannot be deployed in the central cloud).

The main contributions of this paper can be summarized in
some key aspects:

• The VNF placement problem in the multi slice-multi layer
E2E architecture has been properly modeled through a
preference weighted cost function. Constraints given by
service requirements and limitations of the physical infras-
tructure are considered.

• The cross-slice impact is considered and analysed by
showing the effect on the performance of a slice when
varying the parameters of another slice.

• The proposed problem jointly considers RAN and CN
functions, and is tailored for an environment that considers
the new Edge-to-Cloud continuum paradigm. It is anal-
ysed and shown how the E2E functions placement varies
in different network configurations.

• We propose a GA as a potential solution method for the de-
fined problem, allowing to approach the optimal solution
to the placement problem while keeping the complexity
reduced.

• The proposed GA solution is compared with two sim-
ple heuristic approaches, where VNFs placement depends
upon the preference values associated with them. We have
also considered the Exhaustive Search Algorithm (ESA)
to achieve the optimal solution and verify the accuracy of
the proposed GA method.

• Performance evaluation has been carried out in several
multi-service scenarios where different parameters’ set-
tings are considered for understanding the potentialities
of the approach in a realistic environment. In particular,
slices’ key performance is shown as well as the computa-
tional load and the function placement in different network
elements.

2. Proposed Network Model

We focus on a multi-layer distributed C-RAN architecture
where several remote radio heads (RRHs) units are connected
with a BBU pool, that, in turn, is connected to the Edge Com-
puting layer, composing a service area, as depicted in Fig-
ure 1. A high speed backhaul connects the service areas to a
Cloud Infrastructure. In this paper we consider a two-layers
Cloud Infrastructure, where a Network Operator Cloud (NOC)
is used for operator specific operations, while a multi-tenant
Cloud facility is supposed for multi-operator applications de-
ployment. The high-level network architecture is depicted in
Figure 1, where it is possible to see different RRHs positioned
as small-cell access points, several BBUs, connected through a
high speed Common Public Radio Interface (CPRI) interface,
as well multiple Edge facilities acting as processing nodes. A
two-layers Cloud facility is also depicted considering both the
NOC and the multi-tenant Cloud infrastructure. Table 1 reports
the list of symbols used in what follows.

Table 1: Symbols list.

Symbol Description

L number of hierarchical network layers
F number of VNFs
S number of slices
F set of VNFs
FCP, FUP set of CP and UP VNFs
S set of slices
p( f , l, s) preference of placing f -th function of the s-th slice on l-th

layer
ru

s , r
c
s UP and CP data generation rates per user of the s-th slice

η′( f , s) cost of placing the f -th function of the slice s-th
η( f , s) preference weighted cost of placing the f -th function of

the slice s-th
Ut(s) average number of active users of the slice s-th
Uts total number of users of the s-th slice
pd fs(·) distribution of the users activity of the slice s-th
A function placement matrix whose element is a( f , l, s)
Ol maximum data processing capacity of the l-th layer
γ number of FLOPs required to process a single bit
τUPs , τCPs maximum allowed delay of s-th slice in UP and CP
δUPs , δCPs latency between the user and the UP/CP end-point for the

s-th slice

The previously described network elements can be supposed
as logically organized in L hierarchical layers, where nodes
have increasing processing and communication capabilities.

The network functionalities can be implemented through the
deployment of a set F of F VNFs, to support a set S of S net-
work slices each one characterised by a different type of service
with specific requirements. Network nodes and communication
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Figure 1: The multi-service distributed 5G network architecture.

links are resource-constrained. Each function f ∈ F is charac-
terized by the amount of computing load required for its execu-
tion, as detailed later. In this paper we resort to the availability
of cloud-native solutions. While the NFV concept resides on
the general idea of software functions, its implementation can
have different alternatives. To this aim we assume that each
function is available through containers and/or microservices
implementations, so as to be easily deployed and moved from
different layers, hence, allowing an on-the-fly network configu-
ration [25].

Even if NFV approach ideally allows an arbitrary function
deployment, some constraints should be considered. As an ex-
ample, it is common understanding that some functions, e.g.,
base band processing should be located nearer to the users while
others, e.g., packet filtering, could also be centralized. At the
same time defining a proper rule for placing the function would
be very complex, since users and operators could have conflict-
ing goals. To this aim we resort to the definition of a preference
function, p( f , l, s), that allows to bias the placement of function
f on the layer l when implementing the slice s. In particular,
p( f , l, s) ∈ [0, 1] and

L∑
l=1

p( f , l, s) = 1,

where a higher p( f , l, s) corresponds to an advantage when
placing the function f of the s-th slice on layer l. If p( f , l, s) =

0, function f cannot be placed on layer l, while p( f , l, s) = 1
means that function f has to be placed on layer l; any other in-
termediate value can be used for mapping a different behaviour
in placing the f -th function. Consequently, through the defi-
nition of a simple and effective weight, i.e., the preference, it
is possible to flexibly define where a given function should be
placed in a distributed architecture for a given slice. In par-
ticular, the operator can exploit its know-how when a certain
service should be deployed. Indeed, a proper fine-tuning of the
preferences allows to set the behaviour of the function place-
ment so that each operator is able to drive the placement in the

preferred way while respecting the system constraints. More-
over, such an approach allows to set a specific weight for plac-
ing the VNFs, also considering business and operator-driven
choices.

2.1. Multi-slice Multi-layer Architecture

In this section we define the system elements considered in
this paper. We focus on a multi-layer architecture, supporting
main 5G network functions, and able to implement three dif-
ferent classes of service classes (enhanced mobile broadband
-eMBB-, ultra reliable low latency communications -URLLC-,
and massive machine type communications -mMTC) through
proper network slices. It is worth to be noticed that the fol-
lowing parameters allow to define a reference scenario, that can
be changed without loosing the validity of the presented model
and of the solution that will be presented later.

