
Automatic moth detection from trap images for pest management

Weiguang Ding, Graham Taylor

School of Engineering
University of Guelph

50 Stone Rd. E., Guelph, Ontario, Canada N1G 2W1
{wding,gwtaylor}@uoguelph.ca

Abstract

Monitoring the number of insect pests is a crucial component in pheromone-based pest management systems. In this
paper, we propose an automatic detection pipeline based on deep learning for identifying and counting pests in images
taken inside field traps. Applied to a commercial codling moth dataset, our method shows promising performance both
qualitatively and quantitatively. Compared to previous attempts at pest detection, our approach uses no pest-specific
engineering which enables it to adapt to other species and environments with minimal human effort. It is amenable to
implementation on parallel hardware and therefore capable of deployment in settings where real-time performance is
required.

Keywords: Precision agriculture, Integrated pest management, Pest control, Trap images, Object detection,
Convolutional neural network

1. Introduction

Monitoring is a crucial component in pheromone-based pest control [1, 2] systems. In widely used trap-based
pest monitoring, captured digital images are analysed by human experts for recognizing and counting pests. Manual
counting is labour intensive, slow, expensive, and sometimes error-prone, which precludes reaching real-time perfor-
mance and cost targets. Our goal is to apply state-of-the-art deep learning techniques to pest detection and counting,
effectively removing the human from the loop to achieve a completely automated, real-time pest monitoring system.

Plenty of previous work has considered insect classification. The past literature can be grouped along several
dimensions, including image acquisition settings, features, and classification algorithms. In terms of image sources,
many previous methods have considered insect specimens [3, 4, 5, 6, 7, 8]. Specimens are usually well preserved
and imaged in an ideal lab environment. Thus specimen images are consistent and captured at high resolution. In a
less ideal but more practical scenario, some other works attempt to classify insects collected in the wild, but imaged
under laboratory conditions [9, 10, 11, 12, 13, 14, 15]. In this case, image quality is usually worse than the specimen
case, but researchers still typically have a chance to adjust settings to control image quality, such as imaging all of the
insects under a standard orientation or lighting.

From an algorithmic perspective, various types of features have been used for insect classification, including wing
structures [3, 4, 5, 6, 7], colour histogram features [16, 17], morphometric measurements [18, 19, 7, 8], local image
features [16, 17, 20, 21, 22, 23], and global image features [24]. Different classifiers were also used on top of these
various feature extraction methods, including support vector machines (SVM) [20, 8, 11], artificial neural networks
(ANN) [8, 17, 18], k-nearest neighbours (KNN) [24, 21], and ensemble methods [9, 10, 21]. In general, however, these
proposed methods were not tested under real application scenarios, for example, images from real traps deployed for
pest monitoring.

Object detection involves also localizing objects in addition to classification. A few attempts have been made
with respect to insect detection. One option is to perform a “sliding window” approach, where a classifier scans over
patches at different locations of the image. This technique was applied for inspection of bulk wheat samples [25],
where local patches from the original image were represented by engineered features and classified by discriminant
analysis. Another work on bulk grain inspection [26] employed different customized rule-based algorithms to detect

Preprint – to appear in Computers and Electronics in Agriculture

ar
X

iv
:1

60
2.

07
38

3v
1 

 [
cs

.C
V

] 
 2

4 
Fe

b 
20

16



different objects, respectively. The other way of performing detection is to first propose initial detection candidates
by performing image segmentations. These candidates are then represented by engineered features and classified
[27, 28]. All of these insect detection methods are heavily engineered and work only on specific species under
specific environments, and are not likely to be directly effective in the pest monitoring setting.

There are two main challenges in detecting pests from trap images. The first challenge is low image quality,
due to constraints such as the cost of the imaging sensor, power consumption, and the speed by which images can
be transmitted. This makes most of the previous work impractical, that is, those based on high image quality and
fine structures. The second challenge comes from inconsistencies which are driven by many factors, including illu-
mination, movement of the trap, movement of the moth, camera out of focus, appearance of other objects (such as
leaves), decay or damage to the insect, appearance of non-pest (benign) insects, etc. These make it very hard to design
rule-based systems. Therefore, an ideal detection method should be capable and flexible enough to adapt to different
varying factors with a minimal amount of additional manual effort other than manually labelled data from a daily pest
monitoring program.

Apart from the insect classification/detection community, general visual object category recognition and detection
has been a mainstay of computer vision for a long time. Various methods and datasets [29, 30] have been proposed
in the last several decades to push this area forward. Recently, convolutional neural networks (ConvNets) [31, 32]
and their variants have emerged as the most effective method for object recognition and detection, by achieving
state-of-the-art performance on many well recognized datasets [33, 34, 35], and winning different object recognition
challenges [36, 32, 37].

Inspired by this line of research, we adopt the popular sliding window detection pipeline with convolutional neural
networks as the image classifier. First, raw images are preprocessed with colour correction. Then, trained ConvNets
are applied to densely sampled image patches to predict each patch’s likelihood of containing pests. Patches are
then filtered by non-maximum suppression, after which only those with probabilities higher than their neighbours
are preserved. Finally, the remaining patches are thresholded. Patches whose probability meet the threshold are
considered as proposed detections.

This paper makes two main contributions. First, we develop a ConvNet-based pest detection method, that is
accurate, fast, easily extendable to other pest species, and requires minimal pre-processing of data. Second, we
propose an evaluation metric for pest detection borrowing ideas from the pedestrian detection literature.

