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Abstract

The distributed nature of edge computing infrastructures requires a significant
effort to avoid overload conditions due to uneven distribution of incoming load
from sensors placed over a wide area. While optimization algorithms operating
offline can address this issue in the medium to long term, sudden and unexpected
traffic surges require an online approach where load balancing actions are taken at
a smaller time scale. However, when the service time of a single request becomes
comparable with the latency needed to take and actuate load balancing decisions,
the design of online approaches becomes particularly challenging.

This paper focuses on the class of online algorithms for load balancing based
on resource sharing among random nodes. While this randomization principle is
a straightforward and effective way to share resources and achieve load balance, it
fails to work properly when the interval between decision making and decision ac-
tuating times (called schedule lag) becomes comparable with the time required to
execute a job, a condition not rare in edge computing systems, and provokes stale
(out-of-date) information to be involved in scheduling decisions. Our analysis
combines (1) a theoretical model that evaluates how stale information reduces the
effectiveness of the balancing mechanism and describes the correlation between
the system state at decision making and decision actuating times; (2) a simulation
approach to study a wide range of algorithm parameters and possible usage sce-
narios. The results of our analysis provides the the designers of distributed edge
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systems with useful hints to decide, based on the scenario, which load balancing
protocol is the most suitable.

Keywords: Edge Computing, Load Balancing, Power-of-choice algorithm, Stale
load information, Simulation

1. Introduction

The approach of edge computing [1] is becoming one of the most popular so-
lutions for the deployment of large distributed applications. Application scenarios
range from the Industrial IoT to smart cities, often following the architectural
blueprints of the OpenFog architecture [2]. Most edge computing applications
require to pre-process, filter and aggregate on the edge nodes the data sent from a
plethora of sensors before sending such refined information to a cloud data centre
for additional analysis and storage [3].

This edge computing paradigm is a clear step ahead of a traditional cloud-
only approach because it can guarantee lower response times to latency-sensitive
applications, part of which is now executed directly on the network edge. This
approach aims to reduce the backhaul traffic towards the cloud data centers [2, 3].

Edge computing resource management is an essential open issue in the re-
search agenda [4, 5], which boils down to determining a mapping A between
units of computations C, submitted to the edge layer by users, and the available
edge nodes E:

A : C → E

in a way that some performance attributes are optimised. Depending on the strat-
egy followed to determine A, the solutions can be divided into two categories:
offline and online. Let TA be the time required to calculate A(·), and TC the
service time to compute C.

In offline management strategies, several units C (in this context also called
jobs) are collected and grouped in batches. Moreover, A is a solution to a well-
defined optimisation problem, where optimisation actions include job execution
migration or offloading from an edge node to another one or from the edge layer
to the cloud one. The prerequisite for these algorithms is that the response time is
not critical. A variation to the scheme is to divide the time into intervals, observe
the performance during a time interval, and migrate the expected jobs of the next
time interval towards other nodes, based on an estimation of the benefit of such
migration. Here the prerequisite is that the load is stationary over a suitable period
of time.
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On the other hand, online resource management is used when the response
time is critical and hence waiting to form a batch is not possible or the load is not
stationary. Online approaches apply A on-the-fly to each new submitted job C. In
this case, TA includes the time to gather information from other nodes, eventually
needed to make a forwarding decision, e.g. via probing, and the job transfer time1.
The ratio among TA and TC may limit the applicability of online approaches. We
will refer to this ratio as the schedule lag and denote it as η = TA

TC
. The schedule

lag measures the time interval between decision making and decision actuating
times.

The value η depends on the application characteristics and on the structure of
the edge computing system. For example, let us consider an image processing
application where the job C corresponds to detecting and recognizing objects in
video frames. An application with a frame rate of 60 FPS implies that TC < 16.67
ms. Assuming a high-speed connection among edge nodes, for example of 1
Gbps, and a frame size of 2 MB, the frame transfer time is about 20 ms, so that
η > 1. Image compression techniques can reduce this time, but still, it is likely
to have η ≈ 1. More complex image processing may require higher service times
leading to η < 1. Another example is sensing applications that process thin data,
like those collected by sensors. Here data are likely to be a small JSON file of a
few Kbytes and requires very short service times, likely providing η ≥ 1.

Users

Probing
Forwarding

Figure 1: The cooperation in the edge computing system based on load-aware random probing:
the overloaded edge node (bottom left of the figure) probes a random neighbor and then forwards
a job to it.

The paper considers a family of distributed online protocols based on ran-

1For the sake of simplicity we count it as a component of TA, even if strictly speaking the
transfer time is needed to reach the edge node and not to determine it.
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domisation algorithms in which the function A is computed by each node when
it receives a new job C. The function A returns either a node id of a less loaded
node picked at random among a small subset or none, which means executing the
job locally. The implementation of A is done via random probing [6, 7], as shown
in Figure 1.

The main contribution of the paper is a study of the impact of schedule lag η
on the performance of such load load-aware balancing protocols based on ran-
domization. The paper studies how and at which extent making a decision based
on stale information concerning the load state of the nodes, weakens the effec-
tiveness the algorithm and how load balancing can be achieved when this delay in
communicating state information is unavoidable. The paper shows that it exists
a ’critical’ value of η starting from which load information has no value and a
simpler blind forwarding algorithm performs better.

Figure 2 sketches this claim, in which the critical value is the dot line where
η = 1. When η > 1 (upper triangle) there is a high risk for load-aware algorithms
of schedule decisions based on stale (out-of-date) load information and conse-
quent poor performance. On the other hand, in scenarios characterised by values
of η < 1, the risk related to stale load information is low, as represented by the
triangle at the bottom and a load-aware algorithm works at its best.
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Figure 2: The figure qualitatively shows the risk of stale load information depending on η.

The paper presents a thorough analysis of the impact of stale information on
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the effectiveness of load balancing protocols, with the final aim to support the
system designers to decide, based on the scenario, which algorithm is most suit-
able. For our analysis, we consider typical application scenarios based on smart
cities. We assume to have intelligent traffic lights that can monitor traffic (cars,
pedestrians and bicycles) possibly equipped with cameras and sensors. The traf-
fic information can be used for multiple purposes, from supporting autonomous
driving to identifying suspicious behaviour from people.

A qualifying point of our analysis concerns the methodology used in our
study. We combine a theoretical model and numerical solutions with a simula-
tion approach. The theoretical model derives the correlation between two states
as a function of η and quantifies when load-aware probe-based algorithms, which
pulls load information from the other node, becomes, in fact, useless. This result
is confirmed by detailed simulations that finds a similar conclusion. Moreover,
a Sequential Forwarding algorithm [8], that follows a load-blind approach where
the decision is based only on local load information, is also analysed.

Using simulations, we explore a wide set of parameters considering multiple
scenarios: a uniform mesh scenario where incoming load is evenly distributed
among nodes organised in a regular mesh, and a geographic scenario derived
from the topology of a medium-size city in Italy.

