
1

Joint Time Scheduling and Transaction Fee Selection in
Blockchain-based RF-Powered Backscatter Cognitive Radio

Network
Tran The Anh, Nguyen Cong Luong, Zehui Xiong, Dusit Niyato, Fellow, IEEE, Dong In Kim, Fellow, IEEE

Abstract—In this paper, we develop a new framework called
blockchain-based Radio Frequency (RF)-powered backscatter cog-
nitive radio network. In the framework, IoT devices as secondary
transmitters transmit their sensing data to a secondary gateway
by using the RF-powered backscatter cognitive radio technology.
The data collected at the gateway is then sent to a blockchain
network for further verification, storage and processing. As such,
the framework enables the IoT system to simultaneously optimize
the spectrum usage and maximize the energy efficiency. More-
over, the framework ensures that the data collected from the IoT
devices is verified, stored and processed in a decentralized but in
a trusted manner. To achieve the goal, we formulate a stochastic
optimization problem for the gateway under the dynamics of the
primary channel, the uncertainty of the IoT devices, and the
unpredictability of the blockchain environment. In the problem,
the gateway jointly decides (i) the time scheduling, i.e., the
energy harvesting time, backscatter time, and transmission time,
among the IoT devices, (ii) the blockchain network, and (iii)
the transaction fee rate to maximize the network throughput
while minimizing the cost. To solve the stochastic optimization
problem, we then propose to employ, evaluate, and assess the
Deep Reinforcement Learning (DRL) with Dueling Double Deep
Q-Networks (D3QN) to derive the optimal policy for the gateway.
The simulation results clearly show that the proposed solution
outperforms the conventional baseline approaches such as the
conventional Q-Learning algorithm and non-learning algorithms
in terms of network throughput and convergence speed. Further-
more, the proposed solution guarantees that the data is stored
in the blockchain network at a reasonable cost.

Index Terms—Cognitive radio, ambient backscatter, RF en-
ergy harvesting, blockchain, time scheduling, deep reinforcement
learning, IoT.

I. INTRODUCTION

Internet of Things (IoT) systems require the massive de-
ployment of the communication devices, thereby facing a big
issue of scarcity of spectrum resource. To address both the
radio spectrum shortage and the energy constraint in the IoT
systems, Radio Frequency (RF)-powered backscatter cognitive
radio [1], [2], [3], [4] has been recently used as a promising
solution. With the RF-powered backscatter cognitive radio
technology, IoT devices as secondary transmitters are able
to harvest energy from primary signals, e.g., broadcast from

T. T. Anh, Z. Xiong and D. Niyato are with the School of Computer Sci-
ence and Engineering, Nanyang Technological University, Singapore. Emails:
theanh.tran@ntu.edu.sg, ZXIONG002@e.ntu.edu.sg, dniyato@ntu.edu.sg.

N. C. Luong is with Faculty of Information Technology, PHENIKAA
University, Hanoi 12116, Vietnam, and is with PHENIKAA Research and
Technology Institute (PRATI), A&A Green Phoenix Group JSC, No.167
Hoang Ngan, Trung Hoa, Cau Giay, Hanoi 11313, Vietnam. Email:
luong.nguyencong@phenikaa-uni.edu.vn.

D. I. Kim is with School of Information and Communication Engineering,
Sungkyunkwan University, Korea. Email: dikim@skku.ac.kr.

the primary transmitter, and then use the harvested energy to
actively transmit their data to a secondary gateway. Moreover,
the IoT devices are able to backscatter their data to the sec-
ondary gateway by modulating and reflecting the surrounding
ambient RF signals. Therefore, the RF-powered backscatter
cognitive radio is an effective solution to improve the network
performance, i.e., the network throughput, in the IoT systems.

However, the IoT systems face other serious issues. Specifi-
cally, the data collected from the IoT devices is still centralized
in a server or in the cloud [5]. This poses the transparency and
traceability issues in which the data can be modified arbitrarily
by unknown persons and applications. Moreover, the security
issues arise since the central entity, i.e., the cloud, is vulnerable
to cyber attacks. In addition, given a large number of IoT
devices, the communication and bandwidth cost increases.
Low efficiency, speed, and reliability due to the bottleneck and
a single point of failure are also remaining critical issues.Thus,
a new solution of the data management needs to be designed.

Recently, blockchain technology [6] has brought many
promising potentials which has been applied in various ap-
plications including data management for IoT systems [7],
[8]. In particular, blockchain is regarded as a decentralized
database, i.e., a ledger [9], in which transactions including IoT
data are recorded and processed by a number of nodes in the
whole blockchain network instead of a centralized authority
or a single entity. The blockchain also enhances the security
and guarantees the data integrity since the transactions must
be agreed and verified by the nodes before they are recorded
[10]. For this reason, blockchain can be integrated with the
RF-powered backscatter cognitive radio, namely blockchain-
based RF-powered backscatter cognitive radio [11].

The blockchain-based RF-powered backscatter cognitive
radio has three key benefits. First, it enables the IoT systems
to improve the spectrum usage since the IoT devices, as
secondary transmitters, can use primary channels, i.e., of the
primary transmitter, for data transmissions when the channels
are not occupied. Second, the blockchain-based RF-powered
backscatter cognitive radio improves the energy efficiency
since the IoT devices are able to harvest energy or backscatter
data when the primary channels are occupied. Third, the
data from the IoT devices sent to the blockchain is veri-
fied, recorded and processed in a decentralized and trusted
manner [8]. However, to achieve the goals with a reasonable
storage cost, it is required to design an optimal mechanism
for the gateway to decide the time scheduling among the IoT
devices, blockchain network, and transaction fee rate. This is
challenging due to the following reasons. First, the states, i.e.,
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the busy and idle states, of the primary channel are dynamic.
Second, the states including sensing data state and energy
state of the IoT devices are uncertain. Third, the states of the
blockchain networks are unpredictable. To address the chal-
lenge, we formulate a stochastic optimization problem for the
gateway under the dynamics, uncertainty, and unpredictability
of the system. The optimization problem allows the gateway
to decide (i) the time scheduling, i.e., backscatter time, energy
harvesting time, and active transmission time, among multiple
IoT devices, (ii) blockchain network, and (iii) transaction fee
rate to maximize the network throughput. The optimization
problem accounts for the states of IoT devices, the primary
channel, and the blockchain networks. The state spaces may
be very large, and the optimization problem becomes very
complex. Therefore, we propose to employ and assess an
advanced learning algorithm, i.e., the DRL with Dueling
Double Q-Networks (D3QN) [29], to solve the problem. As
demonstrated in the simulation results, our proposed approach
can not only effectively deal with the dynamics, uncertainty,
and large state space of the system but also significantly
improve the system performance compared with the existing
time scheduling approaches. The main contributions of this
paper are as follows:

• We propose a multi-user blockchain-based RF-powered
backscatter cognitive radio network. This network enables
the IoT systems to simultaneously optimize the spectrum
usage and the energy efficiency to maximize their per-
formance. Moreover, sensing data from the IoT devices
is verified, recorded and processed in a decentralized and
trusted manner. The term ”trusted” means that the sensing
data of the IoT devices is not arbitrarily modified when
the data is stored in the blockchain.