2. Data collection

In this section, we describe the collection, curation, and preprocessing of images. Details of detection performed
on processed images are provided in Section 3.

2.1. Data acquisition

RGB colour images are captured by pheromone traps installed at multiple locations by a commercial provider of
pheromone-based pest control solutions, whose name is withheld by request. The trap contains a pheromone lure, an
adhesive liner, a digital camera and a radio transmitter. The pheromone attracts the pest of interest into the trap where
they become stuck to the adhesive surface. The digital images are stored in JPEG format at 640×480 resolution, and
transmitted to a remote server at fixed time point daily. Codling moths are identified and labelled with bounding boxes
by technicians trained in entomology. Only one image from each temporal sequence is labelled and used in this study,
so labelled images do not have temporal correlation with each other. As a result, all of the labelled moths are unique.
Figure 1a shows a trap image with all the codling moth labelled with blue bounding boxes. Figure 1b shows an image
containing no moths but cluttered with other types of insects. High resolution individual image patches are shown
later in Figure 11, with their characteristics analysed in Section 5.3.

2.2. Dataset construction

The set of collected images is split randomly into 3 sets: the training set, the validation set and the test set. After
splitting, the statistics of each set is roughly the same as the entire dataset, including the ratio between the number
of images with or without moths, and number of moths per image. Table 1 provides specific statistics on the entire
dataset and the three splits subsequently constructed.

2



(a) Trap containing moths. Blue rectangles indicate codling
moths labelled by technicians.

(b) Trap containing no moths. The large object in the centre
is a pheromone lure.

Figure 1: Examples of images captured within the pheromone traps. Best viewed in colour.

Dataset Total # # images with moth # images without moth # moths avg. # moths per image
Total 177 133 44 4447 25.1

Training 110 83 27 2724 24.8
Validation 27 20 7 690 25.6

Test 40 30 10 1033 25.8

Table 1: Statistics of constructed datasets.

2.3. Preprocessing

Trap images were collected in real production environments, which leads to different imaging conditions at differ-
ent points in time. This is most apparent in illumination, which can be seen in Figure 2a. To eliminate the potential
negative effects of illumination variability on detection performance, we perform colour correction using one variant
[38] of the “grey-world” method. This algorithm assumes that the average value of red (R), green (G) and blue (B)
channels should equal to each other. Specifically, for each image, we set the gain of the R and B channels as follows:

Gred = µred/µgreen, Gblue = µblue/µgreen (1)

where µred, µgreen and µblue are the original average intensities of the red, green and blue channels, respectively.
Gred and Gblue are multiplicative gains applied to the pixel intensity values of the red and blue channels, respectively.
Figure 2b shows images processed by the grey-world algorithm. We see that the images are white-balanced to have
similar illumination, but still maintain rich colour information which can be a useful cue for detection downstream.
In this paper, all images are white-balanced prior to detection.

3. Detection pipeline

The automatic detection pipeline involves several steps, as shown in Figure 3. We take a sliding window approach,
where a trained image classifier is applied to local windows at different locations of the entire image. The classifier’s
output is a single scalar p ∈ [0, 1], which represents the probability that a particular patch contains a codling moth.
These patches are regularly and densely arranged over the image, and thus largely overlapping. Therefore, we perform
non-maximum suppression (NMS) to retain only the windows whose respective probability is locally maximal. The
remaining boxes are then thresholded, such that only patches over a certain probability are kept. The location of these

3



(a) Original images (b) Images processed by the “grey world” algorithm [38].

Figure 2: Illustration of grey world colour correction. Best viewed in colour.

0.93

0.21

0.65

0.71

0.05

0.11

Thresholding

Non-Maximum 
Suppression

0.93

0.21

Classification

Figure 3: Illustration of the detection pipeline. Best viewed in colour.

patches with their respective probabilities (confidence scores) are the final outputs of the detection pipeline. We now
discuss each of these stages in more detail.

3.1. Convolutional neural networks

In a sliding window approach, the detection problem breaks down into classifying each local patch, which is per-
formed by the image classifier C, a mapping from the image I to a probability p: C : I 7→ p. We adopt convolutional
neural network [31] (ConvNet) as our image classifier, as it is the most popular and best performing classifier for
image recognition in both large scale [32, 37] and small scale [39, 40] problems. It is also very fast to deploy, and
amenable to parallel hardware. Specifically, we used a network structure similar to Lenet5 [31]. As shown in Figure
4, our network contains 2 convolutional layers, 2 max-pooling layers, and 2 fully connected layers (described below).
Before applying the ConvNet, each dimension of the input patch1 is normalized to have zero mean and unit variance.

1Note that we distinguish patch-based normalization, as described here, with whole image normalization, described in Section 2.3.

4



Inputs
3@28x28

Feature
maps
32@24x24

Feature
maps
32@12x12

Feature
maps
48@8x8

Feature
maps
48@4x4

Convolution
5x5 kernel

Max-pooling
2x2 kernel

Convolution
5x5 kernel

Max-pooling
2x2 kernel

Hidden
units
768

Hidden
units
500

Outputs
2

Flatten Fully
connected

Fully
connected

Figure 4: The convolutional neural network architecture used in our experiments.