The rest of this paper is organised as follows. Section 2 places our analysis
with respect to the background, also providing an analysis of related work. Sec-
tion 3 describes the proposed probe-based algorithms and the sequential forward-
ing algorithm used as a term of comparison. Section 4 presents a mathematical
model to describe system performance. In Section 5 we provide an evaluation of
the proposed load balancing algorithm based on the Omnet++ simulation frame-
work over different scenarios. Finally, Section 6 presents the conclusions and
future research directions.

2. Background and Related Work

The negative impact of stale information due to network-related delays on load
balancing performance in distributed infrastructures was pointed out several years
ago in the area of Web systems [9] and in a distributed setting in the seminal pa-
per [10]. In this paper, we analyse the effect of network delays in the novel area
of edge computing, in particular, our study focuses on load-aware probe-based
approaches for load balancing among edge nodes, considering their potential is-
sues. Furthermore, we do not limit our analysis to network delays. Indeed, we
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consider the specific application requirements through the parameter η, which ex-
presses the transfer-to-compute ratio, to understand under which circumstances
the probe-based approach can be preferable to the load-blind approach of the se-
quential forwarding algorithm.

In the rest of this section we analyse the state of the art under two points
of view: job offloading vs load balancing in edge systems and large distributed
application scenarios.

2.1. Vertical Offloading vs Horizontal Load Balancing
With the increasing heterogeneity of the computational capabilities of mobile

devices and sensors used in large distributed applications, both the edge and the
cloud level can be exploited to share the load of the required data processing
and satisfy the application requirements. The (total or partial) transfer of com-
putationally intensive jobs from the local device/sensor to edge and cloud nodes,
called offloading, has been widely studied in the context of mobile cloud comput-
ing [11, 12], where is used to transfer the computational load to the resource-rich
cloud infrastructure.

The cloud is often remotely located and far from end-users and sensors, so
the data transfer delays can be long and unpredictable. To reduce the perceived
latency, mobile edge computing (MEC) has been proposed by several studies [13,
14] for offloading a part of the workload from mobile devices to the intermediate
level of edge nodes with sufficient computational resources. However, these stud-
ies typically do not consider horizontal cooperation strategies for load balancing
among edge nodes. Some studies focus on the edge server placement issue [15]
or include dynamic service migration to deal with erratic user mobility [16] but
do not consider cooperation strategies at the edge level.

On the other hand, we focus on the scenario where edge nodes trigger peer
cooperation to balance the load if needed to avoid overload conditions and im-
prove the system performance. The studies in [7, 17] adapted to the distributed
fog/edge computing scenario the idea of a random selection of a node to trigger
cooperation and job forwarding. This idea, which is typically used in the class
of power-of-choices algorithms, was proposed by the same authors in [8] as the
basis of the Sequential Forwarding algorithm considered in this paper as repre-
sentative of a load-blind approach. Our contribution for the first time critically
analyses whether a probe-based approach can be preferable to the load-blind one
depending on network conditions and application requirements.
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2.2. Application Scenarios
Many distributed applications, ranging from Industrial IoT to smart cities con-

texts, rely on sensors and, in general, end-devices to collect data that need to be
processed for extracting features and information needed to provide the required
final service [3]. Such applications may have very different requirements in terms
of processing time and amount of data to be processed: these elements have a di-
rect impact respectively on TA (time required to calculate the mapping A between
units of computations) and TC (execution time) as defined in Section 1. In this
paper, we introduce the parameter η to take into account the transfer-to-compute
ratio characterising the application.

For example, a typical application that can take advantage of edge comput-
ing support is video processing: by extracting at the edge level only a few video
features to be sent to the cloud, network resources can be saved and application
latency decreased. The studies proposing edge computing solutions for image
processing [18, 19] usually focus only on the high computational load required
(sometimes addressed by splitting among edge nodes non-overlapping partitions
of the video frames as in [19]) but do not consider the network-related contribu-
tions. However, depending on the specific characteristics of the application, it is
not always correct to assume η ≪ 1, meaning that the processing time is higher
than the network contributions. In the case of high-performance image process-
ing and high frame rate, the network latency and the jobs transfer time may be-
come comparable or even higher than the job execution time. On the other hand,
large distributed applications may also involve thin data to be transmitted and
processed. This typically happens with crowdsensing applications based on data
collected by geographically distributed sensors [20], but it may also be the case of
Industry 4.0 or IoT-Based Manufacturing scenarios [21]: in all these applications,
the data size may be around a few Kbytes (e.g., a small JSON file). However, thin
data’s execution time may vary significantly depending on the specific scenario.
Indeed, for applications requiring simple computations of statistical indicators on
the time series of the collected data, the execution time may be short and compara-
ble with the network-related and transfer times, leading to a case characterised by
a value of η ≈ 1. On the other hand, in applications where machine learning tech-
niques are applied [21] (for example, for complex forecasting, feature inference
or patterns prediction), the execution time may significantly increase, leading to
a scenario with η < 1. An added value of this paper with respect to the state of
the art is to consider which load balancing approach is preferable depending on
specific scenarios and application requirements.
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3. Algorithm definition

We now introduce the two algorithms used in our study to investigate the ef-
fect of stale information on different approaches to load balancing. Specifically,
we first introduce the Probe-based algorithm [22], representative of load-aware
approaches, then we describe a load-blind algorithm, namely Sequential forward-
ing, presented in literature in [8].

3.1. Probe-based algorithm
The probe-based algorithm relies on a threshold to determine whether, upon

receiving a new job, a probe for a less loaded neighbour is to be started. The
threshold Θ is applied to the system load, that represents the number of jobs
queued in the edge node (or being executed). This metric is used as an estimation
of the waiting time for the incoming job. If the load exceeds the threshold, a probe
is started, with the the edge node issuing query messages to a randomly selected
neighbour.

Algorithm 1 Probe-based Algorithm
Require: Θ, Job

if Job.IsForwarded() or System.Load() ≤ Θ then
ProcessLocally(Job)

else
Neigh← Random(System.Neighbors())
NeighLoad← ProbeNeighbor(Neigh)
if System.Load() > NeighLoad then

Forward(Job, Neigh)
else

ProcessLocally(Job)
end if

end if

Algorithm 1 presents the formalization of the probe-based algorithm. When
a job from a sensor is received, the edge node uses the threshold Θ and the local
load to decide if a probe for the neighbour load should be issued (jobs forwarded
from other edge nodes are processed locally without additional evaluation). If
probing is required, the edge node issues a query message to the neighbour and
waits for the response. The neighbour provides its load status within the response,
so the edge node can decide if the job has to be forwarded to the neighbour or
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if the job is to be processed locally (if the neighbour has a higher load than the
local node). It is worth noting that, in the case of high network delay, the load
returned by a neighbour may be a stale information far different from the load the
forwarded job will actually encounter. This may result in inaccurate forwarding
decisions, already pointed out in the area of Web servers [9].

