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a b s t r a c t

Bovine respiratory disease (BRD) complex in calves impairs health and welfare and causes severe eco-
nomic losses for the Stockperson. Early recognition of BRD should lead to earlier veterinary (antibiotic/
anti-inflammatory) treatment interventions thereby reducing the severity of the disease and associated
costs. Coughing is one of the clinical manifestations of BRD. It is believed that by automatically and con-
tinuously monitoring the sounds within calf houses, and analysing the coughing frequency, early recog-
nition of BRD in calves is possible. Therefore, the objective of the present study was to develop an
automated calf cough monitor and examine its potential as an early warning system for BRD in artificially
reared dairy calves. The coughing sounds of 62 calves were continuously recorded by a microphone over
a three-month period. A sound analysis algorithm was developed to distinguish calf coughs from other
sounds (e.g. mechanical sounds). During the sound recording period the health of the calves was assessed
and scored periodically per week by a trained human observer. Calves presenting with BRD received
antibiotic and/or anti-inflammatory treatment and the dates of treatment were recorded. This treatment
date reference served as a comparison for the investigation of whether an increase in coughing frequency
could be related to calves developing BRD. The calf cough detection algorithm achieved 50.3% sensitivity,
99.2% specificity and 87.5% precision. Four out of five periods, where coughing frequency was observed to
be increased, coincided with the development of BRD in more than one calf. This period of increased
coughing frequency was always observed before the calves were treated. Therefore, the calf cough
monitor has the potential to identify early onset of BRD in calves.

� 2016 Published by Elsevier B.V.
1. Introduction

Bovine respiratory disease (BRD) is a multifactorial disease in
cattle caused by a variety of pathogens. It affects both the upper
and lower respiratory tract and the lungs of cattle (Poulsen and
McGuirk, 2009). BRD involves a wide variety of infectious agents.
These include viruses such as bovine respiratory syncytial virus
(BRSV), parainfluenza type 3 virus (PI3), bovine coronavirus,
bovine viral diarrhoea virus and bovine herpes virus 1 (BHV-1),
as well as bacteria such as Mannheimia haemolytica, Histophilus
somni, Pasteurella multocida and Mycoplasma bovis. BRD is a signif-
icant cause of morbidity and mortality in calves (Busato et al.,
1997; Dutil et al., 1999; Windeyer et al., 2014). Busato et al.
(1997) monitored 100 Swiss suckler beef herds from birth to wean-
ing, in one generation of calves, and reported a pre-weaning calf
mortality rate of five per cent. Over 50% of these mortalities were
due to respiratory disease. Similarly, in a study of 467 suckler beef
herds in Canada, Dutil et al. (1999) reported a pre-weaning calf
mortality rate of 5.4% in herds with less than 40 females, and
5.6% in herds with 40 or more females. Of these recorded cases
of mortality, 12.8–17.5% was due to respiratory disease.
Windeyer et al. (2014) observed a case fatality risk for BRD of
7.1% in dairy heifer calves on commercial dairy farms in Minnesota
and Ontario. In the Republic of Ireland, respiratory disease is the
main cause of mortality in calves from one to three months of
age. Almost 30% of calves between one and three months of age
submitted to the Veterinary Laboratory Service in 2012 for
necropsy died as a result of respiratory disease (All-Ireland
Animal Disease Surveillance Report, 2012). Recognised risk factors
for dairy calf mortality during the rearing period include calf birth
weight, colostrum intake, milk feeding practices, housing, age at
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weaning and exposure to infectious disease (Brickell et al., 2009a,
b; Sivula et al., 1996; Speicher and Hepp, 1973). However, the
impact of these risk factors on calf mortality is often inconsistent
across studies (Brickell et al., 2009a,b).

The BRD complex causes major economic and welfare losses
(Healy et al., 1993; Stanton et al., 2012). There are substantial costs
associated with mortality, antibiotics and/or anti-inflammatory
treatment, and poor life-time performance of affected calves. An
economic model from 2001 estimated the average loss for a typical
Dutch farm with 60% of the heifers affected by BRD at €31.20 per
animal (van der Fels-Klerx et al., 2001).