• We formulate a stochastic optimization problem for the
blockchain-based RF-powered backscatter cognitive radio
network. The optimization problem enables the gateway
to jointly decide the time scheduling among the IoT
devices, blockchain network, and transaction fee rate.
The objective is to maximize the network throughput
with the optimal time schedudling. The joint optimization
also minimizes the storage cost with the appropriate
blockchain selection and transaction fee rate decisions.

• To jointly achieve the optimal time scheduling,
blockchain network, and transaction fee rate decision
policy for the gateway, we propose to employ, evaluate,
and assess the DRL algorithm to solve the novel problem
formulation under the system model. In particular, we
use the D3QN that is able to (i) handle the bigger and
more complex problem than traditional approaches, (ii)
overcome the instability of the learning, and (ii) reduce
the overestimation of action values.

• Finally, we perform extensive simulations to demonstrate
the efficiency of our proposed approach in comparison
with the conventional approaches such as the conven-
tional Q-learning and non-learning algorithms. We reveal
that the DRL with D3QN can achieve better performance

in terms of network throughput, transaction fee, and
convergence speed compared with the conventional base-
line approaches. We further evaluate the proposed DRL
scheme. The simulation results show that the performance
of the DRL significantly improves as the number of
blockchain networks increases.

The rest of this paper is organized as follows. Section
II presents a brief review of the related work. Section III
describes the system model. Section IV presents the problem
formulation. Section V introduces the DRL algorithm for the
time scheduling, blockchain network selection, and transac-
tion fee rate decisions in the blockchain-based RF-powered
backscatter cognitive radio network. Section VI discusses the
performance evaluation results. Section VII summarizes the
paper.

II. RELATED WORKS

To improve the network performance and to address the
energy constraint in the IoT systems, RF-powered backscatter
cognitive radio has been recently used as a promising solution.
With the RF-powered backscatter cognitive radio technology,
IoT devices are able to harvest energy from primary signals
and then use the harvested energy to actively transmit their
data to a secondary gateway. Moreover, the IoT devices are
able to backscatter their data to the secondary gateway by
modulating and reflecting the surrounding ambient RF signals.
However, how to optimize the time scheduling and admission
control in the IoT systems is a big issue.

The authors in [14] addressed the data scheduling and
admission control problem for a gateway in a backscatter
sensor network. The problem is to find the optimal data
collection policy to minimize the weighted sum of delay of
different types of data from sensors. The Markov decision
process and the reinforcement learning algorithm based on the
linear function approximation method are adopted to solve the
problem. Different from [14], the authors in [15] formulated
an optimization problem for a secondary transmitter, i.e., the
secondary user, in an ambient backscatter communications
network. The optimization problem is to derive an optimal
control policy for sleep and active mode switching and reflec-
tion coefficient in the active mode. To solve the optimization
problem, a two-stage method is proposed to obtain the op-
timal solution. However, only one single secondary user is
considered. The authors in [16] extended the work in [15]
to a hybrid backscatter assisted cognitive wireless powered
radio network with multiple secondary users. In particular, the
hybrid Harvest-Then-Transmit (HTT) and backscatter com-
munications are adopted and integrated for the secondary
users. The authors then formulated the optimal time allocation
between the ambient backscatter mode and energy harvesting
and that between the bistatic scatter mode and the HTT mode
to maximize the throughput of the secondary system. The
Lagrange multipliers method with the Karush-Kuhn-Tucker
(KKT) conditions is then adopted to solve the problem.

To model the time scheduling in RF-powered backscatter
cognitive radio networks, game theory such as Stackelberg
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game can also be used as proposed in [20]. In the game
approach, the gateway is the leader, and the secondary trans-
mitters, i.e., IoT devices, are the followers. The gateway first
determines spectrum sensing time and an interference price
to maximize its revenue. Based on the time and price, each
secondary transmitter determines the energy harvesting time,
backscattering time, and transmission time so as to maximize
its throughput. However, the proposed game approach requires
complete and perfect sensing probability information, and thus
it cannot deal with the dynamics of the network environment.
Apart from the Stackelberg game, auction theory can be used
for the time scheduling in the RF-powered backscatter cogni-
tive radio network as proposed in [21]. In the auction approach,
secondary transmitters, i.e., IoT devices, are buyers, and the
gateway is the seller, i.e., the auctioneer. Each secondary
transmitter submits its bid to the gateway to compete for
the time resource. The bid includes the transmission demand
and the valuation, i.e., the valuation of transmitting unit data
to the secondary transmitter. After collecting the bids, the
gateway performs the winner determination and time schedul-
ing and determines the prices that the winning secondary
transmitters need to pay. The heuristic algorithm with the
generalized Vickrey-Clarke-Groves (VCG) pricing scheme are
then adopted to solve the problem of the gateway. In fact,
the cognitive radio network environment may be dynamic
and uncertain. Therefore, the authors in [22] proposed to
employ the Deep Reinforcement Learning (DRL) [12], [13]
that enables the gateway to learn and derive the optimal time
scheduling polity to maximize the network throughput.

Although the RF-powered backscatter cognitive radio is
an effective solution to improve the network throughput of
the IoT systems, the data collected from the IoT devices is
still centralized in a server or in the cloud. The centralized
data aggregation scheme faces serious issues such as the
transparency, traceability, privacy and security. Blockchain has
been recently adopted for the data management in the IoT
systems [23], [24], [28]. In the form of a chain of blocks,
blockchain is actually a tamper-proof, distributed database or
ledger that records transactional data in a decentralized Peer-
to-Peer (P2P) network. As such, blockchain enables transac-
tions including sensing data to be recorded and processed
by a number of nodes over the whole network instead of a
centralized authority. Since the transactions must be agreed
and verified by the nodes before being recorded, blockchain
enhances the security and guarantees the data integrity. In
this regard, blockchain can be adopted to support an IoT
crowdsensing market as proposed in [25]. The market consists
of multiple sensing clouds, i.e., sellers, and multiple data
users, i.e., buyers. The sensing clouds perform data sensing
and transmit their data to the blockchain for distributed ledger
services such as data/transaction verification and trading. The
data users buy sensing service from the sensing clouds for their
own tasks, i.e., data analytics. To access the sensing service,
the data users rent a fraction of sensors in each sensing cloud
by responding to a smart contract of the sensing clouds over
the blockchain. As such, the service access and data delivery

processes are completely self-organized in the form of smart
contract without the requirement of an intermediary. From
the perspective of the sensing clouds and the data users, the
blockchain can be thus regarded as a decentralized platform as
a service. The sensing clouds and the users are self-interested,
and a hierarchical differential game is then used to model the
interaction between them. The equilibrium of the hierarchical
differential game is finally analyzed based on the Cauchy-
Lipschitz theorem [26].