Algorithm 2 Local processing: ProcessLocally()
Require: Job

if System.Queue() < System.MaxQueue() then
Enqueue(Job)

else
Drop(Job)

end if

Algorithm 2 details the case where a job is processed locally (for example,
due to the call to the ProcessLocally() procedure in Algorithm 1). In this case, the
job should be placed in the ready queue of the server. However, if the queue is
already full (since it has a finite size), the job is dropped, resulting in a loss.

3.2. Sequential Forwarding algorithm
The Sequential Forwarding algorithm [8] uses the threshold Θ to decide if an

incoming job must be forwarded to a random neighbour or locally processed. The
algorithm relies on an additional parameter M , the maximum number of steps to
guarantee a limit on the delay associated with the load balancing phase. Algo-
rithm 3 presents the formalization of the algorithm. When a job arrives, if the job
has not yet reached the M -th step, the system load is considered: if the value does
not exceed the threshold Θ, the job is accepted and scheduled for local processing;
otherwise, it is forwarded to a randomly-selected neighbour. If the job has already
been forwarded M times, it is scheduled for local processing. This algorithm,
which is load-blind, is extremely simple to implement. In this paper, we set the
parameter M = 5, which is a value proved in preliminary experiments to provide
low response time and low drop rate. A detailed description of this parameter and
its impact on the algorithm performance has been provided in [23].

The sequential forwarding process is detailed in Algorithm 3. We assume that
the data structure describing the job is enriched with metadata to keep track of the
number of times the job is forwarded.
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Algorithm 3 Sequential Forwarding Algorithm
Require: M , Θ, Job

if Job.Steps() ≥M then
ProcessLocally(Job)

else
if System.Load() ≤ Θ then

ProcessLocally(Job)
else

Neigh← Random(System.Neighbors())
Job.IncrementSteps()
Forward(Job, Neigh)

end if
end if

4. System models

In this section we develop two models for the probe-based protocol that uses
stale (out-of-date) information and for the sequential forwarding protocol. Table
1 summarizes the main term definitions.

4.1. A model for probe-based protocols with stale information
The probe-based algorithm relies on load state information gathered from the

other nodes. We define the schedule lag the time interval elapsed from when a
node reports its state until the node receives a job due to a scheduling decision
based on that value. As the lag increases the scheduling decisions becomes sub-
optimal since they are based on stale information. Intuitively this occurs because
the job finds the probed node in a state which is progressively unrelated to the
reported state.

We now compute this value considering the generic interaction pattern of the
probe based protocol, see Figure 3. Let tP be the time when the node A receives
a job, TP the time required to decide where to schedule a job and TF the time
required to forward. In addition, τP and τJ denote respectively the transmission
time of a probe or a job. The schedule lag value τ is the sum of two contributions
due to queuing and transmission times.

In our model if the current state of the node is k > Θ the node stores the job
into a Probe Queue (PQ) with k annotated and it selects another node B, picked at
random. It waits from tP to t1 in the queue before the probe message for that job
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Symbol Explanation

λ Job arrival rate.
µ Service completion rate.
ρ Traffic intensity (λ

µ
).

pp Probing probability: probability to probe a node.
τP Probe Sending time Time required to send a probe message over the wire.
TP Probe time: total time required to decide where to serve a job,

for sequential forwarding TP = 0.

TPR Probe Reply Time: Time required to receive the state information from a node.
σ2
PR Variance of Probe reply time.

pF Forwarding probability: probability that a node forwards a job.
τJ Job Sending time time required to send a job over the wire.
TF Forward Time: total time required to forward a job.

TBal Balancer Time: time required to move a job in a service queue
either the local queue or a remote queue (TBal = TP + TF ).

τ Schedule lag: time difference between the time when a node reports
its state until the node receives a job whose scheduling is based on that value.

η Ratio between schedule lag and service time.
Θ Activation threshold.

πi Probability that the state of the service queue is i.
π̃i Probability that the state of the service queue is at least i.
π̃′
i Probability that the state of the service queue is at least max{Θ, i}.

Performance metrics

PB Drop rate: probability to drop a job
TResp Response Time: Average time elapsing from when a job

is received from and edge node until its service ends

Table 1: Summary of symbol definitions used in the model.
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Figure 3: Time diagram model of a probe based algorithm.

is actually sent over the wire to B. At time tPR, B receives the probe message,
samples its load i that sends back to A through its Probe Reply Queue (PRQ).
The total delay for this operation is TPR, which is the first source of delay of the
lag. At time tF , node A receives the reply message and decides either to serve the
job locally (if k < i) or to forward it to B through its Forwarding Queue (FQ).
Job forwarding is the second source of the schedule lag because the job enters the
service queue at time ts when it is fully received. The value of schedule lag is
then τ = TP + TF . Note that the service time of PQ lasts from tP to tF and it is
equal to TPR+τP . This analysis doesn’t consider the propagation delay of signals
because nodes are physically closed enough to neglect this contribution.

The schedule lag value is critical because it determines the probability that
by the time that a job is received the state of B changes from i to j, which are
exactly the events that cause sub-optimally. The goal of our model is to express
such probability of as a function of τ and from here how its value affects the
performance of the algorithm.

4.1.1. Model description
Based on the previous description, we now define a model for a probe based

algorithm running on a large number of nodes. The model is based on three queues
belonging to the node A and a queue belonging to node probed node B:

1. Probe Queue (PQ) has an unbounded capacity and stores jobs awaiting for a
probe reply message; the average service time of the queue is TPR+ τP and
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its variance is σ2
PR (see below). The propagation delay is not considered.

This queue is modelled as an M/G/1 queue.
2. Probe-Reply Queue (PRQ) has as unbounded capacity and constant service

time τP equal to the transmission time of the probe reply message, which is
modeled as an M/D/1 queue.

3. Forward Queue (FQ) has an unbound capacity for jobs to send to other
nodes, whose service time is τJ equals to the job transmission time. This
queue is modelled as an M/D/1 queue.

4. service queue (SQ) with finite capacity K for jobs being served by the node.
The service time of this queue is exponentially distributed with mean TS =
1
µ

). This time corresponds to the actual time required to process the job. The
dynamic of the queue is modelled as a birth-death process.