In general calves diagnosed with BRD are treated with
antibiotics and/or anti-inflammatory drugs. Recovery following
treatment depends on how early the disease is diagnosed and trea-
ted (Cusack et al., 2003). Earlier recognition of BRD would reduce
the severity of the disease and decrease the costs for the Stockper-
son. Currently, BRD is detected by means of clinical signs including
increased rectal temperature, abnormal breathing patterns,
reduced feed intake, coughing, nasal or eye discharge (Poulsen
and McGuirk, 2009). Treatment with antibiotics is normally initi-
ated as soon as these symptoms are observed. However, detecting
the disease in an earlier state, before the appearance of clinical
symptoms, is more difficult.

Automated and continuous monitoring of calves through Preci-
sion Livestock Farming (PLF) (Berckmans, 2008, 2013; Wathes
et al., 2008) technology is an approach that has potential for recog-
nition of BRD before the appearance of clinical manifestations of
the disease. Infrared thermography has been used to detect the
onset of BRD in calves (Schaefer et al., 2012) and image analysis
has been used for the detection of lame cows (Viazzi et al., 2014)
and disease in pigs (Kashiha et al., 2013; Weixing et al., 2009).

A cough sound monitor has previously been used for the detec-
tion of respiratory disease in pigs (Van Hirtum et al., 1999; Van
Hirtum and Berckmans, 2003). Further studies reported the use
of an online, cough monitoring system (Exadaktylos et al., 2008;
Guarino et al., 2008), demonstrated that coughing sources could
be localised (Silva et al., 2008) and that the cough monitor could
be used for the detection of respiratory diseases in pigs (Finger
et al., 2014). However, this technology has not been evaluated to
date for calves, although it has been shown that it is possible to dif-
ferentiate between mechanical and calf cough sounds (Ferrari
et al., 2010). Thus PLF technologies offer great potential in adding
value to the Stockperson by reducing the severity of BRD and asso-
ciated costs through earlier intervention.

Other approaches of PLF specifically with sound analysis worth
mentioning are for instance, the detection and counting of screams
in pigs for stress assessment (Schön et al., 2004; Moura et al.,
2008a; Vandermeulen et al., 2015). Acoustic monitoring was also
used to estimate the dry matter intake of grazing sheep (Galli
et al., 2011). Techniques used in human speech processing were
applied to recognise different cow calls (Jahns, 2008). Sound anal-
ysis deduced the thermal comfort of chicks (Moura et al., 2008b)
and the differences in sound between a feather pecking flock and
a non-feather pecking flock (Bright, 2008).

The objective of this study was to develop a cough monitor for
calves to provide a warning system for early recognition of BRD.
The approach involved; (1), constructing a cough monitor algo-
rithm based on sound data recorded during calf rearing over a
60 day period in three separate calf houses; (2), assessing the algo-
rithm performance with sensitivity and specificity metrics; (3),
comparing the algorithm outcome with a gold standard for BRD
using the Wisconsin clinical respiratory score (Lago et al., 2006)
combined with rectal temperature. A further objective was to eval-
uate the algorithm outcome in terms of an early warning system
and compare it with the timing of treatment of calves presenting
with BRD by the veterinarian.
2. Material and methods

All animal procedures performed in this study were conducted
under experimental licence (B100/2869) from the Irish Depart-
ment of Health and Children in accordance with the Cruelty to Ani-
mals Act 1876 and the European Communities (Amendment of
Cruelty to Animals Act 1876) Regulation 2002 and 2005.

2.1. Animal and housing

A total of sixty-two male Holstein–Friesian (H-F) and Jersey (J)
calves were housed in mixed groups in three calf houses with saw-
dust covered floors at Teagasc, AGRIC, Grange, from the 21st of
March to the 11th of June 2013 (82 days). The number, age and
weight of calves, per breed, at the start of the study, in each respec-
tive house are shown in Table 1.