III. SYSTEM MODEL

We consider a blockchain-based RF-powered backscatter
cognitive radio network as shown in Fig. 1. The network
consists of the primary transmitter, N IoT devices as sec-
ondary transmitters, a secondary gateway, and K blockchain
networks. Each secondary transmitter is able to use the primary
signal from the primary transmitter to harvest energy and
backscatter data. Also, it can actively transmit data to the gate-
way when the primary channel is not occupied. To coordinate
the data transmissions among the secondary transmitters, the
gateway as a network controller decides the time schedule for
the secondary transmitters. The gateway then broadcasts the
time schedule to the network. Based on the time schedule, each
secondary transmitter can harvest energy, backscatter data, or
actively transmit data to the gateway. The gateway selects
one of blockchain networks and determines the corresponding
transaction fee rate [27]. Note that we here consider a public
or consortium blockchain in which the block size is limited,
i.e., up to 1 MB, and there is a number of transactions from
other gateways and blockchain users. The gateway needs to
thus decide the appropriate transaction fee rate such that its
transaction will be early added to the block with a reasoable
storage cost. The gateway transmits the data to the selected
blockchain network as blockchain transactions for further
verification, storage and processing.

As such, the blockchain-based RF-powered backscatter
cognitive radio network is composed of two parts, i.e., the
RF-powered backscatter cognitive radio network and the
blockchain mining pool.

The primary transmitter transmits RF signal on a license
channel. The transmission is organized into frames, and
each frame is composed of Y time slots. In Frame t (see
Fig. 1), the primary transmitter uses b(t) time slots for its
own transmission. b(t) is called busy channel period that is
assumed to be random. The secondary transmitters transmit
their data to the mining pool through the gateway. The gateway
also schedules time slots for the secondary transmitters. In
particular, during the busy channel period, the gateway assigns
the time slots to all the secondary transmitters for energy
harvesting. The number of time slots for energy harvesting
is denoted by µ(t). Let ehn denote the number of energy units
that secondary transmitter n harvests in one busy time slot.
The harvested energy is stored in energy storage, e.g., a super-
capacitor, of the secondary transmitter. The capacity of the
energy storage is denoted by Cn. The secondary transmitter
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Fig. 1: Blockchain-based RF-powered backscatter cognitive radio network.

has a data queue which stores an incoming packet, e.g., from
its sensor device. Let Qn denote the maximum capacity of
the data queue and γn denote the probability that a packet
arrives at the queue. The gateway assigns b(t)−µ(t) time slots
of the busy channel period to the secondary transmitters for
transmitting their data by using backscatter communications.
This is called backscatter mode. The number of time slots
assigned to secondary transmitter n is denoted by αn(t), and
the number of data units transmitted in each time slot in the
backscatter mode is dbn. During the idle channel period that
has Y − b(t) time slots, the secondary transmitters transmit
their data to the gateway by using the license channel. This
is called active mode. The number of time slots assigned to
secondary transmitter n for the data transmission in the active
mode is denoted by βn(t). In each time slot of the active
mode, the secondary transmitter transmits dan data units from
the data queue, and the secondary transmitter consumes ean
energy units from its energy storage. Note that there may be
data transmission errors due to the low channel quality. The
data transmission in the backscatter mode and in the active
mode is successful with probabilities Sb

n and Sa
n, respectively.

A. Blockchain mining pool
Upon receiving data from the secondary transmitters, the

gateway creates the packet. Note that the size of the data
packet can be different for each time frame depending on
the number of data units that the gateway receives during the
time frame. The gateway then observes data states, energy

state, and blockchain networks’ states that are described and
presented in the next section. Based on the observations, the
gateway selects one of the blockchain networks for storing
the data. The gateway then creates a transaction that includes
the data packet and determines a transaction fee rate denoted
by F . Here, the transaction fee rate F is the cost that the
gateway is willing to pay the selected blockchain for storing
one data unit. The gateway then transmits the transaction to the
blockchain network for further processing. Here, the public or
consortium blockchain which operates with the Proof-of-Work
(PoW) protocol [30] is used to guarantee the high integrity
for the IoT data. Note, however, that the blockchain based
on Proof-of-Stake (PoS) and other consensus protocols can
also be adopted straightforwardly in the system model. An
integral of the blockchain is a consensus process in which a
number of consensus nodes distributed across the network are
required to complete the transaction validation and the block
mining task. The consensus nodes are also called miners. Each
miner, say miner i, has a memory pool or “mempool”, i.e.,
a waiting area, to store transactions sent from the gateway.
In our work, we assume that the mempools of the miners
have the same capacity that is Mmax data units. Note that
at a certain time slot, several transactions, e.g., transmitted
from other gateways and network users, may arrive at the
blockchain, and they are stored in the mempool of the miner.
The transactions stored in the mempool are called unconfirmed
transactions that are broadcast and stored in mempools of
all the miners in the network. Then, the consensus process
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works as follows. Each miner first collects transactions from
its mempool and aggregates a set of transaction records into a
block. Then, the miners find a nonce value and add it into the
block such that the hash value of the block is below a preset
threshold [31]. The process is known as mining. Once the
nonce value is found, the corresponding miner broadcasts its
successfully mined block to the whole network for verification.
If the majority of the miners agree that all transactions in the
new block are valid, the block is linked to the main blockchain
and the miner obtains a reward that consists of a fixed bonus
and the transaction fee. In general, the probability that the
transaction of the gateway is successfully added to the block
at the current time slot is higher if the transaction is assigned
with a higher fee rate [32]. The reason is that the miners may
spend substantial computing power and energy when verifying
a block of transactions from the mempool. Thus, the miners
need to be incentivized for the resources that they use to verify
the unconfirmed transactions. Apart from the fee rate, the
probability that the transaction of the gateway is successfully
added to the block depends on the maximum size of the block,
denoted by Bmax. In particular, as Bmax is small, the block
is not able to include a large number of transactions and the
probability becomes lower.