Nodes receive jobs according to a Poisson flow with rate λ. We assume that
these queues are independent from each other, [6] and denote by πi the steady-
state probability of the service queue length being i.
Probe Queue (PQ). The probe queue is modelled as an M/G/1 queue. A job enters
the queue only when the length of the service queue (SQ) is higher than Θ, and it
leaves the queue when the probe reply is received. The probability that the node
probes another node is clearly:

pp =
∑
i>Θ

πi (1)

The mean service time of the queue is TPR + τP , so that the traffic intensity for
this queue is:

ρP = λpp(τP + TPR)

The variance of this service time is σ2
PR (see later). The mean time spent by

message in this queue is computed from the Pollaczek-Khinchin mean formula,
[24]:

TP =
1 + C2

s

2

ρP
1− ρP

(τP + TPR) (2)

where C2
s =

σ2
PR

T 2
P

is the squared coefficient of the service time.
Probe-Reply Queue (PRQ). This queue is modelled as an M/D/1 queue. Because
the transmission time of a probe message is τP , the traffic intensity towards this
queue is:

ρPR = λppτP
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The mean time spent by message in this queue is derived from the well known
M/D/1 formula:

TPR =
τP
2

2− ρPR

(1− ρPR)
(3)

The variance of the waiting time for this queue is: σ2
PR =

ρPRτ2p
3(1−ρPR)

+
ρ2PRτ2p

4(1−ρPR)2
,

[24].
Forward Queue (FQ). The forward queue is also modeled as an M/D/1 queue. A
job enters the queue only when the service queue length is higher Θ and the state
reported by the probed node is lower than the current state, so that the probability
that a job enters the queue is:

pF =
∑
i>Θ

∑
j<i

πiπj (4)

Similarly to the previous queue, the delay due to job forwarding is:

TF =
τJ
2

2− ρJ
(1− ρJ)

(5)

where ρJ = λpF τJ .
Service Queue. To study this queue we take a different approach considering
N → ∞ nodes, and using a deterministic fluid flow model. This approach has
been successfully applied to other studies on load balancing, [6].

Let Pij(0, t) be the fraction of service queues in the system that at time t = 0
have length i and at time t have length j, qij(t) the rate at time t at which the length
of a queue changes from i to j , and qjj(t) the rate at time t at which it changes
from j. The dynamic of these nodes is described through the set of equations,
[10]:

dPij(0, t)

dt
= −Pij(0, t)qjj(t) +

∑
k ̸=j

Pik(0, t)qkj(t)

The equations measure the rate at which the population of nodes change their
state. We now specialise the above equations for jobs arriving to nodes according
to independent Poisson processes with rate λ, exponentially distributed amount of
service time with mean 1

µ
and finite queue capacity K. The only rates that are not

zero are: qjj = λj + µ, qjj+1 = λj , qjj−1 = µ. Hence:

dPij(0, t)

dt
= −Pij(0, t)[λj + µ] + Pij+1(0, t)µ+ Pij−1(0, t)λj−1 1 ≤ j < K
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dPi0(0, t)

dt
= −Pi0(0, t)λ0 + Pi1(0, t)µ

dPiK(0, t)

dt
= −PiK(0, t)µ+ PiK−1(0, t)λK−1

This set of equations can be given in the following matrix form due to Chapman-
Kolmogorov, e.g. see [25]:

dP(0, t)

dt
= QP(0, t)

where Q is the following (K + 1)× (K + 1) (infinitesimal generator) matrix:

Q =


−λ0 λ0 0 . . . 0
µ −µ− λ1 λ1 . . . 0
0 µ −µ− λ2 . . . 0

. . .
0 0 0 . . . −µ


Formally, the solution of this equation with initial condition P(0, 0) = I is:

P(0, t) = eQt

The challenging part to apply this equation is that the arrival rates λi that appear
in the matrix depend on the time t. As a workaround we use a constant value for
the rates to obtain an approximation of the real values of the matrix. Let focus
of the node B probed at random by A (see Figure 3) and suppose that the time
zero corresponds to the time when B samples its state, say i, i.e.. tPR = 0. For
the sake of simplicity we omit the symbol zero from the element of the matrix P.
The probability that after a time lag τ the state of B changes from i to j is Pij(τ)
because this is also the fraction of nodes that change their state from i to j and
Pij(τ) can be interpreted at the probability that B belongs to this fraction. The
rate at which jobs find node B in state j, given that it announced i, is then:

λF
j (τ) =

1

πj

λ

K∑
i=0

πiπ̃
′
i+1Pij(τ) (6)

Equation (6) reflects the probabilities of the following events: (i) node B sends
a reply message to the probe message reporting state i (which occurs with proba-
bility πi), (ii) the state of A was k ≥ i + 1 (occurring with probability π̃′

i+1) and

15



(iii) during τ time units the state of B changed from i to j. These probabilities are
conditioned to the event of B being in state j. The rates in the matrix Q are then:

λj(τ) =

{
λF
j (τ) + λ if j ≤ Θ

λF
j (τ) + λπ̃j otherwise

(7)

Indeed, node B receives jobs from nodes like A (first term), plus all the jobs
coming from its users (when the state is j ≤ Θ), or from users if the state of the
probed node was worst than j (j > Θ). Without loss of generality, from now on
we assume death rate µ = 1.

4.1.2. Model solution.
To find the steady-state of the above set of queues we use a fixed point algo-

rithm divided into two steps. The first step calculates the Q of the service queue
for a given fixed τ , while the second step calculates the waiting times of all the
three queues based on the steady-state of the service queue. Initially, τ = τp + τJ
that represents the minimum delay needed to schedule a job from node A to node
B.
STEP 1. Given a value τ , first the matrix Q0 where λi = λ is created. Then, using
this matrix, the vector π of the steady-state probabilities is computed. From these
values, the rates of Equation (7) are computed, and they are used to define another
matrix Q1. This procedure is repeated until the numerical convergence to a matrix
Q∗.
STEP 2. This step uses Q∗ to compute the steady-state probabilities of the service
queue and from here, the waiting times associated with the probe, probe reply and
forward queues from Equation (2) Equation (5) and Equation (3), which allows
determining a new value, say τ ′. A new STEP 1 is then executed to find a new
matrix Q∗(τ ′). This second step also monitors the distance between two succes-
sive matrix passed from STEP 1 and halts the computation if the value is lower
than ϵ.

4.1.3. Model convergence
In our numerical examples, the above procedure converged in less than 500

steps for ϵ = 10−5. Figure 4 compares the result from the model and discrete
event simulations.

4.2. A model for the sequential forwarding protocols
The model for sequential forwarding is easier since a job is forwarded blinding

to another node and the schedule lag has τ has no effects. Recall that jobs are
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Figure 4: Probe based model validation

served by a node only if the current service queue length is at most Θ or the job
was already forwarded M times. The rate of jobs that are forwarded only one time
is λπ̃Θ+1, those that are forwarded two times is λπ̃2

Θ+1, etc. The total rate of jobs
arriving to a node from other nodes is then:

λSF = λ
M∑

m=1

π̃m
Θ+1 = λ

(1− π̃M+1
Θ+1

1− π̃Θ+1

− 1
)

Since a job can find the landing queue at any state, the arrival rate of a generic
queue is:

λj =

{
λ+ λSF if j ≤ Θ

λSF otherwise

As before, to model job forwarding, we assume that a job is moved to a forwarding
queue, modelled as an M/D/1 queue with ρSF = λSF τJ and service time τJ .
Accordingly, the average waiting time is:

TSF =
ρSF

2(1− ρSF )
(8)
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4.3. Performance Metrics
4.3.1. Dropping rate

The drop rate is defined as the probability to drop a job. For the probe-based
algorithm, it is given by:

PB = π2
K +

K−1∑
i=Θ

π̃i+1πiPiK(τ) (9)

because a job is dropped if: (i) the receiving node is full but the job cannot be
forwarded since the receiving node reports it is full as well (first term), or (ii) the
job is forwarded, but during the time τ the target node becomes full (the job finds
the node in state K) and drops the job.