Each house was an open-fronted shed with three solid walls and
a galvanised monopitch roof and measured 6.77 m (length) by
4.56 m (width). Fig. 1 shows a picture of the house, calves and
microphone. The recording microphone was positioned in the cen-
tre of each house at a height of 2.75 m above the sawdust covered
floor of each house. The houses were adjacent to each other; house
1 was adjacent to house 2 and house 2 was adjacent to house 3.

Calves were fed a diet with a 23% crude protein (CP), 18% lipid,
milk replacer (MR) (Blossom Easymix; Volac, Co. Cavan, Ireland)
and concentrate (26.5% barley, 25% soya, 15% maize, 12.5% beet
pulp, 12.5% soya hulls, 5% molasses, 2.5% minerals, 1% vegetable
oil (18.8% CP, 22.4% neutral detergent fibre)) using an electronic
feeding system (Foster-Tecknik SA 2000, Engen, Germany).

During the weaning phase, MR was gradually reduced from its
previous allocation over a 14 d period (d �13 to d 0). By d �1,
all calves were consuming at least 1 kg of concentrate daily for
three consecutive days. On d 0, MR was eliminated from the diet
of all calves.

2.2. Vaccination of calves

Calves were immunised on arrival at Teagasc, AGRIC, Grange
against BHV-1, PI-3, BRSV, Mannheimia haemolytica serotypes A1
and A6 and Salmonella dublin and Salmonella typhimurium using
Rispoval IBR-Marker live, Bovipast RSP and Bovivac S vaccines,
respectively. Calves received a second booster vaccination with
Bovipast RSP four weeks after arrival as per manufacturer’s
instructions.

2.3. Clinical assessment of calves – Gold standard 1

Clinical assessments were performed by a trained human obser-
ver on all calves at least twice a week during the pre-weaning per-
iod and once per week during the post-weaning period. These
assessments included the monitoring and recording of; rectal tem-
perature, presence of a cough (none, induced, spontaneous cough
or repeated induced coughs, repeated spontaneous coughs), ear
position (normal, ear flick or head shake, unilateral droop, head tilt
or bilateral droop), presence of nasal discharge (none, small
amount of unilateral discharge, bilateral or excessive discharge,
copious bilateral discharge) and presence of ocular discharges
(none, small amount, moderate amount of bilateral discharge,
heavy discharge). The Wisconsin health scoring criteria were used
to create a cumulative respiratory score (RS) from the results of the
calves’ clinical assessments (Fig. 2). Then RS was devised from the
cumulative score for nasal discharge, eye or ear score (whichever
was greatest), cough and rectal temperature. These respiratory
disease assessment criteria were approved by the University of
Wisconsin Research Animal Resources Centre Animal Care and



Table 1
The number, age and weight of calves, per breed and per house, at the start of the study.

House 1 House 2 House 3

H-F J H-F J H-F J

Number of calves 11 9 13 8 14 7
Mean age (days ± SD) 25 ± 4 36 ± 5 18 ± 5 32 ± 8 19 ± 5 28 ± 10
Mean weight (kg ± SD) 44 ± 6 34 ± 4 49 ± 5 34 ± 4 46 ± 5 31 ± 6

Fig. 1. Pictures showing the set-up of one house. The second figure shows the microphone hanging above the animals. The microphone has been encircled in red for spotting
easier in the figure.
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Use Committee (Lago et al., 2006). A calf was considered to have
respiratory disease if it had an RS of 5 or higher, and a rectal tem-
perature of at least 39.5 �C. In this study the combined RS and rec-
tal temperature were regarded as gold standard one (GS1) for
positive identification of calves with BRD.
2.4. Blood sampling of calves – Gold standard 2