As the block is linked to the main blockchain, transactions
included in the block cannot be altered. Therefore, blockchain
guarantees the security and the trustworthiness of IoT data
stored in the blockchain. However, the blockchain system is
vulnerable to a potential attack called 51% attack1 or double-
spending attack [33]. Such an attack may happen as one
miner or a group of miners manages more than 50% of the
network hashing power, i.e., computing power. By controlling
the majority of the computing power on the network, the
attacker can interfere with the process of recording new blocks
of other miners, i.e., honest miners, or maliciously modify the
transactions. Therefore, the transaction transmitted from the
gateway can be attacked. Let pa denote the probability that
the transaction is attacked. As analyzed in [34], pa depends
on the numbers of blocks found by the honest miners and the
attacker in the network. pa is defined as follows:

pa =

1−
∑n
m=0

(
m+ n− 1

m

)
(pnqm − pmqn) if q < p,

1 if q ≥ p,
(1)

where n and m are, respectively, the numbers of blocks
that are found by the honest network, i.e., the network of
honest miners, and the attacker. p and q, p + q = 1, are the
probabilities that a block is found by the honest network and
the attacker, respectively. It is worth discussing the relationship
between q and the transaction fee rates. Typically, a transaction
that has a high data value corresponds to a higher transaction
fee rate. The attacker thus prefers to launch the attack to the
block including such a transaction since this is more effective.

1Our model is flexible, and other attacks, e.g., Sybil attack, can be
considered. However, to make the model understandable and tractable, we
consider the 51% attack attack which is the most primitive attack to any
blockchain networks.

The probability q that a block is found by the attacker is high
if the transactions included in the block have high data values.

As such, even if the transaction is added to the new
block, the transaction can still be attacked by the 51% attack
with probability pa as determined in (1). The transaction
transmission is considered to be “successful” if the transaction
is added to the new block at the current time slot and is
not attacked. The objective of the gateway is to maximize
the number of transactions and data units successfully stored
in the blockchain system by jointly finding an optimal time
scheduling among the secondary transmitters and determining
the optimal values of the transaction fee rate.

IV. PROBLEM FORMULATION

The state of the primary channel is dynamic, and the states,
i.e., the energy and data queue, of the secondary transmit-
ters are uncertain. Also, the blockchain environments’ states
including the mempool states are unpredictable. To achieve
the objectives of the gateway, we thus formulate a stochastic
optimization problem. The problem is defined by a tuple
< S,A,P,R >, where S is the state space of the network
or the gateway, A is the action space, P is the state transition
probability function with P (s′|s, a) being the probability that
the current state s ∈ S transits to the next state s′ ∈ S when
action a ∈ A is taken, and R is the reward function of the
network or the gateway.

A. State space

Observing the network environment helps the gateway to
learn and find its optimal policy in a faster and more effective
manner. In particular, the gateway needs to decide the energy
harvesting time, the data backscatter time, and the active
data transmission time, among the secondary transmitters to
maximize the network throughput. Therefore, the network
states should include states of the primary channel and those
of the secondary transmitters. Furthermore, the gateway must
decide an appropriate blockchain network for storage and
a transaction fee rate such that the transaction is success-
fully added to the block with the minimum storage cost.
The network state also includes the states of the blockchain
environment.

Let Sc denote the channel state. Sc represents the number
of busy time slots and is defined as follows:

Sc = {(b); b ∈ {0, 1, . . . , Y }}. (2)

The state space of secondary transmitter n is denoted by

Sn =
{

(qn, cn); qn ∈ {0, 1, . . . , Qn}, cn ∈ {0, 1, . . . , Cn}
}
,

(3)
where qn represents the queue state or data state, i.e., the
number of data units in the data queue, and cn represents the
energy state, i.e., the number of energy units in the energy
storage.

Now, we define the state of the blockchain environment. The
mempool states of K blockchain networks are broadcast in the
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network, and thus the state of the blockchain environment is
composed of the mempool states of the blockchain networks.
Denote Sk as the mempool state of blockchain network k.
Assuming that every transaction submitted to the mempool
is attached with a transaction fee rate F , where F is within
[Fmin, Fmax]. The transaction fee rate range is divided into M
equal intervals, i.e., (∆F1, . . . ,∆FM ). Sk refers to the current
number of data units and the corresponding transaction fee
rate intervals in the mempool of blockchain network k and is
defined by

Sk = {(mk
1 ,m

k
2 , . . . ,m

k
M )}, (4)

where mk
i is the current number of data units of the transac-

tions in blockchain network k that have transaction fee rates
within the interval of ∆Fi.

Then, the state space of the network is defined by

S = Sc ×
N∏
n=1

Sn ×
K∏
k=1

Sk, (5)

where × and
∏

represent the Cartesian product.

B. Action space

The gateway needs to decide the time scheduling for the
secondary transmitters, the blockchain network, and the trans-
action fee rate attached to the transaction. In particular for the
time scheduling, the gateway decides the number of time slots
for the energy harvesting, the data backscatter, and the active
transmission. Thus, the action space is defined as follows:

A =

{
(µ, α1, . . . , αN , β1, . . . , βN , κ, f); (6)

µ+

N∑
n=1

αn ≤ b, µ+

N∑
n=1

(αn + βn) ≤ Y,

κ ∈ {1, 2, . . . ,K}, f ∈ {1, 2, . . . ,M}

}
,

where µ is the number of busy time slots for the energy
harvesting for the secondary transmitters, αn is the number
of busy time slots assigned to secondary transmitter n for
the data transmission in the backscatter mode, and βn is the
number of idle time slots assigned to secondary transmitter n
for the data transmission in the active mode. The constraint
µ +

∑N
n=1 αn ≤ b ensures that the number of time slots

for the energy harvesting and the data transmission in the
backscatter mode do not exceed the number of busy time
slots. The constraint µ +

∑N
n=1(αn + βn) ≤ Y ensures that

the number of time slots for the energy harvesting and the
data transmissions in the backscatter and active modes do not
exceed the total number of time slots of the frame. In (7), κ is
the index that refers to blockchain network κ selected by the
gateway, and f is the index that refers to the transaction fee
rate interval ∆Ff . For example, for f = 2, this means that the
gateway decides the transaction fee rate interval ∆F2. Based

on the index, the transaction fee rate that is attached to the
transaction is calculated by

F = Fmin + (f − 1 + η)
Fmax − Fmin

M
, (7)

where η ∈ [0, 1] is pre-defined by the gateway to indicate the
representative value of the transaction fee rate interval. For
example, when η = 1/2 and f = 2, the transaction fee rate
attached to the transaction is the middle value of interval ∆F2.