For sequential forwarding:

PB = π̃M
Θ+1πK (10)

which reflects the fact that a job is forwarded towards a congested node, i.e. whose
state is K.

4.3.2. Response time
The Response time TResp of a job is defined as the time elapsed from when a

job is received from a node (time tp of Figure 3) until its service ends, tE . This
delay can be conveniently expressed as the sum of two contributions: the balancer
time TBal due to move a job into a queue and the proper service time:

TResp = TBal + TS

From Figure 3 the balancer time is the weighted sum TBal = pPTP + pFTF , see
Equation (1), Equation (4), Equation (5) and Equation (3). The second term is
determined by applying the Little’s result to the service queue:

TS =

∑
i iπi

λ(1− pB)

For sequential forwarding:

TResp = TS +
M−1∑
m=0

TSF (1− π̃Θ+1)π̃
m
Θ+1 = TS + TSF (1− π̃M

Θ+1)

where TS is derived from the Little’s result using Equation (10), while TSF is
computed in Equation (8).

Figure 5 shows the response time for the probe-based algorithm and sequential
forwarding algorithms that reveal a good match between model prediction and
simulations. A deep explanation of this shape is given in the simulation section.
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4.4. Performance detriment and critical value of the schedule lag
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Figure 6: Normalized schedule lag vs job size.

With the model in hand we can now address the main question: how long the
schedule lag can be before the detriment of the algorithm becomes prominent?
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Before that, it is convenient to use a new quantity η which is the schedule lag
normalised respect to the service time, η = τµ and that permits to set µ = 1 in
the numerical solutions. It it is also important to realized that the main source for
a high η is the need to transfer long jobs. Figure 6 shows in fact how η increases
with the size of the job that is forwarded for the probe-based protocol. A similar
shape is found for the sequential forwarding algorithm. Clearly, because a lower
threshold implies a less number of jobs that are forwarded by the Forward Queue,
η decreases with the threshold.
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Figure 7: Drop probability vs η. For threshold of sequential forwarding minimizes the drop rate.

Figure 7 shows the drop rate for the probe based protocol and for the sequen-
tial forwarding with M = 1, 2. The drop rate of sequential forwarding is not
affected by η, while it increases for the probe-based protocol. The value η∗ ≈ 1.8
is a cross point, after which the probe-based algorithm performs worst than the
simpler sequential forwarding, i.e. its dropping rate is higher. The following table
provides some example of critical values of the schedule lag for M = 1.

K=6 K=8 K=10
0.9 1.90 3.4 4.9

0.95 0.69 2.0 3.5
0.98 0.13 0.54 1.8

Table 2: Examples of critical schedule lag
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The Response time for the same setting is reported in Figure 8 and clearly it
increases with M . In the simulation section we will discuss a way to limit this
issue.
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Figure 8: Total delay vs job transmission time for the sequential forwarding and the probe-based
algorithms.

5. Simulation results

To provide an additional performance evaluation of the proposed load balanc-
ing algorithm, taking into account additional parameters and scenarios, we rely on
a discrete event simulator based on the Omnet++ framework2. The load balancing
algorithms are implemented in an additional module specifically developed. A
specific additional module implements a dummy load balancing, namely NoLB,
that processes locally every received request.

In our analysis, we take advantage of the insight provided by the model de-
scribed in Sec. 4 and we aim to capture the impact of the network delay on the
load balancing effectiveness, pointing out under which conditions each considered
load balancing option is preferable.

2https://omnetpp.org/
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5.1. Experimental setup
In our experiments, we consider the probe-based and the sequential forwarding

algorithms. Furthermore, we consider also the NoLB dummy algorithm that does
not perform any load balancing.

Throughout our experiments, we consider that in the probe-based algorithm,
the query/response for probing incurs into a delay that we quantify as TP , while
the job forwarding introduces an additional delay TF , as shown in Figure 3. This
delay accounts for the schedule lag discussed in the model. On the other hand, the
sequential forwarding algorithm requires a delay that is just TF ; but the forwarding
can occur up to M times looking for a randomly-selected neighbour that is not
overloaded. In the NoLB, no forwarding and no probing occurs.

In all our experiments, we model the nodes of our infrastructure as servers
with an M/G/1/K queue. The incoming load is represented as a stream of incom-
ing jobs with an inter-arrival time exponentially distributed. The service time is
modelled according to a log-normal distribution, with a standard deviation that is
comparable with the average value.

Finally, we consider that each node has a queue of finite size K. In our exper-
iments, we set to K = 9. In this the system capacity is 9 jobs in the queue plus
one job being executed way, that is consistent with the theoretical model of Sec. 4
(The system capacity is 9 jobs in the queue plus one job being executed). This as-
sumption is consistent with application scenarios characterised by soft real-time
requirements where long delays are not acceptable. The specific setting K = 9 is
the result of an initial analysis where we explore the impact of the queue length
on the algorithms’ characteristics.

In our analysis we consider two scenarios, namely uniform mesh, and geo-
graphic.

The first scenario, namely uniform mesh consider a mesh of uniform nodes
that have the same incoming load λ, and the same service rate µ. The inter-arrival
time of jobs follows a Poisson distribution, while the service time is based on
a log-normal distribution with a standard deviation comparable with the average
value. In our experiments, we focus on an overall utilisation ρ = 0.9 of the infras-
tructure to capture the case where load balancing becomes a critical component of
the infrastructure. We do not explicitly report all the timings of our experiments
as we consider more general to provide normalised results with respect to the av-
erage service time 1/µ. We assume that the network introduces a delay normally
distributed for both probing and job forwarding. Each probing phase (query and
response) is characterised by an average delay equal to TP , while the average job
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forwarding delay is TF . Throughout our performance evaluation, we consider dif-
ferent values for these delays. In particular, we provide a comprehensive sensitiv-
ity analysis on the impact of parameter η. We explore setups from η ≈ 0.1, where
schedule lag is significantly lower than the service time (for example, if the data
to process is just an array of scalar values but significant mathematical analyses
must be performed on these data), up to a case where η ≈ 10 (for example if trivial
computation must be carried out on large multimedia data). The intermediate case
where schedule lag and service time are comparable is of particular interest in the
area of edge computing and IoT because it is a common situation when data are
transferred on long-range, low-power wireless links for edge-to-edge communica-
tion [26] and must be processed on low-end devices. Another analysis we carried
out is evaluating the impact of the probe time compared to the job forwarding
time. To this aim, we perform a sensitivity analysis to the parameter ζ = TF/TP

where the job forwarding time ranges from 1× to 10× the probe time. This latter
analysis is particularly interesting to understand under which circumstances the
overhead probe-based approach becomes overwhelming, compared to the faster
sequential-forwarding alternative.