On d �14, �6, �3, 0, 1, 3, 8, and, 14 relative to weaning (d 0),
calves were blood sampled via jugular venepuncture for subse-
quent haematological analysis of neutrophil profiles. Blood sam-
ples were collected in 6 ml K3Ethylenediaminetetraacetic acid
(K3EDTA) tubes (Vacuette, Cruinn Diagnostics, Ireland). Whole K3-
EDTA blood samples were analysed immediately after collection
using an ADVIA 2120 analyser (ADVIA 2120, Bayer Healthcare, Sie-
mens, UK) which contained software necessary for the analysis of
bovine blood. The normal reference interval for blood neutrophils
is between 600 and 4000/ll of whole blood (Jones and Allison,
2007). A calf with a neutrophil number greater than 5000/ll was
considered to have a heightened inflammatory response. This mea-
sure was used as a second gold standard (GS2) for positive identi-
fication of calves with BRD.
2.5. Removal of calves from the study

One H-F and one J calf died from pneumonia during the pre-
weaning period. One H-F calf and one J calf were removed from
the study after weaning and placed in an isolation pens due to sev-
ere pneumonia.
2.6. Treatment procedure

The calves were treated when they presented with signs of BRD.
A veterinarian examined all clinically ill calves, reviewed the GS1
indicated by the human observer and made the decision to treat
the calves with antibiotics and/or anti-inflammatory drugs based
on his/her diagnosis.
2.7. Data acquisition

Each house was equipped with the hardware of the pig cough
monitor (SoundTalks, Belgium). It consisted of one microphone
(C-4 Small Diaphragm Condenser Mic, Behringer, Germany) and a
sound Card (MAYA44, ESI, Germany). The sound was recorded in
wave format with 16 bit precision and a sampling frequency of
22,050 Hz. The sound was continuously recorded from the 1st April
to the 31st May 2013. In total 4320 h of data were collected.

2.8. Labelling

In order to develop a classifier to distinguish calf coughs from
other sounds, a reference data set was required. From the recorded
sound data, the start and end time of each calf cough present in the
sound file were identified by a human labeller off-scene using
audio-visual scoring of sound on a computer (Aerts et al., 2005;
Tullo et al., 2013). In total 205 min of the recorded sound data were
labelled by a human labeller. This resulted in 385 labelled calf
coughs. The total number of calf coughs labelled per house is
shown in Table 2. More sounds were labelled in house 1 because
the algorithm would initially be developed on house 1, thereby
using 66% of the labelled data of house 1 (training set). The algo-
rithm was later validated using the remaining labelled sound data
recorded in houses 1, 2 and 3. Moreover, the labeller commented
that the recordings from house one and two sounded similar but
recordings from house 3 were different. The latter sounded quieter
as if the quality was lower.

2.9. Calf cough monitor algorithm

The algorithm to detect cough sounds consisted of three parts:
the sound event detection, the feature calculation and the classifi-
cation. The sound event detection determined possible events in
the recorded sound data that could be calf coughs. Subsequently,
sound features were calculated per sound event which were finally
used by the classifier to determine if the sound event was a cough.
A final calibration was added to the algorithm to reach an accept-



Fig. 2. The Wisconsin health scoring criteria. Source: http://www.vetmed.wisc.edu/dms/fapm/fapmtools/8calf/calf_respiratory_scoring_chart.pd.

Table 2
The total minutes of files labelled per house and the total number of labelled calf
coughs.

Total minutes labelled Total labelled calf coughs

House 1 155 282
House 2 25 61
House 3 25 42
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able performance in all houses. The algorithm was developed and
run on 60 days of data for each house on a desktop pc running a
commercial software package (MATLAB 8, The MathWorks Inc.,
USA).

2.9.1. Event detection
Initially, all the possible events in the sound data that could

contain a cough were detected by the event detection. The sound

http://www.vetmed.wisc.edu/dms/fapm/fapmtools/8calf/calf_respiratory_scoring_chart.pd


Fig. 3. Spectrograms of two cough sounds. The upper left shows the normal spectrogram. The upper right shows the reduced spectrogram and the bottom right shows the
rough spectrogram. The rough spectrogram is in general similar to the reduced spectrogram but contains less details.