C. State transition
Now, we consider state transition of the network. In the busy

channel period, the number of time slots assigned to secondary
transmitter n for the energy harvesting is b(t) − αn. Thus,
after the busy channel period, the number of energy units in
the storage of the secondary transmitter changes from cn to
c
(1)
n as follows:

c(1)n = min
(
cn + (b(t)− αn)ehn, Cn

)
. (8)

Likewise, the number of data units in the data queue of
secondary transmitter n changes from qn to q(1)n as follows:

q(1)n = max
(
0, qn − αndbn

)
. (9)

During the idle channel period, secondary transmitter n re-
quires q(1)n /dan time slots to transmit q(1)n data units. However,
the secondary transmitter is only assigned with βn time slots
for the data transmission. Thus, it actually transmits its data
units in min(βn, q

(1)
n /dan) time slots.

At the end of the idle channel period, the energy state of
secondary transmitter n changes from c

(1)
n to c′n as follows:

c′n = max
(
0, c(1)n −min(βn, q

(1)
n /dan)ean

)
. (10)

Likewise, the number of data units in the data queue of
secondary transmitter n changes from q

(1)
n to q(2)n as follows:

q(2)n = max
(
0, q(1)n −min(βn, c

(1)
n /ean)dan

)
. (11)

Note that at the end of each time frame, the secondary
transmitters aggregate their sensing data and update the data to
their queues. Assuming that the number of data units arriving
at secondary transmitter n during the time frame is zn, which
typically follows the Poisson distribution Pois(λn) [36]. λn
is the data arrival rate, which indicates the average number of
data units designated in a time frame. Then, the probability
of w data units arriving in secondary transmitter n during the
time frame is

Pr(zn = w) = e−λ
λw

w!
. (12)

As such, at the end of the time frame, the number of data
units in the data queue of secondary transmitter n changes
from q

(2)
n to q′n as follows:

q′n = q(2)n + zn. (13)

The total number of data units that N secondary transmitters
transmit to the gateway in the time frame is

D =

N∑
n=1

Sb
n(q(1)n − qn) +

N∑
n=1

Sa
n(q(2)n − q(1)n ). (14)
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The first and the second terms of (14) refer to the total
numbers of data units transmitted in the backscatter mode and
the active mode, respectively. Then, the gateway (i) includes
D data units into a packet, (ii) generates a transaction, and
(iii) transmits the transaction to the mempool.

The transition of the mempool state from time frame t to
t + 1 depends on (i) transactions arriving in the mempool,
and (ii) mining process in which the miner adds unconfirmed
transactions into the new block at time slot t. Note that apart
from the transaction transmitted by the gateway, there are
transactions transmitted, e.g., by other gateways or users in
the network. We assume that there are Z other transactions
arriving in the mempool in every time frame. Each transaction
has a data size and a transaction fee rate that follow the
uniform distributions U [1, Dmax] and U [Fmin, Fmax], respec-
tively. In the mining process, each miner attempts to collect
transactions as many as possible from the mempool to form
a new block. The new block is assumed to have a size of
B data units, B ≤ Bmax. Then, the new mempool state
is determined based on the remaining transactions in the
mempool. In particular, the new mempool state is composed
of the number of data units and the corresponding transaction
fee rates in the mempool.

D. Reward function

The objective of the problem is to maximize the number
of data units stored in the blockchain while minimizing the
storage cost. Therefore, the reward function R of the gateway
should consist of two components, i.e., the positive utility
Rsuccess, and the transaction fee CT . The positive utility Rsuccess
depends on the throughput Dth that is defined as the number
of data units from the gateway successfully stored in the
blockchain in each time frame. The data units are considered
to be successfully stored in the blockchain if the transaction
including these data units is added to the new block at the
current time frame and is not attacked. In particular, in time
frame t, if the transaction containing D data units is included
in the new block and is not attacked, then Dth = D, and
otherwise Dth = 0. Assuming that the gateway receives a
reward of ρ for each successfully stored data unit, then the
positive utility that gateway receives during time frame t is

Rsuccess = Dthρ. (15)

The transaction fee CT depends on the number data units
included in the transaction and the transaction fee rate F that
the gateway is willing to pay. CT is calculated as follows:

CT = DF. (16)

The objective is to maximize the utility of the gateway and
the throughput of network while minimizing the transaction
fee. Thus, the reward function of the network is defined as

r = Rsuccess − CT . (17)

In summary, the gateway observes the network to define the
initial state s0 ∈ S. Given the current state s ∈ S, the gateway

executes an action a ∈ A that includes the time schedule and
the transaction fee rate. The gateway then broadcasts the time
schedule to the secondary transmitters in the network. Each
secondary transmitter can harvest energy, backscatter its data
or actively transmit its data according to the time schedule. The
gateway generates the transaction and sends it to the mining
pool. At the end of the time frame, the gateway receives the
reward r(s, a). Also, the network state transits to a new one
s′ ∈ S . The problem of the gateway is to find the optimal
policy π∗ : S → A to maximize the long-term reward Φ that
is defined by

Φ =

T∑
t=0

γtrt, (18)

where rt = E [r(st, at)], T is the length of the time horizon,
and γ is the discount factor for 0 ≤ γ < 1. The discount factor
γ determines the importance of future rewards. A factor of 0
will make the agent short-sighted by only considering current
rewards. γ should be set less than 1 to indicate that future
rewards are worth less than immediate rewards.

To solve the stochastic problem of the gateway, the standard
learning algorithms such as Q-learning [35] are typically
adopted. However, the Q-learning can efficiently solve the
stochastic optimization problem as the state and action spaces
are small. For our model, the problem is complicated with
the large state and action spaces. Specifically, the gateway
needs to update a multi-dimensional state which includes the
channel state, the states of the secondary transmitters and the
mempool state. Furthermore, the gateway needs to determine
the joint time schedule, blockchain network and transaction fee
rate decisions. Thus, the Q-learning may not be able to find
the optimal policy. To overcome the shortcoming of the Q-
learning, we propose to employ, evaluate, and assess the DRL
with D3QN [29] to find the optimal policy of the gateway.