2.1.1. Layers
The considered network architecture is organized in 5 lay-

ers: the first two layers represent the RAN working at the net-
work edge, then a Central Operation layer follows (i.e, the Edge
Cloud), while the farthest layers represent the Network Opera-
tor Data Center (i.e., the NOC) and a multi-tenant Cloud in-
frastructure (e.g., Amazon Web Service (AWS)). The layers are
hierarchically organized, and several nodes of layer l can be ag-
gregated under the same node of the layer l+1. RRHs are placed
at layer 1 (L1) and are connected with a BBU pool at layer 2
(L2), able to handle several cells corresponding to the antenna
elements associated with. In order to take into account the vari-
ety of network deployment and services that must be supported
by 5G, the layer L2 is further split in two sub-layers (L2a and
L2b); indeed, in some contexts (e.g., a macrocell where RRH
and BBU are co-located, or in case of functions that do not need
coordination among different antenna sites) and/or for some
services (e.g., URLLC services requiring very small delays),
it is possible to move part of the BBU processing near to the
RRH (L2a). One or several BBU-sites are then connected to an
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Edge Cloud (L3) where some functions can be executed and, in
turn, one or more Edge Clouds are connected to the NOC (L4),
where the Network Operator functions are executed. Following
this a multi-tenant Cloud infrastructure (L5) is considered, pos-
sibly deployed through a commercial cloud solution. Each layer
is connected to the next through proper high data-rate links. In
particular, while end-devices are connected to the RRH units
through proper wireless technologies, RRH and BBU-site are
supposed to be connected through a high data-rate fiber link
over CPRI. The backhaul links between Edge cloud, central-
ized NOC and multi-tenant Cloud infrastructures are instead
supposed to use high-speed dark fiber links [26].

2.2. Functions

In order to have a proper modeling of the slices, we resorted
to the usage of the 5G RAN and CN functions. For the purpose
of this work, we consider the most commonly used functions.

5G RAN Functions Referring to the 5G RAN functions intro-
duced in the 3GPP standard [19], we consider that 8 possi-
ble RAN functions can be deployed on the network nodes,
i.e., radio function (RF), lower physical layer (PHY),
higher PHY, lower medium access control (MAC), higher
MAC, lower radio link control (RLC), higher RLC, packet
data convergence protocol (PDCP). These functions form
a VNF chain and can be placed at different layers exploit-
ing virtualization technologies. However, implementing
these functions individually over several platforms can be
costly in terms of communication overheads. On the other
hand, placing all of them together on the same platform
can reduce the flexibility. Hence, following the approach
proposed in the 5G standard [27], we consider that RAN
functions can be organized in three main logical subsets,
i.e., radio unit (RU), centralized unit (CU) and distributed
unit (DU). Multiple CU-DU split options are introduced,
providing extra flexibility into RAN [27]. In particular,
possible split options have been numbered and suggested
to be used for specific services, as for example in [28],
where Option 5 is preferred for the eMBB slice, while Op-
tion 2 is considered for the case of URLLC and mMTC
slices. Since split options can be selected based on the ser-
vice type and requirements, without loss of generality, in
this work, we consider Options 2, 6, and 8. In the split Op-
tion 2 PHY, MAC, and RLC functions are in the DU, while
PDCP is located on CU; in the split Option 6, only PHY
functions are in DU while the remaining functions (MAC,
RLC, and PDCP) are on CU. Finally, in case of split Op-
tion 8, all RAN functions are on CU, forming a highly co-
ordinated RAN architecture [29]. It should be noted that
the selected options are only for implementation purposes,
and our work can be extended for any possible functional
split option. In the following the RAN functions associ-
ated with the selected split options are described, where
for simplicity we do not consider lower and upper split of
each function:

RF includes the analog-to-digital and digital-to-analog

functionalities performed on RRH during uplink and
downlink communications.

PHY performs the digital signal processing during uplink
and downlink communications between user equip-
ment (UE) and gNB.

MAC provides low-level control functions for the PHY
layer through data transmission scheduling between
UE and gNB.

RLC handles the functions related to reliable data deliv-
ery, segmentation, etc.,

PDCP performs higher-level transport functions, includ-
ing header compression and security.

5G CN Functions For describing the functions performed at
5G-CN we refer to the legacy 4G/LTE Evolved Packet
Core (EPC) network architecture whose main network
functions are the Mobility Management Entity (MME), the
Home Subscriber Server (HSS), the Serving Gateway (S-
GW), the Public Data Network Gateway (P-GW), the Pol-
icy and Charging Rule Function (PCRF), the Traffic Detec-
tion Function (TDF) and the Authentication, Authoriza-
tion, and Accounting (AAA) server. When 5G has been
introduced the previously listed functions have been rear-
ranged, while others have been added. Here we describe
the main UP and CP network functions in the 5G CN that
are used in this paper:

UPF UP Function includes UP functionalities of P-GW
and S-GW as packet inspection, routing and forward-
ing, traffic usage reporting, QoS handling, uplink
traffic verification, transport level packet marking in
the uplink and downlink, downlink packet buffering,
data notification triggering, etc.

AMF Access and Mobility Management Function in-
cludes some MME functionalities of EPC such as
digital side termination of RAN signaling, access
authentication, registration, connection, reachability,
and mobility management for the CP signaling.

AUSF Authentication Server Function includes the HSS
and AAA server functionalities of EPC. It supports
authentication for 3GPP access and untrusted non-
3GPP access.

SMF Session Management Function includes CP func-
tionalities of S-GW, P-GW, and some MME func-
tions of EPC, including directing traffic flows, act-
ing as an anchor point for setting up, modifying,
and tearing down networking sessions across differ-
ent parts, etc.

NSSF Network Slice Selection Function helps to pro-
vide network slicing functionalities including select-
ing the set of network slice instances serving the UE,
providing support for network slice restriction, and
network slice instance restriction.

NEF Network Exposure Function acts as a proxy provid-
ing a well-defined API allowing operators and other
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users to interconnect with the network, and to ac-
cess information about the type of services avail-
able, statistics and analytic information within the
network, etc.