3.1.1. Convolutional layers
A convolutional layer applies a linear filterbank and element-wise nonlinearity to its input “feature maps”, trans-

forming them to a different set of feature maps. By applying convolutional layers several times, we can extract
increasingly high-level feature representations of the input, at the same time preserving their spatial relationship. At
the first layer, the input feature maps are simply the channels of the input. At subsequent layers, these represent more
abstract transformations of the image. A convolutional layer is a special case of a fully connected layer, introduced in
Subsection 3.1.3, where only local connections are have non-zero values, and weights are tied at all locations. Local
connectivity is implemented efficiently by applying convolution:

hl
k = ϕ

∑
m

Wl
m,k hl−1

m + bl
k

 , (2)

where l is the layer index; m is the index of input feature maps; k is the index of output feature maps; input hl−1
m is the

mth feature map at layer l − 1; output hl
k the kth feature map at layer l; W is the convolutional weight tensor; b is the

bias term; and we choose the element-wise nonlinearity ϕ(·) to be the rectified linear unit (RELU) [41] function.

3.1.2. Max-pooling layers
Each convolutional layer is followed by a max-pooling layer. This layer applies local pooling operations to its

input feature maps, by only preserving the maximum value within a local receptive field and discarding all other
values. It is similar to a convolutional layer in the sense that both operate locally. Applying max-pooling layers
has 2 major benefits: 1) reducing the number of free parameters, and 2) introducing a small amount of translational
invariance into the network.

3.1.3. Fully connected layers
The last two layers in our ConvNet are fully connected. These are the kind of layers found in standard feed-

forward neural networks. The first fully connected layer flattens (vectorizes) all of the feature maps after the last
max-pooling layer, treating this one-dimensional vector as a feature representation of the whole image. The second
fully connected layer is parameterized like a linear classifier. Mathematically, the fully connected layer can be written
as:

hl = ϕ(Wlhl−1 + bl), (3)

where l is the layer index; input hl−1 is the vector representation at layer l − 1; hl is the output of layer l; W is the
weight matrix; b is the bias vector; and ϕ(·) is an element-wise nonlinear function: we choose RELUs for the fully
connected hidden layer and a softmax for the output layer.

For a more detailed explanation of convolutional neural networks, we refer the reader to [31, 32, 42].

5



(a) Patches containing a moth (b) Initial negative patches (c) Negative patches after bootstrapping

Figure 5: Some examples of patches used for training the classifier.

3.2. Non-maximum suppression

After applying the ConvNet in a sliding window fashion, we obtain probabilities associated with each densely
sampled patch. If we simply applied thresholding at this point, we would get many overlapping detections. This
problem is commonly solved using non-maximum suppression (NMS) which aims to retain only patches with locally
maximal probability. We adopted a strategy similar to [43]. Specifically, we first sort all the detections according to
their probability. Then, from high to low probability, we look at each detection and remove other bounding boxes
that overlap at least 10% with the current detection. After this greedy process, we generate final detection outputs as
shown in Figure 3 and later in Section 5.1.

4. Experiments and evaluation

We next introduce how we performed the experiments and the evaluation protocol.

4.1. Classifier training

The classifier is trained on generated patches of different sizes, detailed in Section 4.2. Minibatch stochastic
gradient descent (SGD) with momentum [44] was used to train the ConvNet. The gradient is estimated with the well
known back-propagation algorithm [45]. We used a fixed learning rate of 0.002, a fixed minibatch size of 256, and a
fixed momentum coefficient of 0.9. The validation set is used for monitoring the training process and selecting hyper-
parameters. We report performance using a classifier whose parameters are chosen according to the best observed
validation set accuracy. The filters and fully-connected weight matrices of the ConvNets are initialized with values
selected from a uniform random distribution on an interval that is a function of the number of pre-synaptic and post-
synaptic units (see [46] for more detail).

4.2. Training data extraction

In the sliding window classification pipeline, the classifier takes a local window as its input. Therefore we need
to extract small local patches from the original high-resolution to train the classifier. This is performed in a memory-
efficient manner, using pointer arithmetic to create “views” to the data as opposed to storing all patches in memory.

4.2.1. Positive patches
Here, “positive patch” refers to patches derived from manually labelled bounding boxes, where each one represents

a codling moth. As the the ConvNet processes square inputs, we ignored the original aspect ratio of the manually
labelled bounding boxes, and took the square region having the same centre as the original rectangular bounding box.
Figure 5a shows positive patches extracted from the training set.

6



Figure 6: Data augmentation from a single example by translating, rotating, and flipping. Note that all copies retain
the same (positive) label.

4.2.2. Negative patches
It would be difficult to cover all the kinds of false positives that may arise by simply sampling the regions not

covered by the labelled bounding boxes. This is because the area of regions not containing moths is much larger
than the area covered by the bounding boxes. On images which are not very cluttered, most of the “negative” area is
uninteresting (e.g. trap liner).

Thus, to obtain negative training examples, we intentionally take “hard” patches, meaning those which contain
texture. Specifically, we apply the Canny edge detector [47] to find patches in “negative images”, i.e., those that do
not contain any moths. We set the threshold such that the number of negative patches roughly matches the number of
labelled moths. Figure 5b shows a random sample of negative patches.

4.2.3. Bootstrapping
After the initial set of negative patches are extracted, we use a bootstrapping approach to find useful negative

training patches that can make the classifier more discriminative. In the first round of training, the initially generated
patches are used to train the classifier. At test time, the false positive patches from the training set are collected, and
we isolate the 6000 negative patches with highest probability assigned by the classifier. These are merged with the
initially generated patches to form a new dataset for a second stage of training. One could potentially use more rounds
of bootstrapping to collect more informative negative patches, but we found that including more than two training
stages does not improve performance. Figure 5c shows randomly sampled patches collected in the test phase after one
stage of training. For the validation set, the number of patches we collect is proportional to the number of images in
the validation set.