V. DEEP REINFORCEMENT LEARNING ALGORITHM

Similar to the Q-learning, the DRL allows the gateway
to map its state to an optimal action. However, a Deep
Neural Network (DNN) with weights θ is used to derive the
approximate values Q∗(s, a) instead of the Q-table. The input
of the DNN includes the state of the network, and the output
includes Q-values Q(s, a;θ) of all possible actions. Q(s, a)
can be expressed by two elements as follows:

Q(s, a) = V(s) +A(s, a), (19)

where V(s) is the value of state s, and A(s, a) is the advantage
of taking action a at state s. In particular, A(s, a) shows how
much better to take action a compared with other possible
actions at that state. As such, the DRL using the D3QN
separates the estimator of the two elements by dividing the
DNN into two streams: one that uses value stream parameters
(θ, ν) to estimate the state value V(s), and one that uses
advantage stream parameters (θ, ξ) to estimate the advantage
for each action A(s, a). By decoupling the estimation, V(s)
is determined, and thus the DRL can learn valuable states
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without learning the effect of each action at each state. Then,
these two streams are combined through a special aggregation
layer to estimate Q(s, a) as follows:

Q(s, a; θ) =V(s; θ, ν) (20)

+

(
A(s, a; θ, ξ)− 1

|A|
∑
a′

A(s, a′; θ, ξ)

)
,

where |A| is the dimension of vector A(s, a; θ, ξ). Note that
the advantage function estimator is forced to be zero at the
chosen action by subtracting the average advantage of all
possible actions of the state as in (20). This is to address the
identifiability issue that is not able to find V(s) and A(s, a)
given Q(s, a) by using (19).

In general, the gateway executes action a and receives
experience < s, a, r, s′ >. Based on the experiences, the
gateway updates the weights of the DNN. In fact, when
the Q-network is updated, the Q-values may change. This
causes a high fluctuation of the value estimations. To stabilize
the network performance, the DRL uses the D3QN that is
composed of a target Q-network with weights θ′ and an online
Q-network with weights θ. Weights θ′ of the target Q-network
are updated by copying weights θ of the online Q-network
after every L− steps. The online Q-network updates its weights
θ at each iteration to minimize the loss function defined as

L = E
[(
y −Q(s, a;θ)

)2]
, (21)

where y is the target value. y is determined by

y = r + γQ
(
s′, arg max

a′∈A
Q(s′, a′;θ);θ′

)
. (22)

Note that the expected value y is calculated based on the
immediate reward r, the discount factor γ and the estimate of
the optimal future value. The optimal future value is obtained
from the weights θ′of the target network, and the selection of
an action, in the arg max, is based on the online weights θ. As
such, the DRL is able to prevent the overoptimistic estimation
problem in which the same value is used to both decide the
best action, i.e., with the highest expected reward, and estimate
the action value.

To overcome the instability of the learning process, the ex-
perience replay strategy is used. In particular, a replay memory
D is used to store experiences < s, a, r, s′ >. The online Q-
network is trained by using mini-batches of experiences that
are randomly sampled from the replay memory. The Q-values
obtained by the online Q-network are used to select actions,
e.g., through the ε-greedy policy, and obtain the new experi-
ences. The experiences are then stored in the replay memory.
The experiences in the replay memory are independent and
identically distributed, and thus the correlation among the
training examples is reduced. Therefore, the experience replay
strategy ensures that the optimal policy cannot be driven to a
local minima.

Algorithm 1 shows how to implement the D3QN algorithm
to achieve the optimal time schedule, blockchain network
selection, and transaction fee rate decision in the RF-power

Algorithm 1 The D3QN algorithm for time scheduling,
blockchain selection and transaction fee rate decisions of the
gateway.

Input: Action space A, number of training episodes Te, number
of steps in one episode Ts, discounted factor γ, mini-batch size B,
target network replacement frequency Fr;

Output: Optimal policy π∗.
1: Initialize: Replay memory D, online network with random

weights θ, target network with weights θ′ = θ.
2: for episode i = 1 to Te do:
3: Initialize network state s.
4: for step j = 1 to Ts do
5: Choose action a according to ε−greedy from Q(s, a;θ).
6: Broadcast scheduling massages to secondary transmitters.
7: Receive data, compress into packet, submit transaction

to mining pool of selected blockchain network, and calculate
immediate reward r.

8: Receive state massages from primary transmitter and
N secondary transmitters, observe mempool of all connected
blockchain networks to update new state s′.

9: Store tuple < s, a, r, s′ > in D.
10: Sample H experiences ek =< sk, ak, rk, s

′
k > from D.

11: for k = 1 to H do
12: Calculate

yk = rk + γQ
(
s′k, arg max

a′∈A
Q(s′k, a′;θ);θ′

)
.

13: end for
14: Define L = 1

H

∑H
k=1

(
yk −Q(sk, ak;θ)

)2
.

15: Update θ by performing a gradient descent step on L.
16: Reset θ′ = θ every Fr steps.
17: Set s← s′.
18: end for
19: end for

backscatter cognitive radio based blockchain network. In the
algorithm, each step j corresponds to a time frame. The
algorithm is implemented in two phases, i.e., the experience
phase and the training phase. In the experience phase, the
gateway performs an action a ∈ A according to the ε-
greedy policy. At the end of the time frame, the gateway
records experience e =< s, a, r, s′ > the replay memory.
In the training phase, the algorithm takes a mini-batch of H
experiences ek =< sk, ak, rk, s

′
k > from D to train the online

Q-network. The target value yk corresponding to experience
ek is calculated by using both the online Q-network and target
Q-network according to (22). Then, the mean loss L over the
mini-batch is determined according to (21). Weights θ of the
online network are adjusted by performing the gradient descent
step on L. Weights θ′ of the target network are updated by
setting θ = θ′ in every Fr steps.

VI. PERFORMANCE EVALUATION

In this section, we present simulation results to evaluate the
performance of the proposed DRL algorithm.

A. Parameter setting

Simulation parameters for the blockchain-based RF-
powered backscatter cognitive radio network are shown in
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Table I. In particular, each time frame consists of 7 time
slots. The gateway performs the allocation of time slots to
the secondary transmitters. The maximum data queue size of
each secondary transmitter is set to 7 units, and the energy
storage capacity is set to 5 units. The number of blockchain
networks is K = 3.