NRF Network Repository Function stores the network
function (NF) profile of available NF instances and
their supported services including the third-party ap-
plications, available for exposure through NEF to
other operators and users.

PCF Policy Control Function performs the PCRF func-
tionality of EPC, which includes prioritizing differ-
ent types of traffic flows over the network. It supports
a unified policy framework to govern the network be-
havior and implements policy rules to CP functions.

UDM Unified Data Management performs all key man-
agement functionalities over the network including
user Identification Handling, access authorization
based on subscription data, UE’s Serving NF Regis-
tration Management, subscription management, etc.

A possible network functions placement in the considered
architecture is represented in Figure 2, where it is possible to
notice that it may depends on the considered network slice, as
later shown in the numerical results.

We want to underline that also application functions could be
added to the list and managed using the proposed framework.
However, we limit our study to network functions, because the
possible applications that can be deployed on a 5G network are
almost infinite.

2.2.1. Slices
We consider three slices (i.e., S = 3), corresponding to three

broad service categories identified by the ITU [30]:

eMBB provides high data rate and low-latency links to make
the mobile services to step a level up, by allowing always-
on always-connected mobile terminals with real-time re-
activity. Seamless coverage and high mobility are needed
in wide-areas with higher data rates than today, while high
user density, and very high traffic capacity are needed in
hotspots.

mMTC is one of the most expected 5G-enabled services, giv-
ing the possibility to interconnect a high density of devices
(i.e., hundreds of thousands of devices per square kilome-
ter). Literally, everything can radiate and be connected.
Typically these devices are characterized by a relatively
low volume of data to transmit and stringent power con-
sumption constraints; moreover, they must be low cost.

URLLC necessitates very stringent requirements in terms of
latency (i.e., E2E delay around 1 ms), reliability (i.e.,
packet error probability 10−5 or lower) and availability.
The focus is on critical applications as autonomous vehi-
cles, tactile internet-based remote control, healthcare, and
mission-critical Internet of Things (IoT), where timely and
accurate communications impact safety: monitoring and
control must occur in real-time.

2.2.2. Preferences
The proposed idea considers that the placement of each func-

tion can be mapped through a proper weight, modeling the pref-
erence for placing that function on a specific layer for a given
service/slice. Preferences could be considered as a feasibil-
ity weight introduced by the operator for biasing the function
placement when matching the user request with the operator
needs. To this aim, different values can be set for each slice de-
pending on specific requirements and characteristics [31], while
each network slice is composed of functions according to ser-
vice needs.

In general, the eMBB slice requires high data rate
and high spectral efficiency, hence would benefit from
multi-connectivity, inter-cell cooperation (e.g., joint TX/RX,
enhanced inter-cell interference coordination, coordinated
scheduling); this implies that the higher layer functions of the
RAN protocol stack and CN functions would be preferably
more centralized. Moreover, eMBB traffic source and des-
tination can be diverse, hence, a centralized approach would
be preferable. To this aim, as an example, SMF is preferably
placed on the Cloud.

In contrast, URLLC applications are mainly driven by the
need of low-latency while data rate is in general limited. The
tight latency requirements for this slice push towards its imple-
mentation as close to the users as possible, implying that even
the PHY, MAC, RLC and PDCP functions of RAN protocol
stack are preferably executed at the radio access as well (e.g.,
BBU site). Moreover, in order to further reduce latency, UPF
could be moved at the BBU site.

mMTCs slice has relaxed latency and data-rate requirements,
while the main aspect is the massive number of supported con-
nections. As a consequence, several functions can be placed
on NOC and Multi-tenant Cloud platforms. Mobility is usually
limited, and data traffic is usually addressed towards a central-
ized data center on the Cloud. Hence, the functions managing
local data traffic and users mobility (i.e., AMF and SMF) are
preferably placed on NOC.

Based on previous discussion, the considered values of pref-
erences are reported in Tables 2 to 4 for the different slices. We
want to point out, that this is only one of the possible preference
configurations, and it is based on previous network/services
considerations. Obviously, preferences’ values can be different,
based also on operators’ experience and specific network de-
ployment characteristics. In general, the selected values should
fit with the weight and the importance with which we would
like to map the function placement on the different layers for
different slices.

3. Problem Formulation

Given the sets F and S, and the network layers constitut-
ing the physical infrastructure, the goal of the proposed sys-
tem is to optimize the function placement while respecting
the slices’ service requirements and the resource constraints
of nodes and communication links. To this aim we model the
problem through the definition of a proper cost function to be
minimized.

6



Figure 2: A possible Network Functions Placement.

Table 2: eMBB Preferences.
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Function Antenna
site

BBU site Edge
cloud

NOC Multi-
tenant
Cloud

(L1) (L2a) (L2b) (L3) (L4) (L5)

RF 1 0 0 0 0 0
PHY 0.5 0.3 0.2 0 0 0
MAC 0.5 0.3 0.2 0 0 0
RLC 0 0.3 0.2 0.5 0 0
PDCP 0 0.3 0.2 0.5 0 0
UPF 0 0 0.2 0.5 0.3 0
AMF 0 0 0 0.4 0.6 0
AUS F 0 0 0 0.4 0.6 0
S MF 0 0 0 0.4 0.6 0
NS S F 0 0 0 0.6 0.4 0
NEF 0 0 0 0.6 0.4 0
NRF 0 0 0 0 0 1
PCF 0 0 0 0 0 1
UDM 0 0 0 0 0 1

Table 3: URLLC Preferences
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Function Antenna
site

BBU site Edge
cloud

NOC Multi-
tenant
Cloud

(L1) (L2a) (L2b) (L3) (L4) (L5)

RF 1 0 0 0 0 0
PHY 0.7 0.2 0.1 0 0 0
MAC 0.7 0.2 0.1 0 0 0
RLC 0.7 0.2 0.1 0 0 0
PDCP 0.2 0.3 0.5 0 0 0
UPF 0 0.1 0.6 0.3 0 0
AMF 0 0 0.1 0.5 0.4 0
AUS F 0 0 0.1 0.5 0.4 0
S MF 0 0 0.1 0.5 0.4 0
NS S F 0 0 0.3 0.2 0.5 0
NEF 0 0 0.3 0.2 0.5 0
NRF 0 0 0 0 0 1
PCF 0 0 0 0 0 1
UDM 0 0 0 0 0 1