4.3. Data augmentation

For machine learning-based methods, it is usually the case that the larger the dataset, the better the generalization
performance. In our case, the amount of training data, which is represented by the number of training patches, is
much smaller than standard small-scale image classification datasets [40, 48] frequently used by the deep learning
community, which have on the order of 50,000 training examples. Therefore, we performed data augmentation to
increase the number of images for training, and also incorporate invariance to basic geometric transformations into
the classifier. Based on the “top-view” nature of the trap images, a certain patch will not change its class label when
it is slightly translated, flipped, or rotated. Therefore, we apply these simple geometric transformations to the original
patches to increase the number of training examples. For each patch, we create 8 translated copies by shifting ± 3
pixels horizontally, vertically, and diagonally. We also create versions which are flipped across the horizontal- and
vertical-axes. Finally, we create 4 rotated copies by rotating the original by 0, 90, 180 and 270 degrees. This produces
72 augmented patches from one original. Figure 6 shows the augmented versions which are produced from a single
example.

4.4. Detection

At the detection stage, we need to set the stride, which means the distance between adjacent sliding windows. A
smaller stride means denser patch coverage, which lead to better localization of the moths, but also requires more
computation. As a trade-off, we set the stride to be 1

4 the size of a patch.

7



4.5. Evaluation protocol

Pest detection is still a relatively “niche” area of computer vision and therefore there is no standard evaluation pro-
tocol defined. We decided to adopt a protocol inspired by standardization within the pedestrian detection community.
A complete overview is provided in [49] which we summarize below.

4.5.1. Matching detections with ground truth
We evaluate detection performance based on the statistics of misdetections, correct detections and false positives.

Here, a misdetection refers to a manually labelled region which is missed by the algorithm, and a false positive refers
a bounding box proposed by the algorithm which does not correspond to any manually labelled region. To determine
if a bounding box proposed by the detector is a correct detection or a misdetection, we determine its correspondence
to a a manually labelled bounding box by calculating the intersection-over-minimum (IOMin) heuristic:

A(BBdt, BBgt) =
area(BBdt ∩ BBgt)

min(area(BBdt), area(BBgt))
, (4)

where BBdt represents a bounding box proposed by the algorithm (a detection) and BBgt represents a ground truth
bounding box. We consider a specific ground truth bounding box, BBi

gt, to be correctly detected when there exists
a detection, BB j

dt, such that A(BB j
dt, BBi

gt) > 0.5. Otherwise, that ground truth bounding box is considered to be a
misdetection. When multiple BBdt’s satisfy the condition, the one with the highest probability under the classifier is
chosen. After this is performed for all of the BBgt, the remaining unmatched BBdt are considered to be false positives.

Our evaluation metric differs from that used by the pedestrian detection in that we use IOMin in place of the
more popular Jaccard index, also called intersection-over-union (IOU). This is because of potential shape mismatches
between the ground truth and detections. The ground truth bounding boxes are all rectangles, but our classifier outputs
probabilities over square patches. In the case when the ground truth rectangle is nearly square, the IOU works well.
In the case where the ground truth rectangle is tall or wide, however, the IOU tends to be small no matter how good
the detection is. On the contrary, the IOMin heuristic performs well for both cases.

4.5.2. Object level evaluation
Based on the statistics of correct detections (also known as true positives), misdetections (also known as false

negatives) and false positives, we could evaluate the performance at two levels: (1) object level, where the focus is on
the performance of detecting individual moths; and (2) image level, where the focus is on determining whether or not
an image contains any moths.

At the object level, we use five threshold-dependent measures: miss rate, false positives per image (FPPI), preci-
sion, recall, and Fβ score:

miss rate =
number of misdetections

total number of moths
(5)

FPPI =
number of false positives
total number of images

(6)

precision =
number of correct detections
total number of detections

(7)

recall =
number of correct detections

total number of moths
(8)

Fβ = (1 + β2)
precision · recall

β2 · precision + recall
(9)

All quantities, with the exception of FPPI, are calculated by including correspondences across the entire dataset,
and do not represent averages over individual images.

There are two pairs of metrics that measure the trade-off between reducing misdetections and reducing false
positives: miss rate vs. FPPI, and precision vs. recall. Miss rate vs. FPPI is a common performance measure in the
pedestrian detection community [49]. It gives an estimate of the system accuracy under certain tolerances specified by

8



the number of false positives. Similarly, a precision vs. recall plot shows the trade-off between increasing the accuracy
of detection and reducing misdetections.

The Fβ score is simply a measure which aims to weight the importance of precision and recall at a single operating
point along the precision-recall curve. The larger it is, the better the performance. The parameter β adjusts the
importance between precision and recall. In this paper, we consider detecting all moths more important than reducing
false positives2, and therefore we more heavily weight recall, setting β = 2 for all reported results.

Of course, there will be one Fβ score for each operating point (threshold) of the system. To summarize the
information conveyed by the miss rate vs. FPPI and precision vs. recall plots by a single value, we employ two scalar
performance measures: (1) log-average miss rate when FPPI is in the range [1, 10], and (2) area under the precision-
recall curve (AUC).