In the geographic scenario, we focus on a more complex setup derived from a
realistic topology based on an ongoing project of traffic sensing in Modena, a city
in northern Italy of roughly 180’000 inhabitants. The sensors are located in the
main city streets and collect information about the traffic (for example, taking pic-
tures of the street when movement is sensed to count how many cars are passing).
Fog nodes are placed in facilities belonging to the municipality and exchange data
using long-range wireless links (such as IEEE 802.11ah/802.11af [26]) to interact
both with the sensors and among themselves. The scenario description is gen-
erated using the PAFFI framework [27]. In these links, the available bandwidth
decreases with the distance. Hence, we assume the delay of each link to be di-
rectly proportional to the distance between the two communication endpoints. In
this scenario we consider also the impact of network congestion, considering that
probe packets and jobs must queue before being sent to the neighbour node. Each
sensor is connected to the closest fog node as in [28] so that the incoming load on
each fog node is highly heterogeneous, ranging from cases where the incoming
load is more than 3× the processing capacity to cases where a fog node is nearly
idle.

We summarise the main experimental parameters and performance metrics in
Tab. 3 that expands the symbol list introduced in Tab. 1.
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Symbol Range Explanation

Scenario parameters

Θ [1, 10] Load Balancing activation threshold.
service time.

ηJ [0.1, 10] similar to η, without including probing
ηJ = TFµ; used to compare the algorithms.

ζ [1, 10] impact of the cooperation delay compared to
job forwarding delay (ζ = TF/TP ).

Performance metrics

PB Drop rate: probability of a job being discarded because
the queue of the selected fog node is full.

TResp Response time normalized against 1/µ.
TSrv Service time: time spent by jobs being processed;

normalized to 1.
TBal Balancer time: time taken for the load balancing jobs.
TQueue Queuing time that is the time spent in the fog node ready

queue waiting to be processed; normalized against 1/µ.

Table 3: Summary of simulation parameters and metrics
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5.2. Uniform mesh scenario
We start our analysis focusing on the uniform mesh scenario.

Figure 9: Response time vs. Θ

Figure 9 shows the response time of the probe-based and sequential forward-
ing algorithm for several values of the threshold Θ. The response time breakdown
is provided to provide an insight into its components. Our results are related to
the scenario where η = 1.1, ζ = 10, for the probe-based algorithms, while for
the sequential forwarding, we have η = 1.0 (the job forwarding delay TF is the
same, but in sequential forwarding, we do not have the probing contribution TP ).
However, even if the example is referred to a specific scenario, the main findings
have general validity and confirm previous observation for the impact of load bal-
ancing [8]: as the threshold increase, we observe a reduction of the time spent
in the load balancing phase, due to a less frequent activation of the algorithm,
at the expense of a higher queuing time, due to potential queue build-up. We
also observe that the sequential forwarding algorithm response time has a simi-
lar shape but is characterised by a higher variance with respect to the threshold
Θ, suggesting the need for careful tuning of this parameter. Finally, in the case
where no load balancing occurs NoLB, we observe that the response time is gen-
erally higher compared with the alternatives. The response time is lower only for
very high threshold values, where the load balancing algorithm seldom intervenes.
This effect has already been observed in literature [8]
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(a) Drop rate

(b) Response time

Figure 10: Sensitivity to η (ζ = 10)

Figure10 provides a sensitivity analysis concerning the η parameter (the ratio
between the schedule lag and the service time). In particular, Figure 10a shows
the drop rate, while Figure 10b provides an analysis of the response time as a
function of Θ for different values of η. In this analysis, we present our results just
for the case where ζ = 10, for space reasons.

Focusing on Figure 10a we observe that, especially for low values of Θ and for
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low values of η (for example, in the curve marked with white squares), the probe-
based algorithm outperforms the sequential forwarding alternative (reported as the
curve with filled triangles). As Θ increases, the difference between the algorithms
is reduced because the load balancing is activated less frequently and is, there-
fore, less effective. However, as η grows, the curve of the drop rate shifts from a
monotone growing shape when η = 0.1 (meaning that the impact of delay is neg-
ligible) to a concave cup-shaped curve. This latter shape, which characterises the
sequential forwarding algorithm, occurs when a job is sent to a randomly selected
neighbour and is consistent with other results in literature [8]. This means that as
the schedule lag grows, the load returned by the probing phase is less correlated
with the load found on the node when the job is forwarded – ideally up to the point
when the load encountered is completely unrelated to the probing result, reducing
the probing to a random forwarding. This effect, already discussed in Sec. 4, is
consistent with findings in other fields, such as the case of load balancing in Web
servers [9]. The graph also shows the much higher drop rate that characterises the
NoLB alternative: the fraction of dropped job is more than 5%, while the other
load balancing solutions reach a drop rate typically below 1%.

Focusing on Figure 10b, we observe that the response time of the probe-based
algorithm is generally lower compared with the sequential forwarding algorithm
with the same threshold value, especially for low values of Θ when the load bal-
ancing is activated more frequently (again, when Θ grows, the difference between
the two algorithms decreases). The case when ηJ is very high (e.g. ηJ = 10 –
the curve with triangles) shows that load balancing is providing no actual benefit
because the time to transfer the data is higher than the time to process them even
with the queues are full (the longest wait is, on average, K/µ that becomes com-
parable with TF ). The NoLB solution (red line) guarantees a response time that is
lower compared to the load balancing alternatives as long as ηJ > 1, thanks also
to the high drop rate. However, when the network delay is not so overwhelming,
the benefit of load balancing is evident also from the response time point of view.

Figure 11 summarises the analysis on the impact of η over the load balancing
performance. In the graph, we present a group of histograms for each value of ηJ
(in this graph we focus on ηJ rather than on η because the former parameter has the
same value for both algorithms for each application setup). For each considered
value of ηJ , we present the drop rate of the sequential forwarding and probe-
based algorithms and the response time of the two algorithms measured for the
threshold where the drop rate is minimum. We observe that for the sequential
forwarding algorithm, the minimum drop rate remains stable with respect to the
network delay, as expected. On the other hand, the drop rate of the probe-based
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Figure 11: Algorithm comparison with respect to ηJ

alternative increases. When the schedule lag becomes higher than the service
time, the lowest achievable drop rate of the probe-base algorithm is worse than
the sequential forwarding alternative. Considering the response time, we observe
that the two algorithms have comparable performance unless the network delay
is very high, in which case, the multiple load balancing hops in the sequential
forwarding algorithm determine a clear performance penalty for this algorithm.
The poor performance of the NoLB alternative are clearly visible. However, to
make the figure more readable, the column of the drop rate is truncated. Indeed,
the NoLB option is characterised by a drop rate that is more than 10× compared
with the load balancing algorithms.