Table 4: mMTC Preferences.
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Function Antenna
site

BBU site Edge
cloud

NOC Multi-
tenant
Cloud

(L1) (L2a) (L2b) (L3) (L4) (L5)

RF 1 0 0 0 0 0
PHY 0.5 0.4 0.1 0 0 0
MAC 0.5 0.4 0.1 0 0 0
RLC 0.5 0.4 0.1 0 0 0
PDCP 0 0 0.2 0.5 0.3 0
UPF 0 0 0.2 0.3 0.5 0
AMF 0 0 0 0.3 0.7 0
AUS F 0 0 0 0.3 0.7 0
S MF 0 0 0 0.3 0.7 0
NS S F 0 0 0 0 0.6 0.4
NEF 0 0 0 0 0.6 0.4
NRF 0 0 0 0 0 1
PCF 0 0 0 0 0 1
UDM 0 0 0 0 0 1

Since the UP and CP functions are separated, we define FUP

as the set of the UP functions and FCP as the set of the CP
functions, where F = FUP ∪ FCP, having size FUP and FCP,
respectively, with F = FUP + FCP. We assume that the compu-
tational load to be managed by each function is proportional to
the number of active users, and, in the case of the UP functions,
also to the amount of traffic (i.e., the information transmitted
to/from users), that depends on the application type and, hence,
on the slice s. Here we define ru

s and rc
s as the UP and CP data

generation rates (bits/sec) corresponding to the number of bits
generated by each user belonging to sth slice, and transmitted
over each plane. Since each slice refers to a specific service, we
assume that slices have different ru

s and rc
s .

Hence, we can define the cost associated to the placement of
a generic function f for the purpose of the slice s as:

η′( f , s) = Ut(s)
(
u( f )ru

s + (1 − u( f )) rc
s
)

(1)
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where

Ut(s) = Uts

∫ ∞

−∞

x · pdfs(x)dx (2)

is the average number of active users belonging to the slice s,
modeled as a function depending on the total number of users
of the s-th slice in the considered area, Uts , and a probabil-
ity density function, pdfs(·), modeling the distribution of the
users activity for a given service implemented through the slice
s [32]. For modeling the two sets of functions (i.e., UP and CP)
we introduce an auxiliary function defined as

u( f ) =

1 if f ∈ FUP

0 if f ∈ FCP

Therefore, the cost of a function is modeled as the amount of
data to be processed in the considered time interval. By com-
bining the preference with the execution cost it is possible to de-
fine the preference weighted cost of a generic function f when
placed on a node of the l-th layer for implementing the s-th slice
as

η( f , l, s) =

 1
p( f ,l,s)η

′( f , s) if p( f , l, s) , 0
N/A if p( f , l, s) = 0

that corresponds to set a weighted cost inversely proportional
to the preference values, so that highest is the preference lowest
is the weight or placing a specific function f of the sth slice on
the lth layer. It has to be noticed that in case the preference is
0, the weighted cost is set to N/A that corresponds to have a not
allowed placement.

The previous considerations allow us to define the optimal
placement problem as:

P1 : min
A
{C(A)} = min

A

∑f

∑
s

∑
l

a( f , l, s)η( f , l, s)

 (3)

where C(A) =
∑

f
∑

s
∑

l a( f , l, s)η( f , l, s) is the cost func-
tion and A is the function placement three-dimensional matrix
whose elements are:

a( f , l, s) =

1
if the function f is placed on the nodes of the
layer l for the slice s

0 otherwise
.

P1 is subject to the constraints:

C1 :γ
∑

s

∑
f

a( f , l, s)η′( f , s) ≤ Ol (4a)

C2 :
∑

l

a( f , l, s) = 1 (4b)

C3 :τUPs ≥ δUPs (A)

+

processing delay︷                                                                 ︸︸                                                                 ︷
t0

∑
f

∑
l

a( f , l, s)η′( f , s)
1

g
(
γ
∑

p
∑

v a(p, l, v)η′(p, v)
)

(4c)

C4 :τCPs ≥ δCPs (A)

+

processing delay︷                                                                 ︸︸                                                                 ︷
t0

∑
f

∑
l

a( f , l, s)η′( f , s)
1

g
(
γ
∑

p
∑

v a(p, l, v)η′(p, v)
) .

(4d)

The constraint (4a) allows to set a bound on the processing ca-
pacity of nodes belonging to the layer l, so that the maximum
processing capacity of the layer l is Ol. Here, Ol represents the
maximum data processing capacity of the lth layer in terms of
Floating Point Operations per Second (FLOPS), while γ is the
number of FLOPs required to process a single bit of process-
ing data, supposed to be the same for any function and slice.
The constraint (4b) restricts the allocation of a function f when
operating in the slice s to one layer l, avoiding to have redun-
dant functions operating for the same slice at different layers.
Finally, the constraints (4c) and (4d) allow to set a maximum
delay, τUPs and τCPs , that should be experienced by each com-
munication in the slice s in the UP and CP, respectively. The
delay values are composed of two terms:

• δUPs (A) or δCPs (A), corresponding to the latency between
the mobile user and the UP end-point or CP end-point, re-
spectively. This term is the sum of propagation delays and
transmission delays to go through all links up to the far-
thest layer, where a function of the slice s is placed;

• the processing delay corresponding to the time needed for
processing the data related to a given slice. It is modeled
as the unit-processing time t0 (i.e., the time needed for pro-
cessing one data unit i.e., one bit), multiplied by the pro-
cessing load (i.e, the whole amount of data produced by
the functions of s-th slice in each layer). In order to take
into account total processing load at each layer introduced
by multiple parallel processing of different functions a de-
creasing function g(x) is introduced. In general, the pro-
cessing latency can grow rapidly with additional process-
ing load [33]. Here we assume that up to a given total
load x ≤ K ·Ol, being K a weighting coefficient, multiple
parallel functions can be executed without impacting the
operations at layer l, while an additional load introduces
a quadratic slow down, according to the model presented
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in [33], so that:

g(x) =

1 if x ≤ K · Ol(
K·Ol

x

)2
otherwise

The above defined problem is an ILP, with non-linear and
non-integer constraints. Due to the number of layers, slices and
functions, the solutions’ space, as later detailed, becomes huge
requiring the use of heuristic and meta-heuristic approaches.