4.5.3. Image level evaluation
Image level performance evaluation is considered for the scenario of semi-automatic detection, where the algo-

rithm proposes images for a technician to inspect and safely ignores images that do not contain any moths. In this
setting, the algorithm simply needs to make a proposal of “moths” or “no moths” per image regardless of how many
moths it believes are present. Here we will call a “true moth” image an image that contains at least one moth, and a “no
moth” image an image that contains no moths. Similar to Object Level Evaluation, there are five threshold-dependent
measures: sensitivity (synonymous with recall), specificity, precision, and Fβ score:

sensitivity = recall =
number of correctly identified true moth images

total number of true moth images
(10)

specificity =
number of correctly identified no moth images

total number of no moth images
(11)

precision =
number of correctly identified true moth images

total number of moth image proposals
(12)

where Fβ is defined in Eq. 9. Similar to object level evaluation, there are also two pairs of trade-offs: sensitivity
vs. specificity, and precision vs. recall. For scalar performance measures, we calculate the AUC for both of these
curves.

5. Results

In this section, we first give some visual (qualitative) results and then describe the results of the performance
evaluation introduced in Section 4.

5.1. Qualitative

Figure 7 shows an example of our detector in operation. In both panels, the image on the left shows manually
annotated bounding boxes in green and the proposals of our detector in magenta. The image on the right shows the
results of matching annotations with proposals. Misdetections, false positives and correct detections are shown in
blue, red, and yellow boxes respectively. In Figure 7a and 7b, the thresholds are set to maximize the F2-score at the
object level and the image level respectively. Figures 9 and 10 show more examples of detection results on full-sized
images.

5.2. Quantitative

We chose logistic regression as a baseline3 for comparison to ConvNets. We tested both logistic regression and
ConvNets at five different input sizes: 21×21, 28×28, 35×35, 42×42, and 49×49. The results are shown in Table 2.

2In this domain, the cost of not responding to a potential pest problem outweighs that of unnecessarily applying a treatment.
3We also tried a popular vision pipeline of local feature descriptors (SIFT [50]), followed by bag of visual words and a support vector machine

classifier. This approach did not give reasonable detection performance and is thus not reported.

9



(a) ConvNet with input size 21 × 21.

(b) ConvNet with input size 35 × 35.

Figure 7: Visual example of detection results. Panel (a) shows the best-performing classifier at the object level. Panel
(b) shows the best-performing classifier at the image level. Best viewed in colour.

The ConvNet with input size 21×21 achieved the best performance at the object level and the ConvNet with input
size 35×35 had the best performance at the image level. Accordingly, Figure 8 shows different performance curves
comparing the best performing ConvNet and logistic regression, both at the object and image level. Apparent from
Figure 8 (d) and (e), the ConvNet achieved nearly perfect results at the image level. For the precision-recall curve, one
usually expects precision to decrease as recall increases. Here, in Figure 8 (b) and (e), precision sometimes increases as
the recall increases. This is because when the threshold is decreasing, it is possible that the newly included detections
are all true detections, which results in an increase in both precision and recall.

To understand the effect of data augmentation (Section 4.3) on detector performance, we performed experiments
on the ConvNet with input size 21×21 by either using (1) both rotational and translational augmentation; (2) only
rotational augmentation; (3) only translational augmentation; and (4) no augmentation. The results are shown in
Table 3. We observed that both translational and rotational augmentation improved the performance compared to no
augmentation at all. Using both translational and rotational augmentation improved performance at the object level
but not at the image level where a single type of augmentation was sufficient.

We also evaluated the performance of the proposed method under limited training data, as shown in Table 4. We
can see that the algorithm maintains a reasonable performance even when 80% of the training data are removed. This
also indicates the effectiveness of the data augmentation strategy.

Some of the moths in the dataset are occluded by other moths, which increased the difficulty of detection. If we

10



Method Patch size Object level Image Level
prec-rec AUC log-avg miss rate prec-rec AUC sens-spec AUC

ConvNet

21×21 0.931 0.099 0.972 0.888
28×28 0.879 0.135 0.987 0.913
35×35 0.824 0.200 0.993 0.932
42×42 0.713 0.315 0.989 0.925
49×49 0.612 0.404 0.988 0.922

LogReg

21×21 0.555 0.756 0.782 0.682
28×28 0.621 0.586 0.765 0.665
35×35 0.658 0.491 0.815 0.713
42×42 0.582 0.496 0.852 0.755
49×49 0.499 0.545 0.808 0.713

Table 2: Performance of convolutional neural networks compared to logistic regression with different input sizes.
Bold values represent the best performance per-method and per-metric.

Method Object Level Image Level
prec-rec AUC log-avg miss rate prec-rec AUC sens-spec AUC

ConvNet + Trans&Rot Aug 0.931 0.099 0.972 0.888
ConvNet + Rot Aug 0.916 0.140 0.981 0.900

ConvNet + Trans Aug 0.879 0.204 0.979 0.892
ConvNet + No Aug 0.825 0.334 0.920 0.797

Table 3: Effectiveness of data augmentation.

completely remove occlusion from the dataset, by removing both occluded ground truths and detections with more
than 50% overlapping with any of the occluded ground truths during evaluation, we achieve a slight performance
improvement at the object level. Here, the precision-recall AUC increases from 0.931 to 0.934, and the log-average
miss rate decreases from 0.099 to 0.0916. This indicates that our algorithm will perform even better in well-managed
sites, where trap liners are changed often, resulting in less occlusions.