Figure 12 provides further proof of the impact of the delay associated with the
load balancing on the drop rate of the algorithm. For these analyses, we focus
on the case where Θ = 1, because this is the situation where the impact of load
balancing is more evident. In particular, we consider two different measures of
the balancing-related delay: the first is η; the second is the time spent in the
load balancer TBal that is highly correlated with the schedule lag. Both measures
provide consistent results, demonstrating that, as the delay increases, the drop rate
grows, as suggested by the model in Sec. 4.

As the last sensitivity analysis for the uniform mesh scenario, we consider the
impact of the ratio ζ between the time for job forwarding and the probing. In this
analysis, we keep constant ηJ , while η changes as we modify ζ . If we analyse the
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Figure 12: Schedule lag vs. Drop rate.

impact of ζ on the response time (Figure 13a) we observe that, as the probing time
grows due to the reduction of ζ , the response time increases as well (for example
from 0.038s to 0.043s, with an increment of 12% for Θ = 1). Furthermore, as Θ
grows, the reduction in the number of probes issued reduces the impact of the ζ
parameter.

For a better comparison between the two considered algorithms, we present a
histogram-based representation in Figure 13b, where the sequential forwarding is
compared with several setups of the probe-based algorithm with different ζ . From
the column on the left side of the graph, we observe that the drop rate remains
unaffected by the slight increase in the network delay due to the probing overhead.
On the other hand, in the right part of the graph, we show that, as the impact of
the probing delay increases (ζ is reduced), the response time associated with the
minimum drop rate grows accordingly. From this comparison, we can conclude
that, when the probing time is comparable with the job forwarding time (ζ = 1),
which is common when the application is sending a limited amount of data to
the edge nodes, we can expect a performance drop in response time in the order
of 8% compared to a case where the time to transfer the data is 10× compared
to the probe. This effect should be further considered when selecting the most
appropriate protocol for load balancing. We also report the performance of the
NoLB solution, confirming its poor performance in terms of both drop rate and
response time.
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(a) Response time

(b) Algorithm comparison

Figure 13: Sensitivity to ζ (η = 1)

5.3. Geographic scenario
We now focus on the final scenario, where the role of load balancing is crucial.

In this scenario some node receives an incoming load more that 3× w.r.t. their
processing capacity, while other nodes are nearly idle. Without load balancing the
high overload in part of the infrastructure can lead to a drop rate up to 30% (again
we omit in analysis the results for the case where no load balancing occurs due
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to the overload conditions). This is the opposite situation compared to the mesh
uniform scenario where load balancing must cope just with small temporary load
fluctuations and, even in the worst conditions, the drop rate is below 5%.

Figure 14: Drop rate vs. ηj (ζ = 10)

Figure 14 provides the sensitivity analysis with respect to the ηJ parameter.
The analysis is similar to the one in Figure 10a. Even the presence of network ef-
fect, with the risk of congestion does not affect the general conclusions. However,
we point out the main differences with the previously discussed mesh scenarios.
It is interesting to observe that, in this highly skewed workload, reducing the in-
tervention of the load balancing (for example, for Θ ≥ 8) determines a significant
increase of the drop rate that rapidly grows beyond 5%. It is worth noting that
only a small subset of the nodes experiences overloaded. Hence, only these nodes
will issue probes very often. This reduces the loss of correlation in the state re-
ported by probing and keeps the drop rate stable even when the threshold is very
low (e.g., Θ = 1), explaining the monotonic shape of the drop rate curve. This is a
significant difference with respect to the previously considered scenarios, suggest-
ing that, in the case of localised hot-spots, the problem of stale load information
previously observed is much less critical.

We conclude our analysis with the algorithm comparison of the best drop rate
and for the response time when the drop rate is minimum, as in the previous
analyses. Again, we refer to the ηJ parameter for this study, and we consider two
extreme values of ζ that are 10 (low probe impact) and 1 (high probe impact),
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Figure 15: Algorithm comparison for ηJ and ζ

respectively. Once again, as in this last set of experiments we aim to represent a
scenario as realistic as possible, we consider that the network delay in fog-to-fog
communication is caused by a bandwidth-constrained link, that can be subject to
congestion.

In Figure 15 we observe that the minimum achievable drop rate of the se-
quential forwarding algorithm remains basically stable with the increasing net-
work delay. On the other hand, for the probe-based algorithm, the delay has the
already-proven negative impact on the drop rate. The ζ parameter has a limited
effect on the drop rate, with the additional delay increasing slightly the drop rate
due to its additional effect of the overall load balancing delay.

If we focus on the response time, we observe that the impact of ζ is much more
significant: as the time for load balancing becomes comparable with the time for
job forwarding, the delay experienced during the load balancing phase makes the
probe-based algorithm slower than the sequential forwarding alternative. The ef-
fect is even worse when the network delay is higher than the service time. Further
increasing the ζ and the η parameters would result in severe network congestion
that can affect negatively both response time and drop rate.

6. Conclusions and future work

In this paper, we focused on the load balancing issue of distributing incom-
ing jobs over the nodes of an edge computing infrastructure. Specifically, we
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analysed the impact of stale load information caused by network latency on the
effectiveness of load balancing algorithms based on randomisation of jobs over
the nodes, showing that when this latency is comparable with the service time, the
algorithm performs poorly. We carried out our study under two different points of
view: a mathematical model and a full-fledged simulator. Our analysis revealed
that taking schedule decisions based on state information received even with a
small delay compared to the service time reduces the load balancing effectiveness
considerably. In this setting, it is convenient to keep the randomisation principle
incorporating it as a blind forward towards neighbouring nodes. The addition of
a threshold to regulate the triggering of the algorithm is a valid method to reach
high performance.
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Appendix A. Special cases

Appendix A.1. Completely correlated states
This condition occurs when communication is instantaneous , τ = 0. In this

case P(0) = I, i.e.:
Pij(0) = δij

The state of the probed node cannot change wrt to the reported value, i.e., no state
transition occurs. By substituting this value in Equ. (6) we get:

λF
j = λ

1

πj

K∑
i=0

π̃i+1πiδij = λ
1

πj

πjπ̃
′
j+1 = λπ̃′

j+1

so that:

λj = λ

{
1 + π̃Θ+1 if j ≤ Θ

π̃j + π̃j+1 otherwise
(A.1)

For Θ = 0 the above equations describe the dynamic of the power of two
random choices algorithm on a loss queue model [29]. Indeed, the generic balance
equation of the MC associated to Q becomes (recall µ = 1):

λ(π̃j + π̃j+1)πj = πj+1

Since (π̃j+ π̃j+1)(π̃j− π̃j+1) = (π̃2
j − π̃2

j+1) and πj+1 = π̃j+1− π̃j+2 the equations
can be rewritten in the so-called supermarket fluid model form (where convention-
ally π̃K+1 = 0) [30]:

λ(π̃2
j−1 − π̃2

j ) = π̃j − π̃j+1

These equations have the following fluid flow interpretation. In a population of
N →∞ nodes, any node sends its jobs to a central scheduler. The scheduler then
sends the jobs to the least loaded among two random nodes. Here π̃j is interpreted
as the fraction of nodes with at least j jobs en-queued.