4. Proposed Solution

In order to solve the problem in (3), we propose to use an evo-
lutionary based meta-heuristic algorithm that is able to achieve
a near-optimal solution respecting the system constraints. In
particular, we propose to use a GA. For is characteristics GA
is able to generate high-quality solutions in a reduced amount
of time, allowing real-time on-demand service function deploy-
ment. For comparison purpose we consider also an ESA pro-
viding the optimal solution, and two simple heuristic solutions
aiming at reducing the computational cost by following the
placement preferences. The first, named Maximum Preference
Algorithm (MPA) is based on a static 5G deployment where
each function of each slice is placed in the layer matching the
highest preference irrespective to the other slices and to the net-
work load. This leads to a very simple solution that, however,
does not consider the constraints that can be violated. Conse-
quently, we have also considered a Modified Maximum Prefer-
ence Algorithm (MMPA) that starts for the MPA solution but
introduces some limitations to meet the problem constraints.
Conversely, the ESA, despite able to find the optimal solutions,
is practically unfeasible requiring a huge amount of time for
finding a solution.

4.1. Genetic Algorithm (GA)

GAs are evolutionary computation methods that perform a
stochastic search based on the principles of natural genetic sys-
tems. In general, GA begins with an initial generation with
a population space (PS) constituted by random chromosomes
(CV). Next, the GA process evolves over several steps through
a neighborhood search, where each step involves creating a new
PS with better individuals in it. In the beginning, individual
CV from a current PS are analyzed through a fitness function
FS and, through their fitness values, a set of chromosomes is
selected for the creation of the next-generation PS. The forma-
tion of the next-generation CV set is based on the transfer of
the individuals with better fitness values from a current PS to
the next PS, developing new individuals through the mutation
and crossover processes. In the mutation process, a population
point is formed through random changes in the selected solu-
tion, while, in the crossover process, two chromosome set con-
stitute a CV for the next generation by combining their parts
with better fitness values. Each evaluation creates a better so-
lution set and finally ends up providing a solution point with a
higher fitness value. The individual elements of the GA process
are provided below.

4.1.1. Chromosome Coding
In this work, each network function placement variable

a( f , l, s) = {0, 1} is considered as a gene in the GA. All the
genes together compose one chromosome CV. Thus, each CV
is constituted by F × L × S genes, which take values 0 or 1. A
representation of a CV is given in Figure 3.

Figure 3: Chromosome Coding

4.1.2. Initial Population
In this paper, the initial population PS is defined as a set of

100 possible feasible solutions for the network function place-
ment problem defined in (3). GAs work by generating multiple
possible solutions, ranking them in terms of the objective func-
tions and generating new solutions based on a combination of
the best, selected at the previous stage [34, 35]. In order to do
this we need multiple solutions since the first step. In the pro-
posed procedure we suppose to start from 100 solutions. All
of them should be feasible in order to have a starting point that
makes sense. Each placement matrix A is reshaped as a CV
array having size 1× (F × L× S ). Among the 100 starting pop-
ulation, the first two chromosomes are the solutions of MPA
and MMPA methods, i.e., AMPA and AMMPA, while the remain-
ing 98 points are generated by changing an arbitrary number
of genes from the previous two chromosomes. Since MPA and
MMPA methods provide solutions potentially closer to the op-
timal points, using their solutions as an initial point in the PS
increases the efficiency of GA.

4.1.3. Fitness Function
The fitness function FS in GA is a function that measures

the performance of each CV for the considered problem and
assigns fitness scores to them. In this work, the fitness of each
point in PS is measured through the preference weighted exe-
cution cost function over all f , l, and s. Thus,

FS(CV) = C(A(CV))

where, A(CV) is the solution A constructed by rearranging
CV. The set of constraints defined in (4a) to (4d) are also con-
sidered during the evaluation of each CV.

4.1.4. Neighbourhood Search and GA Operators
In GA, neighborhood search corresponds to find a better CV

set for the next generation of the algorithm. It includes the
measurement of fitness values of each individuals in the current
population using FS, convert raw fitness scores FS(CV) into
an expected range of values, selecting parents for the next gen-
eration through selection function, and reproducing new CVs
through elitism, mutation, and crossover operations. The raw
fitness scores are evaluated through a Fitness Scaling Func-
tion (F f ) that scales the raw fitness scores (FS(CV)) into val-
ues suitable for the selection function (S f ). The elite opera-
tion allows a fraction of current generation CVs with better
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Table 5: GA Operator Functions and Parameters

Population Space Size (PS) 100
Elite Count (e) 0.05 × PS
Crossover Count (Cc) 0.9 × PS
Selection Function (S f ) Uniform Selection
Crossover Function (C f ) Random Binary Vector based Crossover
Mutation Function (M f ) Adaptive Mutation based on the Previ-

ous Results
Fitness Scaling Function (F f ) 1/

√
rank(FS(CV))

fitness values directly added to the next generation. The total
number of elite CVs passed into the next generation are based
upon the elite count e. In general, mutation operation involves
creating new chromosomes with better fitness through random
changes in the selected chromosome. The mutation function
(M f ) allows a selection of genes for the mutation operations. In
crossover operation, two chromosome vectors form a new bet-
ter fit solution point for the next generation by combining their
parts. The crossover operation is done through the crossover
function (C f ), which defines the policy for the crossover opera-
tion. With the help of these operators, GA evolves over several
generations and results in a better fit solution for the problem
at hand. We have used a Matlab simulation environment for
the implementation of GA [35]. The main parameters and GA
operator functions used during the simulation are given in the
Table 5.