5.3. Individual detection results
Figure 11 shows various image patches with different detection outcomes, including Figure 11a which shows

correct detections, 11b which shows misdetections and 11c which shows false positives. These patches are all at
100×100 resolution. They are extracted based on the detection results using an input size of 21×21. We can see that
moth images show a high degree of variability due to multiple factors, including different wing poses, occlusion by
other objects, different decay conditions, different illumination conditions, different background textures, and different
blurring conditions. Some of these moths are successfully detected under these distorting factors and some are ignored
by the detector. From Figure 11c, we can also see that inside the 21×21 window considered by the classifier, some of
the false positives are, to some extent, visually similar to the 21×21 image patches that actually are moths. Although
for a human reader, it seems easier to distinguish moth vs. non-moth by looking at the entire 100 × 100 patch (i.e. by
considering context). This suggests that incorporating information from the peripheral region could help improve
detection performance.

6. Discussion

Compared to the majority of previous work, the proposed method relies more on data, and less on human knowl-
edge. No knowledge about codling moths was considered in the design of our approach. The network learned to
identify codling moths based only on positive and negative training examples. This characteristic makes it easier for
the system to adapt to new pest species and new environments, without much manual effort, as long as relevant data
is provided.

11



10-2 10-1 100 101 102 103

false positive per image

0.0

0.2

0.4

0.6

0.8

1.0

m
is

s 
ra

te

LogReg 35

ConvNet 21

(a) miss rate-FPPI at object level

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

p
re

ci
si

o
n

LogReg 35

ConvNet 21

(b) precision-recall at object level

10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

1 - threshold

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

F-
sc

o
re

LogReg 35

ConvNet 21

(c) F2 score-threshold at object level

0.0 0.2 0.4 0.6 0.8 1.0
specificity

0.0

0.2

0.4

0.6

0.8

1.0

se
n
si

ti
v
it

y

LogReg 42

ConvNet 35

(d) sensitivity-specificity at image level

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

p
re

ci
si

o
n

LogReg 42

ConvNet 35

(e) precision-recall at image level

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

1 - threshold

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

F-
sc

o
re

LogReg 42

ConvNet 35

(f) F2 score-threshold at image level

Figure 8: Comparison between the best performing ConvNets and logistic regression models at both the object and
image level.

Remaining Object Level Image Level
percentage prec-rec AUC log-avg miss rate prec-rec AUC sens-spec AUC

100% 0.931 0.099 0.972 0.888
80% 0.923 0.121 0.984 0.905
60% 0.906 0.155 0.979 0.883
40% 0.886 0.184 0.969 0.882
20% 0.895 0.233 0.941 0.835

Table 4: Influence of missing training data.

Errors caused by different factors were analysed in Section 5.3. Many of them are related to time. The same moth
could have different wing poses, levels of occlusion, illumination and decay conditions over time. Visual texture can
also be related to time. For example, decaying insects could make the originally white trap liner become dirty, and
reduce the contrast between moths and background. Errors caused by time-related factors could be largely avoided
in real production systems, if temporal image sequences are provided with reasonable frequency. This leads to one
possible future research direction, that is, to reason over image sequences while detecting moths on a single image,
exploiting temporal correspondence. Errors caused by blurry images could potentially be solved by adding deblurring
filters in the preprocessing pipeline. Non-moth objects contribute to a certain amount of false positives. One way
to address this problem is to train detectors for common non-moth objects and combine it with the moth detector.
Common objects here include pheromone lures, flies and leaves. This would also require a dataset with richer labelled
information.

As a preliminary attempt on automatic pest detection from trap images, the methods introduced in this paper have
many possible future extensions besides those have been mentioned based on error analysis. Deeper convolutional
networks [37] could be applied to provide more accurate image patch classification. Detecting and classifying multiple
types of insects would be a natural extension, which is closely related to the fine-grained image classification problem

12



[51, 52]. The location information of detections could potentially be refined by proposing rectangular bounding boxes,
polygons, or parameterized curves representing insect shapes.

7. Conclusions

This paper describes an automatic method for monitoring pests from trap images. We propose a sliding window-
based detection pipeline, where a convolutional neural network is applied to image patches at different locations
to determine the probability of containing a specific pest type. Image patches are then filtered by non-maximum
suppression and thresholding, according to their locations and associated confidences, to produce the final detections.
Qualitative and quantitative experiments demonstrate the effectiveness of the proposed method on a codling moth
dataset. We also analysed detection errors, with corresponding influences to real production systems and potential
future directions for improvements.

Acknowledgements

This work was funded by the Natural Sciences and Engineering Research Council (NSERC) EGP 453816-13, EGP
453816-14, and an industry partner whose name was withheld by request. We would also like to thank Dr. Rebecca
Hallett, Jordan Hazell and the industry partner for assistance with data collection.

References

[1] R. T. Carde, A. K. Minks, Control of moth pests by mating disruption: successes and constraints, Annual review of entomology 40 (1) (1995)
559–585.