TABLE I: Parameters of the backscatter cognitive radio net-
work and the blockchain networks

Parameters Values
Number of time slots in a time frame (F ) 7
Number of busy time slots in a time frame (b(t)) [1, 6]
Data queue size (Qn) 7
Data state (qn) [0, Qn]
Energy storage capacity (Cn) 5
Energy state (cn) [0, Cn]
Data arrival rate (λn) [1, 10]
(eh, db, et, dt) (1, 1, 1, 2)
Mempool size (Mmax) 50
Maximum size of a block (Bmax) 30
Number of transaction fee intervals (M ) 4
[Fmin, Fmax] [0.01, 0.8]
(ρ, η) (1, 0.2)
q [0, 0.1]

TABLE II: Parameters of the algorithms

Parameters Values
Fully connected neuron network size 32x32x32
Activation ReLU
Optimization algorithm Adam
Learning rate (δ) 0.001
Discount rate (γ) 0.9
ε 0.9 → 0
Mini-batch size (H) 32
Replay memory size 50000
Number of steps in one episode (Ts) 200
Number of training episodes (Te) 50000
Target network replacement frequency (Fr) 10000

Table II lists parameters for implementing the DRL al-
gorithm. These parameters are similar to those in other
works [22], [28]. Accordingly, the DRL algorithm is imple-
mented by using the TensorFlow deep learning library. The
learning rate is set to low, i.e., 0.001, to ensure that the training
phase does not miss local minima. However, this may slow
down the training progress. To achieve the fast and smooth
convergence, we use the Adam optimizer that allows to adjust
the learning rate during the training phase. The training data
includes past experiences of the gateway that are stored in
replay memory D. The gateway can receive its experience
(s, a, rk, s

′) by executing an action a. The ε−greedy policy is
used for executing actions. Here, we set ε = 0.9 that balances
the exploration and exploitation. This means that a random
action is selected with a probability of ε = 0.9, and the best
action, i.e., the action that maximizes the Q-value, is selected
with a probability of 1 − ε = 0.1. To move from a more
explorative policy to a more exploitative one, the value of ε is
linearly reduced from 0.9 to 0 during the training phase. The
DRL algorithm is expected to obtain the long-term reward,
and thus the discount factor is set to 0.9.

To evaluate the proposed DRL algorithm, we introduce
four baseline schemes as follows:
◦ Q-learning [35]: This scheme is also known as
reinforcement learning algorithm.
◦ Harvest-then-transmit (HTT) [16]: Each secondary
transmitter harvests energy as the primary channel is busy,
and the secondary transmitters transmits data as the channel
is idle.
◦ Backscatter policy [4]: Each secondary transmitter only
performs backscattering as the primary channel is busy.
◦ Random policy: The gateway assigns randomly time slots to
the secondary transmitters for the energy harvesting and data
backscatter as the primary channel is busy. As the channel is
idle, the time slots are randomly assigned to the secondary
transmitters for the active data transmissions.

Note that in the HTT, Backscatter, and Random policies, the
transaction fee rates attached with the transactions may not be
optimized. Instead, the gateway determines the transaction fee
rates by using common mechanisms such as Bitcoin trans-
action fee estimation [41]. The main idea of the mechanism
is that the transaction fee rate is calculated according to the
average transaction fee rate of the last block of the main block
chain.

B. Numerical Results

In this section, we provide the performance comparisons be-
tween the proposed DRL algorithm and the baseline schemes
in different scenarios. In particular, the convergence compar-
ison is shown in Fig. 4, the performance comparisons when
the number of busy time slots per time frame varies are shown
in Figs. 5, 6, 7, and 8, the performance comparison when the
packet arrival probability is varied is shown in Fig. 9, the
performance comparisons when the probability that a block
is found by the attacker are shown in Figs. 10 and 11, and
the performance evaluations of the DRL algorithm when the
number of blockchain networks varies are shown in Fig. 12.
Before presenting the performance comparisons among the
algorithms, we discuss how the DRL algorithm obtains the
optimal policy to maximize the long-term reward.

1) Optimal policy obtained by the DRL algorithm: With the
DRL algorithm, the total reward depends heavily on the time
scheduling policy of the gateway. This means that to achieve
the high total reward, the gateway needs to take proper actions,
e.g., assigning the number of time slots to the secondary trans-
mitters for the data backscatter, data transmission, and energy
harvesting. Thus, it is worth considering how the gateway
takes the optimal actions for each secondary transmitter given
its state. Without loss of generality, we consider the average
number of time slots that the gateway assigns to secondary
transmitter 1 for the data backscatter (Fig. 2) and the data
transmission (Fig. 3).

As shown in Fig. 2, the average number of time slots as-
signed to secondary transmitter 1 for the backscatter increases
as its data queue increases. The reason is that as the data queue
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Fig. 2: Time slots assigned to secondary transmitter 1 for the
backscatter.

is large, the secondary transmitter needs more time slots to
backcastter its data units. Thus, the gateway assigns more time
slots to the secondary transmitter to maximize the throughput.
It is also observed from Fig. 2 that the average number of time
slots assigned to secondary transmitter 1 for the backscatter
increases as its energy state increases. The reason is that as
the energy state of the secondary transmitter is already high,
the gateway assigns fewer time slots for the energy harvesting
and prioritizes more time slots for the backscatter to improve
the network throughput.
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Fig. 3: Time slots assigned to secondary transmitter 1 for the
active transmission.

A high energy state allows the secondary transmitter to
transmit more data units in the active transmission. Therefore,
the gateway should assign more times slots to the secondary
transmitter for the active data transmission. This is consistent
with the simulation results shown in Fig. 3. Accordingly,
the average number of time slots assigned to the secondary
transmitter increases as its energy state increases. The figure
also shows that as the data queue increases, the gateway
assigns more data units to the secondary transmitter. This is
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Fig. 4: Convergence comparison.

evident since more data units in the data queue require more
time slots for the active transmission.

2) Reward and convergence comparison: Next, we com-
pare rewards obtained by the algorithms as well as the
convergence speed of the algorithms. Fig. 4 illustrates the
rewards obtained by the DRL, Random, HTT, Backscatter and
Q-learning schemes. In fact, to enable the Q-learning scheme
to run in our computation environment, we reduce the number
of blockchain to K = 1, and we reduce the state and action
spaces by setting the following parameters: F = 5, Qn = 5,
and En = 3. Moreover, we reduce the mempool size to 15
and the size of the block to 10. As seen, the DRL scheme
converges to the reward that is much higher than those of the
baseline schemes. In particular, the reward obtained by the
DRL is around 880, while those obtained by the Q-learning,
Random, HTT, and Backscatter schemes are 757, 603, 488
and 202, respectively. As such, the reward obtained by the
Q-learning scheme is lower than that obtained by the DRL
scheme. The reason is that the state and action spaces are
still too large for the Q-learning to update the whole Q-table.
The Q-learning is thus not able to find the optimal policy.
Moreover, the convergence speed of the DRL scheme is much
faster than that of the Q-learning scheme. Specifically, the
DRL scheme converges within 2500 episodes, while the Q-
learning scheme converges within 35000 episodes.

3) Performance comparison: We evaluate the proposed
DRL scheme and compare the performance achieved by the
proposed DRL scheme with those achieved by the baseline
schemes by varying simulation parameters. Note that the
parameters such as the data queue size, energy capacity, and
the number of blockchain networks are set as in Table 1. Given
the parameters, the Q-Learning algorithm cannot be applied in
our computation environment due to the high complexity of
the problem.