Algorithm 1 lists the main steps used in the GA process. Ini-
tially, PS is generated from MPA and MMPA results (lines 1-
2). PS evaluation and scaling is performed in lines 5 to 8. The
selection function (S f ) has been used to select betterCVs based
upon their fitness (Line 9-11). While in Line 12 to 15, a new set
of individual CVs is generated by using GA operators and used
for the next generation of GA. The above procedure is repeated
until predefined stopping criteria are reached. In this work, we
considered as stopping criteria the maximum number of GA
iterations (Gmax) and two different tolerance values. In particu-
lar, we considered that the process stops if, for a given number
of consecutive iterations (G f l

max), the fitness function remains
within a given tolerance (F l) and the constraint feasibility (Cl)
is respected. In this work Gmax = 1000, G f l

max = 100, F l = 10−6

and Cl = 10−6 are the numerical values of the stopping criteria
and the GA process stops if any one of this condition is satis-
fied.

4.2. Benchmark Methods
In this work, we have considered three different benchmark

methods for comparing the performance of GA.

4.2.1. Maximum Preference Algorithm (MPA)
The goal of the MPA heuristic is to maximize the operator

needs by placing the network functions on the layer with the
highest preference value. Therefore,

a( f , l, s) =

1 if p( f , l, s) = max
l=1,··· ,L

p( f , l, s)

0 otherwise

∀ f ∈ F and s ∈ S (5)

Algorithm 1 Genetic Algorithm
Input: FS, e,M f ,C f ,Gmax, AMPA, AMMPA
Output: Placement matrix AGA
1: Read AMPA and AMMPA
2: Generate the initial population PS by randomly changing the chromosome of AMPA

and AMMPA
3: while stopping criteria is false do
4: function Evaluate(PS)
5: Find FS(CV), ∀CV ∈ PS
6: Convert FS(CV) using F f .
7: end function
8: function Search(PS)
9: Select better fit individuals using S f

10: end function
11: function Create(PS)
12: Perform Elite, Mutation and Crossover operations (using e, M f , C f ) for gen-

erating new CVs.
13: end function
14: Replace current PS with new set of CVs.
15: end while
16: return Placement matrix AGA

The solution is very simple, but since the placement is fixed,
i.e., in the layer that has the maximum preference (different for
each function of each slice), network’s constraints, slices’ re-
quirements as well as cross-slice effects are not considered. As
a consequence MPA is not always able to achieve a feasible
solution, respecting all the constraints, as it will be shown. In
particular, we want to underline that the MPA can be seen as a
particular case of the proposed approach when the preferences
are set to 1 only for one layer and zero for the others for each
function of each slice.

4.2.2. Modified Maximum Preference Algorithm (MMPA)
In order to achieve a feasible solution (i.e., respecting the

network/services constraints) maintaining a low implementa-
tion cost we consider also a modification of the MPA solution.
MMPA performs a one-dimensional search for each network
function and places them on the layer with the highest prefer-
ence provided that all constraints are satisfied.

In particular, starting from the evaluation of the delay bounds
in (4c) and (4d), the algorithm is initialized by reducing the
possible initial layers to those able to respect the delay con-
straints; to this aim we consider the worst-case latency condi-
tion between one user and the user/control plane end-points. By
defining ϕ(l) as the propagation and transmission delay between
(l − 1)-th and l-th layer, we can set LUPs and LCPs as:

LUPs → max

l :
∑

l

ϕ(l) ≤ τUPs

 (6a)

LCPs → max

l :
∑

l

ϕ(l) ≤ τCPs

 (6b)

Following this, the algorithm finds the layer with the highest
preference value to host a particular network function while re-
specting the delay constraints. In case the layer with the highest
preference is not able to fulfill the computational capacity con-
straint for hosting the allocated network function, we suppose
that such function is allocated to the layer having the imme-
diately lower preference value; the process continues until the
algorithm is able to find a proper place for each network func-
tion, or there are not more layers where to place the function.
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Thus, we have:

a( f , l, s) =


1 if η′( f , s) ≤ Ōl ∧

p( f , l, s) = max
l=1,...,LUPs /LCPs

{p( f , l, s)}

0 otherwise

∀s ∈ S,∀ f ∈ FUP/FCP (7)

The processing capacity of each layer is updated once a par-
ticular network function is placed on it. The updated value of
the processing capacity, defined as Ōl, is given by,

Ōl ← Ōl − η
′( f , s) ∀l

where η′( f , s) is the processing cost of the function f of slice s.
This process is repeated for all functions from different slices.
Generally, UP functions have more stringent latency require-
ments than CP functions; therefore, in the function placement
process we decide to give a higher priority to the UP functions
by placing them first.

Despite MMPA tries to satisfy the constraints, its flexibility
is limited and, as we can see later in the numerical results, con-
straints are not always respected.

4.2.3. Exhaustive Search Algorithm (ESA)
The ES method can be used to find the optimal solution

through a sequential search by examining the space SP = {A}
containing all possible solutions (A) available for the network
function placement problem defined in (3). In the end, ESA re-
sults in an optimal network function placement matrix (AES A)
providing the minimum cost, while satisfying all constraints de-
fined in (4a) to (4d).

Given the complex nature of the system, the solution space
contains an enormous number of possible solutions

S∏
s=1

F∏
f =1

κ f ,s

where,

κ f ,s =

 L∑
l=1

l | p( f , l, s) , 0

 ∀ f , s

is a mathematical operator measuring the number of layers with
nonzero preference values for each network function from all
slices. ESA requires a high computational complexity and can
be used only for a limited amount of scenarios and it is not a
practical solution from the implementation point of view. How-
ever, it is useful to evaluate the accuracy of the proposed GA
algorithm.