[2] P. Witzgall, P. Kirsch, A. Cork, Sex pheromones and their impact on pest management, Journal of chemical ecology 36 (1) (2010) 80–100.
[3] S.-H. Kang, S.-H. Song, S.-H. Lee, Identification of butterfly species with a single neural network system, Journal of Asia-Pacific Entomology

15 (3) (2012) 431–435.
[4] S.-H. Kang, J.-H. Cho, S.-H. Lee, Identification of butterfly based on their shapes when viewed from different angles using an artificial neural

network, Journal of Asia-Pacific Entomology 17 (2) (2014) 143–149.
[5] T. Arbuckle, S. Schroder, V. Steinhage, D. Wittmann, Biodiversity informatics in action: identification and monitoring of bee species using

abis, in: Proc. 15th Int. Symp. Informatics for Environmental Protection, Vol. 1, Citeseer, 2001, pp. 425–430.
[6] P. Weeks, M. O¢¢Neill, K. Gaston, I. Gauld, Automating insect identification: exploring the limitations of a prototype system, Journal of

Applied Entomology 123 (1) (1999) 1–8.
[7] A. Tofilski, Drawwing, a program for numerical description of insect wings, Journal of Insect Science 4 (1) (2004) 17.
[8] J. Wang, C. Lin, L. Ji, A. Liang, A new automatic identification system of insect images at the order level, Knowledge-Based Systems 33

(2012) 102–110.
[9] N. Larios, H. Deng, W. Zhang, M. Sarpola, J. Yuen, R. Paasch, A. Moldenke, D. A. Lytle, S. R. Correa, E. N. Mortensen, et al., Auto-

mated insect identification through concatenated histograms of local appearance features: feature vector generation and region detection for
deformable objects, Machine Vision and Applications 19 (2) (2008) 105–123.

[10] G. Martinez-Munoz, N. Larios, E. Mortensen, W. Zhang, A. Yamamuro, R. Paasch, N. Payet, D. Lytle, L. Shapiro, S. Todorovic, et al.,
Dictionary-free categorization of very similar objects via stacked evidence trees, in: Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on, IEEE, 2009, pp. 549–556.

[11] N. Larios, B. Soran, L. G. Shapiro, G. Martı́nez-Muñoz, J. Lin, T. G. Dietterich, Haar random forest features and svm spatial matching kernel
for stonefly species identification., in: ICPR, Vol. 1, 2010, p. 7.

[12] D. A. Lytle, G. Martı́nez-Muñoz, W. Zhang, N. Larios, L. Shapiro, R. Paasch, A. Moldenke, E. N. Mortensen, S. Todorovic, T. G. Dietterich,
Automated processing and identification of benthic invertebrate samples, Journal of the North American Benthological Society 29 (3) (2010)
867–874.

[13] S. Al-Saqer, P. Weckler, J. Solie, M. Stone, A. Wayadande, Identification of pecan weevils through image processing, American Journal of
Agricultural and Biological Sciences 6 (1) (2010) 69.

[14] J. Cho, J. Choi, M. Qiao, C.-w. Ji, H.-y. Kim, K.-b. Uhm, T.-s. Chon, Automatic identification of whiteflies, aphids and thrips in greenhouse
based on image analysis, Red 346 (246) (2007) 244.

[15] M. Mayo, A. T. Watson, Automatic species identification of live moths, Knowledge-Based Systems 20 (2) (2007) 195–202.
[16] Z. Le-Qing, Z. Zhen, Auto-classification of insect images based on color histogram and glcm, in: Fuzzy Systems and Knowledge Discovery

(FSKD), 2010 Seventh International Conference on, Vol. 6, IEEE, 2010, pp. 2589–2593.
[17] Y. Kaya, L. Kayci, Application of artificial neural network for automatic detection of butterfly species using color and texture features, The

Visual Computer 30 (1) (2014) 71–79.
[18] P. Fedor, I. Malenovskỳ, J. Vaňhara, W. Sierka, J. Havel, Thrips (thysanoptera) identification using artificial neural networks, Bulletin of

entomological research 98 (05) (2008) 437–447.
[19] S. N. Yaakob, L. Jain, An insect classification analysis based on shape features using quality threshold artmap and moment invariant, Applied

Intelligence 37 (1) (2012) 12–30.

13



[20] C. Wen, D. E. Guyer, W. Li, Local feature-based identification and classification for orchard insects, Biosystems engineering 104 (3) (2009)
299–307.

[21] C. Wen, D. Guyer, Image-based orchard insect automated identification and classification method, Computers and Electronics in Agriculture
89 (2012) 110–115.

[22] A. Lu, X. Hou, C.-L. Liu, X. Chen, Insect species recognition using discriminative local soft coding, in: Pattern Recognition (ICPR), 2012
21st International Conference on, IEEE, 2012, pp. 1221–1224.

[23] N. Larios, J. Lin, M. Zhang, D. Lytle, A. Moldenke, L. Shapiro, T. Dietterich, Stacked spatial-pyramid kernel: An object-class recognition
method to combine scores from random trees, in: Applications of Computer Vision (WACV), 2011 IEEE Workshop on, IEEE, 2011, pp.
329–335.

[24] L. Xiao-Lin, H. Shi-Guo, Z. Ming-Quan, G. Guo-Hua, Knn-spectral regression lda for insect recognition, in: Information Science and
Engineering (ICISE), 2009 1st International Conference on, IEEE, 2009, pp. 1315–1318.

[25] I. Zayas, P. Flinn, Detection of insects in bulk wheat samples with machine vision, Transactions of the ASAE-American Society of Agricul-
tural Engineers 41 (3) (1998) 883–888.

[26] C. Ridgway, E. Davies, J. Chambers, D. Mason, M. Bateman, Rapid machine vision method for the detection of insects and other particulate
bio-contaminants of bulk grain in transit, Biosystems engineering 83 (1) (2002) 21–30.

[27] Y. Qing, L. Jun, Q.-j. LIU, G.-q. DIAO, B.-j. YANG, H.-m. CHEN, T. Jian, An insect imaging system to automate rice light-trap pest
identification, Journal of Integrative Agriculture 11 (6) (2012) 978–985.