Appendix A.2. Completely uncorrelated states
This case ideally corresponds to τ → ∞ because this ensures to observe the

node in two random steady states.

Pij(∞) = πj

hence:
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λF
j =

1

πj

λ

K∑
i=0

π̃′
i+1πiπj = λ

K∑
i=0

π̃′
i+1πi =

= λ
Θ∑
i=0

π̃Θ+1πi + λ

K∑
i=Θ+1

π̃i+1πi

(A.2)

so that:

λj =

{
λ+ λF

j if j ≤ Θ

λπ̃j + λF
j otherwise

(A.3)

Which are the same as sequential forwarding.

Appendix A.3. Correlation
The correlation between the values of the state of a node at probing time at the

job’s receiving time is measured using the Pearson’s correlation coefficient:

ρXY =
σXY

σXσY

where X is a random variable representing the value of the state reported by a
node when probed and Y the state of that node when it receives a job, where:

σ2
X =

∑
Pr{X = i}(i−mX)

2

σ2
Y =

∑
j

Pr{Y = j}(j −mY )
2

and
σXY =

∑
j

∑
i

Pr{Y = j,X = i}(i−mX)(j −mY )

while:
mX =

∑
i

iPr{X = i} mY =
∑
i

iPr{Y = i}

We can compute the coefficient by recognizing that from our model we have:

Pr{X = i} = P∗i(∞)

and:
Pr{Y = j|X = i} = Pij(τ)
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so that we also get:

Pr{Y = j} =
∑
i

Pr{Y = j|X = i}Pr{X = i}

=
∑
i

Pij(τ)P∗i(∞)

For τ →∞ X and Y become independent which implies ρXY = 0.

Appendix A.3.1. Benefit of threshold
The idea of threshold can also be applied to the probe-based protocol as a way

to reduce negative effect of the schedule lag.
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Figure A.16: Correlation vs normalized schedule lag for different thresholds.

Figure A.16 shows the correlation index as a function of Θ, when ρ = 0.9, K =
10. We can see how the correlation among states becomes weaker as η increases
and as Θ decreases. Clearly, the weaker the correlation the higher the probability
the scheduler takes a wrong decision, i.e. forwarding to remote node when the
state of the remote node is indeed worst than the local one, or not forwarding to
remote nodes when the state is better than the local one. Wrong decisions reduces
the effectiveness of the load balancing performance.

39



Figure B.17: Sensitivity to queue length K

Appendix B. Additional simulation results

Appendix B.1. Sensitivity to queue length
In our experiments, the finite queue length of each node K is to K = 9. This

assumption is consistent with application scenarios characterised by soft real-time
requirements where long delays are not acceptable. The specific setting K = 9 is
the result of an analysis where we explore the impact of the queue length on the
algorithms’ characteristics. Specifically, we consider a scenario where fog nodes
are connected in a regular, uniform, mesh. For the Probe-based algorithm, we
use a threshold value Θ = 1, while for the Sequential forwarding algorithm, we
consider Θ = K/2. Fig. B.17 shows the response time and drop rate as a function
of K. We observe that the impact of the K parameter is quite limited on the drop
rate, except for the case when the queue is very short (i.e., K = 5). Similarly, the
impact of the queue size on the response time is almost negligible for the probe-
based approach. The impact is slightly more evident for the sequential probing
algorithm. However, in this case, the effect is mainly due to the increase of the
threshold (that grows with K), as already pointed out in [8]. In the graph, we
also show the case where no load balancing occurs among the fog nodes (the red
set of curves labelled NoLB). In this case, it is evident that, as the queue grows,
the response time grows (due to the higher potential waiting in the curve), and
the drop rate grows (as the risk of finding the queue full is reduced). It is worth
observing that the NoLB set of curves demonstrates that load balancing provides
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a major benefit both in response time and drop rate.

Appendix B.2. Bimodal scenario description
In order to enrich our simulation analysis of the considered load balancing

algorithms, we consider also a scenario, namely bimodal mesh. Like the uniform
mesh sceanrio, the for nodes have the sam computing power and the network is a
fully-connected unform mesh. However, we relax the assumption that the load is
evenly distributed across the nodes, and we divide the nodes into two sets: 50%
of the nodes is underloaded while 50% is overloaded. Specifically, let ρ = 0.9
be the average load of the infrastructure. The load on the first set of nodes is
ρL = ρ − ∆ρ, while it is ρH = ρ + ∆ρ for the remaining nodes. We create
the different loads on the nodes altering their incoming job rate. For the bimodal
mesh scenario, we perform the same sensitivity analyses previously described for
the uniform scenario plus an analysis focusing on the impact of the ∆ρ parameter.
However, we provide only a subset of relevant results for space reasons.

Appendix B.3. Simulation results

Figure B.18: Sensitivity to ∆ρ (ηJ = 1, ζ = 10)

In the previous scenario, the incoming load is uniformly distributed over the
infrastructure, and the load balancing must address just temporary fluctuations that
cause a local overload. The situation is more critical when the load is inherently
unevenly distributed. The bimodal mesh scenario addresses this case.
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In this experiment, we focus on the most interesting setup previously identi-
fied, that is, the case where the load balancing and the service times are compara-
ble (i.e. η ≈ 1) and when the probe is significantly smaller than the job forwarding
(that is ζ = 10).

Figure B.18 compares the two algorithms as ∆ρ ranges from 0, corresponding
to the previously presented uniform scenario, to 0.3, corresponding to a clearly
unbalanced workload where half the nodes of the infrastructure receive an incom-
ing load λ = 0.6µ, while the other half of the infrastructure is overloaded with
λ = 1.2µ.For this set of experiments, we omit the comparison with the case when
no load balancing occurs (NoLB) as it would make no sense to consider scenarios
where nodes are explicitly overloaded.

We observe that in the uniform scenario (∆ρ = 0), the drop rate of the two
sequential forwarding and of the probe-based algorithms are similar (the drop rate
is 0.0040 vs. 0.0039 with a relative difference of 3%). However, as the workload
unbalancing increases, load balancing becomes harder (as testified by the drop rate
increase). Furthermore, the probe-based algorithm is capable of a more effective
load balancing, resulting in a lower drop rate (for ∆ρ = 0.3 the drop rate is
0.0057 for the sequential forwarding and 0.0050 for probe-bases, with a relative
difference of 12%).
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