4.3. Comparison of different methods
In Table 6 the algorithms previously introduced are com-

pared. In general, MPA and MMPA are computationally inex-
pensive and fast techniques, but lack the search flexibility and
thus can fail in meeting the service/network constraints thus
producing unpractical solutions. ESA is able to find the opti-
mal solution but requiring a huge amount of time. Finally, GA

Table 6: Overall Comparison among Algorithms.

Algorithm Computational
Complexity

Search
Flexibility

Type Simulation
Time per
solution
point [sec]

MPA O (F · L · S ) Very Low Heuristic 0.089
MMPA O (F · L · S ) Low Heuristic 0.1085
GA - Good Metaheuristic 24.03
ESA O

(
LF·S

)
Complete
Search

Optimal 824.82

achieves a good trade-off among the previous approaches. It
is able to find a practical solution with a reasonable computa-
tional complexity. The computation complexity for MPA and
MMPA grows linearly with inputs. i.e., F, L, and S . On the
other hand, ESA needs to explore all possible solutions for find-
ing the global optimal, and its complexity grows exponentially
with respect to F, S , and L. With the presence of stochastic
operators, it’s difficult to provide numerical expression for the
GA complexity, so we resort to the simulation time required for
the GA operations. To this aim, in the last column of the Table
6, we record the time required to simulate one solution point in
Matlab for the considered algorithms. Moreover, it has to be
noticed that while GA, MPA and MMPA have been tested over
a commercial computer equipped with Intel(R) Core i5-8250U
CPU @ 1.60GHz, the ESA has to be tested on a rack worksta-
tion equipped with eight dual core Intel(R) Xeon(R) CPU E5-
2640 v4 @ 2.40GHz, highlighting the complexity of the ESA
w.r.t the other approaches.

5. Numerical Results

In this section numerical results obtained through computer
simulations are given, aiming at analysing and comparing the
performance of the considered solutions.

In Table 7 the most important parameters are listed. Each
layer is supposed to have a limited processing capability and
can process up to Ol FLOPS, while ϕ(l) specifies the sum of
propagation and transmission delays between different layers of
the system architecture [8]. These values are based on different
transmission mediums as specified before.

Table 7: Simulation Parameters.
Layer Processing Capacity (Ol)[FLOPS ] (0.75, 1.25, 1.25, 3, 4.5, 5) × 1015

ϕ(l) [msec] UE
0.5
−−→L1

1
−→L2a

3
−→L2b

11.5
−−−→L3

20
−−→L4

40
−−→L5

t0 [msec] 1.5 × 10−13

K 0.33
γ [FLOPs] 103

In order to check the effectiveness of the proposed model,
an extensive set of Matlab based simulations is performed by
considering different use cases. The Matlab scripts have been
released and made are available to the general public for test-
ing purposes on the GitHub platform1. In each use case, the

1https://github.com/swapnilshinde2/5G-NFV-Slice-preferences

11



key parameters of a particular service have been changed while
maintaining other parameters fixed. Basic key parameters are
listed in Table 8.

Table 8: Use Case I: Input Parameters

Parameters eMBB URLLC mMTC

User-Plane Data Rate (ru
s ) [Mb/sec] 1500 100 0.5

Users 2000 1000 1000000
Average per slice users activity (2) 0.3 0.2 0.1
τUPs [msec] 50 5 1000
τCPs [msec] 100 100 100

The table reports the number of users requesting each ser-
vice, the average users activity for each slice as introduced
in (2), and the data rate requested by the service. The CP is
supposed to handle a very few packets, and, therefore, we con-
sider that rc

s is 1 Mb/sec for all slices. The remaining parameters
τUPs and τCPs represent the UP and CP latency constraints. The
average number of active users users belonging to the particular
slice s can be determined by using the mean value of the user
activity distribution (Kts ) as Ut(s) = Uts Kts .

5.1. Use Case I: eMBB slice data rate variation

In general, eMBB services are characterized by high data
rates while having moderate latency requirements. Hence, in
Case I, we suppose to vary the data rate of the users requiring
the eMBB slice while keeping constant all other parameters. In
particular UP data rate values for the eMBB slice change in the
range [200 Mb/s ÷ 2 Gb/s].

Figures 4-10 report the performance of the four algorithms
previously introduced. In particular, in Figure 4, the cost value
as defined in (3) is plotted as a function of the eMBB user data
rate. As shown, by increasing the data rate, the algorithms have
different behaviours. MPA technique is able to provide a lower
bound on the cost function but, as shown in following figures,
fails to satisfy both the layer processing capacity and the delay
constraints. MMPA method is able to adjust its network func-
tion placement according to the processing load limits of each
layer, but its lack of flexibility in distributing the load on dif-
ferent layers ends up adding more processing delay, thus delay
constraints are not satisfied. This is evident in Figures 5 and 6,
where MPA and MMPA fail to satisfy the UP requirements of
URLLC and eMBB slices. Though GA has a slight increase in
terms of cost for higher data rates, it adapts its network func-
tion placement according to latency constraints and computa-
tional capacity of each layer. Figure 7 shows the computational
load generated in each layer by each solution technique. ESA
provides the global optimal solution and can be seen as a bench-
mark approach to compare the performance of other techniques.
However, it requires exploring the complete solution space for
finding the optimal solution. Here for the considered system
model, the total number of points is huge (≈ 326), and practi-
cally unfeasible to be solved in Matlab. Therefore, to reduce
the complexity of the ESA simulation, we have used a function
grouping-based approach in which all the functions having sim-
ilar preferences are considered as a single functional entity and

placed on the same layer (e.g., PHY, MAC, and RLC functions
of URLLC slice have similar preferences and so treated as a one
function entity during simulation of ESA).
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Figure 4: Cost Function when varying the data rate of the eMBB users
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Figure 5: eMBB Latency when varying the data rate of the eMBB users

In order to show how functions are moved from one network
element to another when system parameters change we use the
network function placement graph. This is represented in Fig-
ure 8 as an example for explaining it. The horizontal axis lists
the available layers, while each row on the vertical axis corre-
sponds to the network functions. The colored blocks indicate
the placement of the function on a specific layer.