[28] Q. Yao, Q. Liu, T. G. Dietterich, S. Todorovic, J. Lin, G. Diao, B. Yang, J. Tang, Segmentation of touching insects based on optical flow and
ncuts, Biosystems Engineering 114 (2) (2013) 67–77.

[29] X. Zhang, Y.-H. Yang, Z. Han, H. Wang, C. Gao, Object class detection: A survey, ACM Computing Surveys (CSUR) 46 (1) (2013) 10.
[30] A. Andreopoulos, J. K. Tsotsos, 50 years of object recognition: Directions forward, Computer Vision and Image Understanding 117 (8)

(2013) 827–891.
[31] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE 86 (11) (1998)

2278–2324.
[32] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep convolutional neural networks, in: Advances in neural informa-

tion processing systems, 2012, pp. 1097–1105.
[33] D. Ciresan, U. Meier, J. Schmidhuber, Multi-column deep neural networks for image classification, in: Computer Vision and Pattern Recog-

nition (CVPR), 2012 IEEE Conference on, IEEE, 2012, pp. 3642–3649.
[34] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, Z. Tu, Deeply-supervised nets, arXiv preprint arXiv:1409.5185.
[35] K. Swersky, J. Snoek, R. P. Adams, Multi-task bayesian optimization, in: Advances in Neural Information Processing Systems, 2013, pp.

2004–2012.
[36] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al., Imagenet large scale

visual recognition challenge, arXiv preprint arXiv:1409.0575.
[37] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions,

arXiv preprint arXiv:1409.4842.
[38] D. Nikitenko, M. Wirth, K. Trudel, Applicability of white-balancing algorithms to restoring faded colour slides: An empirical evaluation,

Journal of Multimedia 3 (5) (2008) 9–18.
[39] M. Lin, Q. Chen, S. Yan, Network in network, arXiv preprint arXiv:1312.4400.
[40] A. Krizhevsky, G. Hinton, Learning multiple layers of features from tiny images, Computer Science Department, University of Toronto, Tech.

Rep 1 (4) (2009) 7.
[41] D. Grangier, L. Bottou, R. Collobert, Deep convolutional networks for scene parsing, in: ICML 2009 Deep Learning Workshop, Vol. 3,

Citeseer, 2009.
[42] L. Fei-Fei, A. Karpathy, Cs231n: Convolutional neural networks for visual recognition (2015).

URL http://cs231n.stanford.edu/

[43] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, D. Ramanan, Object detection with discriminatively trained part-based models, Pattern
Analysis and Machine Intelligence, IEEE Transactions on 32 (9) (2010) 1627–1645.

[44] Y. A. LeCun, L. Bottou, G. B. Orr, K.-R. Müller, Efficient backprop, in: Neural networks: Tricks of the trade, Springer, 2012, pp. 9–48.
[45] D. E. Rumelhart, G. E. Hinton, R. J. Williams, Learning internal representations by error propagation, Tech. rep., DTIC Document (1985).
[46] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in: International conference on artificial

intelligence and statistics, 2010, pp. 249–256.
[47] J. Canny, A computational approach to edge detection, Pattern Analysis and Machine Intelligence, IEEE Transactions on (6) (1986) 679–698.
[48] Y. LeCun, C. Cortes, The mnist database of handwritten digits (1998).
[49] P. Dollar, C. Wojek, B. Schiele, P. Perona, Pedestrian detection: An evaluation of the state of the art, Pattern Analysis and Machine Intelli-

gence, IEEE Transactions on 34 (4) (2012) 743–761.
[50] D. G. Lowe, Distinctive image features from scale-invariant keypoints, International journal of computer vision 60 (2) (2004) 91–110.
[51] J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang, J. Philbin, B. Chen, Y. Wu, Learning fine-grained image similarity with deep ranking,

in: Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, IEEE, 2014, pp. 1386–1393.
[52] A. S. Razavian, H. Azizpour, J. Sullivan, S. Carlsson, Cnn features off-the-shelf: an astounding baseline for recognition, in: Computer Vision

and Pattern Recognition Workshops (CVPRW), 2014 IEEE Conference on, IEEE, 2014, pp. 512–519.

14

http://cs231n.stanford.edu/
http://cs231n.stanford.edu/


Figure 9: More examples of ConvNet with input size 21 × 21. Best viewed in colour.

15



Figure 10: More examples of ConvNet with input size 35 × 35. Best viewed in colour.

16



(a) Examples of correct detections

(b) Examples of misdetections

(c) Examples of false positives

Figure 11: Image patches (input + context) of correct detections, misdetections and false positives. Input to the
classifier is shown as a black square. Best viewed in colour.

17


	1 Introduction
	2 Data collection
	2.1 Data acquisition
	2.2 Dataset construction
	2.3 Preprocessing

	3 Detection pipeline
	3.1 Convolutional neural networks
	3.1.1 Convolutional layers
	3.1.2 Max-pooling layers
	3.1.3 Fully connected layers

	3.2 Non-maximum suppression

	4 Experiments and evaluation
	4.1 Classifier training
	4.2 Training data extraction
	4.2.1 Positive patches
	4.2.2 Negative patches
	4.2.3 Bootstrapping

	4.3 Data augmentation
	4.4 Detection
	4.5 Evaluation protocol
	4.5.1 Matching detections with ground truth
	4.5.2 Object level evaluation
	4.5.3 Image level evaluation


	5 Results
	5.1 Qualitative
	5.2 Quantitative
	5.3 Individual detection results

	6 Discussion
	7 Conclusions