(a) Impact of the number of busy time slots per frame:
Figure 5 shows the performance comparison among the

schemes as the number of busy time slots per frame is varied.
As shown in the figure, the proposed DRL scheme significantly
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Fig. 5: Average throughput versus the number of busy time
slots.
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Fig. 6: Transaction fee rate versus the number of busy time
slots.

improves the throughput compared with the baseline schemes.
Specifically, as the number of busy time slots per time frame
is 3, the proposed DRL scheme improves the throughput up to
452.4%, 167.1% and 102.9% compared with the Backscatter,
HTT, and Random schemes, respectively. In particular for the
DRL, Random, and HTT schemes, the average throughput
initially increases and then decreases as the number of busy
time slots per time frame increases. The reason is that as the
number of busy time slots per time frame is small, i.e., 1 and
2, the secondary transmitters favor the energy harvesting for
the active data transmission during the idle channel period.
However, if the busy channel period is long, i.e., the idle
channel period is short, the secondary transmitters may have
a low opportunity to transmit data from their data queues.

Next, we compare the transaction fee rate of the proposed
DRL scheme and the baseline schemes as the number of busy
time slots per time frame increases. Here, the transaction fee
rate refers to the average cost that one data unit needs to be
successfully stored in the blockchain. Thus, the transaction fee
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Fig. 7: Average throughput versus the number of time slots
per time frame.

rate is expected to be low. As shown in Fig. 6, the transaction
fee rate of the proposed DRL scheme is significantly improved
compared with those of the baseline schemes. In particular, the
transaction fee rate of the proposed DRL scheme is 75.3%
smaller than that of the Backscatter scheme, 78.4% smaller
than that of the HTT scheme, and 81.4% smaller than that
of the Random scheme. Note that the transaction fee rate of
the DRL scheme slightly increases as the number of busy
time slots per time frame increases, e.g., from 1 to 3. The
reason can be explained as follows. As the number of busy
time slots increases, the transaction that is sent from the
gateway to the blockchain should include more data units.
Given the constraint of the block size, the transaction has a
lower probability to be added to the block. Thus, the gateway
should choose a high transaction fee rate to improve the
opportunity for the transaction to be successfully added to the
block.

(b) Impact of the number of time slots per frame:
As shown in Fig. 7, the proposed DRL scheme always

outperforms the baseline schemes in terms of throughput as
the number of time slots per time frame varies. Moreover,
the average throughput of the proposed DRL, Random, and
HTT schemes increases with the increase of the frame length.
The reason is that the secondary transmitters have more
time slots for transmitting their data. In particular for the
Backscatter scheme, the throughput remains stable with the
increase of the frame length. This is because of that the data is
only backscattered by secondary transmitters in busy channel
period, and the busy channel period is fixed when increasing
the frame length.

Note that as the frame length increases, the transaction
fee rates of the proposed scheme and the baseline schemes
generally increase as shown in Fig. 8. The reason is that as the
frame length increases, the data packet sent to the blockchain
may have a larger size. To have a higher opportunity to
be added in the block, the gateway should choose a higher
transaction fee rate.
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Fig. 8: Transaction fee rate versus the number of time slots
per time frame.

(c) Impact of the data arrival rate:
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Fig. 9: Average throughput versus the data arrival rate.

The performance improvement of the proposed DRL
scheme compared with the baseline schemes is maintained
when varying the data arrival rate. As shown in Fig. 9, the
average throughput obtained by the proposed DRL scheme
is significantly higher than those obtained by the baseline
schemes. For example, given a data arrival rate of 8, the
average throughput obtained by the proposed DRL scheme is
up to 9.1 data units per time frame, while those obtained by
the Random, HTT, and Backscatter schemes are 4.4, 3.3, and
1.6 data units per time frame, respectively. The gap between
the proposed DRL scheme and the baseline schemes becomes
larger as the data arrival rate increases.

(d) Impact of the blockchain network environments:
Next, we compare the performance obtained by the DRL

scheme and that obtained by the baseline schemes as the
probability q that a block is found by the attacker varies. For
the comparison purpose, we assume that the probability q in
the different blockchain networks is the same. As shown in
Fig. 10, compared with the baseline schemes, the proposed
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Fig. 10: Average throughput versus the probability that a new
block found by attacker.
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Fig. 11: Transaction fee rate versus the probability that new
block found by attacker.

DRL scheme still achieves the highest average throughput. It
is also seen from the figure that as q increases, the average
throughputs of the schemes decrease significantly. The reason
is that more transactions are attacked. This may incur a high
cost due to storing transactions in the attacked blocks. As a
result, the transaction fee rate rises significantly as shown in
Fig. 11.

(d) Impact of the number of blockchain networks: Finally,
we evaluate the performance of the proposed DRL scheme
when the number of blockchain networks K varies. As seen
in Fig. 12(a) and (b), as the number of blockchain networks
increases, the average throughput increases and the transaction
fee rate decreases. The reason is that the increase of the
number of blockchain networks allows the gateway to select
a better blockchain network in terms of high security and low
cost storage. As a result, the total reward increases as shown
in Fig. 12(c).

In summary, the simulation results shown in this section
confirm that the DRL algorithm is able to solve the compu-
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Fig. 12: DRL performance in terms of (a) average throughput, (b) transaction fee rate, and (c) total reward.

tation expensive problem of the large action and state spaces
of the Q-learning. Furthermore, the proposed DRL algorithm
can be used for the gateway to learn the optimal policy. The
optimal policy allows the gateway to optimally assign time
slots to the secondary transmitters for the energy harvesting,
data backscatter, and data transmission under the dynamics,
uncertainty, and unpredictability of the blockchain-based RF-
powered backscatter cognitive radio network. In addition,
the optimal policy enables the gateway to decide the best
blockchain network with the appropriate transaction fee rate.
As a result, the optimal policy leads to the network throughput
maximization and the transaction fee minimization.

VII. CONCLUSION

In this paper, we have presented the DRL algorithm for
the time scheduling, blockchain selection, and transaction fee
rate decision in the blockchain-based RF-powered backscatter
cognitive radio networks. Specifically, we have formulated the
time scheduling, blockchain selection, and transaction fee rate
decisions of the secondary gateway as a stochastic optimiza-
tion problem. To solve the problem, we have developed a
DRL algorithm using D3QN. The simulation results show that
the proposed DRL algorithm enables the gateway to learn an
optimal policy that maximizes the network throughput while
minimizing the data storage cost. The throughput obtained by
the proposed DRL algorithm is significantly higher than those
of the baseline algorithms including Q-learning, random, HTT
and backscatter policies.
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