The Figures 9 and 10 show the network function placement
generated by GA and ESA for different data rate values of
eMBB slice. It is possible to note that as the data rate in-
creases, not only the eMBB slice changes its functions place-
ment, but also URLLC and mMTC slices have many changes
despite their parameters are constant. This is a consequence of
the cross-slice effect. It is possible to notice that the functions
of different slices move from their preferred location to less pre-
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Figure 6: URLLC Latency when varying the data rate of the eMBB users
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Figure 7: Computational Capacity vs Computation Load when varying the data
rate of the eMBB users

Figure 8: Network Function Placement.

ferred ones as the data rate increases. In particular, up to 1200
Mb/sec, several UP functions from different slices are packed
on L1 while L2a is not used. When the data rate increases, the
processing delay increases for the higher traffic load to be man-
aged, hence the functions must be moved in L2a. For example
observing the URLLC slice we can see that up to 1200Mb/sec
PDCP and UPF functions are placed on layer L2b, because the
L1 processing latency is low. However, as the data rate and
hence, the data amount to be processed increases also the pro-
cessing latency of L1 increases. As a consequence the URLLC
slice has to move PDCP and UPF functions on layer L2a thus
compensating the increase in processing latency of L1 with a
reduced transmission delay for satisfying the 5 msec latency
constraint. At 200Mb/s the two functions are again moved on
L2b because the L1 has been lightened of some functions of
the eMBB slice. Due to this, the overall UP latency of the
URLLC slice decreases sharply (Figure 6), however, this re-
sults impacts in an increment of the cost function value which
can be seen from Figure 4. ESA distributes the computation
load from slices over different layers better than the GA. In-
deed, GA makes several changes in the function placement and
eventually converges to the local optimal solution satisfying all
latency constraints with a higher cost. However, we can observe
that the overall behaviour is similar.

5.2. Use Case II: variable user plane latency of the URLLC
slice

In the Use Case II, the UP latency requirement is changed
in the URLLC slice, allowing to understand the impact of the
latency on the proposed placement algorithms. In particular, we
vary the UP latency requirements from 2 msec up to 25 msec.
Figures 11-14 show the performance of the different algorithms
when URLLC latency requirement is changed.

Figure 11 shows the cost function values for the considered
algorithms. Though cost values for the ESA and GA techniques
are slightly higher for some latency values respect to the two
heuristics, they can perform the network function placement
satisfying the latency requirements, while MPA and MMPA fail
as evident in Figure 12. For the case of 5 msec latency, GA con-
verges to the local optimal solution that follows all constraints
while ESA searches through the entire solution space for find-
ing the optimal solution. Therefore there is a difference in the
cost function value of ESA and GA.

Figures 13 and 14 show the network function placement so-
lutions for GA and ESA methods. It is possible to notice that for
URLLC services with extremely low latency, network functions
are deployed much closer to the end-users, likely on L1 and L2,
while when latency conditions become non-critical, functions
can be deployed more smoothly on the higher layers of the ar-
chitecture.

5.3. Use Case III: variable number of users in the mMTC slice
In case of mMTC services, the number of devices to be con-

nected is supposed to be huge. Consequently, here we consid-
ered the performance of different methods by varying the num-
ber of mMTC user connections from 100000 up to 10000000.
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Figure 9: Network Function Placement when varying the data rate of the eMBB users for the GA.

Figure 10: Network Function Placement when varying the data rate of the eMBB users for the ESA.
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Figure 11: Cost Function when varying the UP latency requirement of URLLC
users
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Figure 12: URLLC Latency when varying the UP latency requirement of
URLLC users
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Figure 13: Network Function Placement when varying the UP latency requirement of URLLC users for the GA

Figure 14: Network Function Placement when varying the UP latency requirement of URLLC users for the ESA.
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Figure 15: eMBB Latency when varying the number of mMTC users
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Figure 16: URLLC Latency when varying the number of mMTC users
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Figure 17: Processing Capacity vs Computation Load when varying the number
of mMTC users

The main results for this case are presented in Figures 15,
16 and 17. In particular, Figures 15 and 16 show the perfor-
mance of different schemes in terms of the eMBB and URLLC
latency, respectively. With such a high number of user con-
nection requests from mMTC services, MPA and MMPA tech-
niques fail to keep UP latency values for these services under
control mainly because of inadequate search flexibility. On the
other hand, GA has better performance and is able to satisfy
all the requirements. It should also be noted that though GA
and ESA techniques latency values are changing slowly for the
URLLC case, while a significant change can be seen in the
eMBB slice. Figure 17 presents the processing load generated
by each technique over different layers and shows that GA can
adapt its network function placement based upon the available
layer capacity.

6. Conclusion

This paper addressed the network function placement prob-
lem in a multi-service 5G network architecture. The prob-
lem has been modeled through a proper objective function that
takes into account the computational load of each function to-
gether with a preference parameter that allows to bias the cor-
rect placement of the functions for each service slice. More-
over, constraints on service requirements and network resources
have been considered.

The proposed solution is based on an evolutionary-based
meta-heuristic algorithm. Moreover, the optimal solution
achieved by means an exhaustive search and two simple heuris-
tics have been considered as benchmarks. Numerical results
show that the proposed solution allows to achieve a near-
optimum solution able to satisfy the imposed constraints even
when these are very stringent and with a reasonable complexity.
Conversely, the two heuristics fails in meeting the constraints
when these become stringent.

The analysis of the function placement shows that the GA
method allows flexibility, thus the functions can be moved de-
pending on the scenario and that a tight correlation among the
slices is achieved.

As a final comment it is worth to be noticed that the provided
solution can deserve as a starting point for training a Machine
learning based algorithm. As an example, the basic configu-
rations obtained by means of our approach, and based on av-
eraged values, could be used for training a neural network that
could be used for providing real-time solutions based on instan-
taneous values. This could be considered in an evolution of our
work.
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