1 For interpretation of color in Fig. 4, the reader is referred to the web version of
this article.
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event detection was based on a method for detecting sound events
used for human cough detection (Barry et al., 2006). The method
detected events by searching for sudden differences in the stan-
dard deviation of the recorded sound. These sound events could
be calf coughs, bird sounds, creaking of the fence, etc. Finally,
5739 events, including the 385 labelled coughs, were found in
the labelled sound data. Thus, 385 per 5739 or one per fifteen
sound events detected was considered a cough.

2.9.2. Feature calculation
The feature calculation divided the sound events into 30 ms

hamming windows (Oppenheim and Schafer, 1989) with a 15 ms
overlap. These numbers were chosen similar to speech analysis
in which 20–40 ms windows are used (Paliwal et al., 2010). On
each window the Fast Fourier Transform (FFT) was calculated.
Since background noise was still present in these windows a sim-
ple noise reduction method was applied. The background noise of
each window was removed by subtracting the averaged window.
This averaged window was calculated as the average of the adja-
cent windows. In total, one minute of adjacent windows were used
for this averaged window. Finally, the values were transformed in
decibel (dB) scale.

To reduce the information contained in these windows and to
make a rough spectrogram the frequency values were summed
together in twelve linear spaced frequency bands. Afterwards,
three subsequent windows were summed together. In Fig. 3, the
spectrogram, the spectrogram with the average subtracted and,
the rough spectrogram is shown for two coughs.

After the rough spectrogram was calculated, the algorithm cal-
culated the ‘duration’ of the cough. As calf coughs have been found
to have an average duration of 0.37 s (Ferrari et al., 2010). The
duration was calculated from the rough spectrogram. Instead of
calculating only one duration, different durations were calculated
to make the algorithm more robust (Fig. 4). The calculation was
done in different steps. In step 1, the frequency values were
summed together for each time period. In step 2, we went from
the highest value to the lowest value of step 1 in ten levels. These
are displayed as red1 arrows in Fig. 4. The length of each arrow was
the duration of that level. To reduce the information in this feature a
straight line was fitted through the durations based on reducing the
squared error (Fig. 4). First the red arrows were aligned to the left,
then the green line was fitted through the right arrows. The final
properties of this straight line, slope and intercept, were called the
duration features.

Another feature calculated the number of peaks in the rough
spectrogram. All the frequency values were summed together as
in step 1 of the duration calculation. Several sound events had mul-
tiple peaks as seen in Fig. 5, while for coughs, multiple peaks were
not observed. Therefore, this feature expressed whether there were
multiple peaks present in the spectrogram. In Fig. 5, a non-cough
sound is shown with the detected peaks. The peaks are required
to be further than 0.1 s from each other before they are detected
as two different peaks.

2.9.3. Classification
Each sound event had to be classified as either a cough or

another sound. The performance of the classification was mea-
sured with the sensitivity, specificity and precision.



Fig. 4. The calculation of the duration feature in three steps.

Fig. 5. A non-cough sound with multiple peaks is shown. These peaks are further
away than 0.10 s.
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sensitivity ¼ number of true positives
number of true positivesþ number of false negatives

ð1Þ

specificity ¼ number of true negatives
number of true negativesþ number of false positives

ð2Þ

precision ¼ number of true positives
number of true positivesþ number of false positives

ð3Þ
In these formulas the coughs classified as cough by the classifier

were the true positives, the unclassified coughs were the false neg-
atives, the correctly classified other sounds are the true negatives
and the wrongly classified other sounds were the false positives.

Due to the fact that only one out of fifteen sound events were
coughs, a classification with a high specificity was needed. A pre-
liminary calculation determined that the classifier that would
detect all the coughs (n = 385) and only half that number of other
sound (n = 167) would require a specificity of 96.7%. However,
detecting all coughs would mean 100% sensitivity which is unreal-
istic for such a high specificity. Therefore, the desired sensitivity
had to be lowered in order to increase and the desired specificity
had to be increased. In order to visualise the coughing trend in
the calf houses, we need (1), to detect at least 50% of the labelled
coughs i.e. a sensitivity of 50%. (2), that the majority of the detected
events were coughs i.e. a precision of at least 75%. This required a
target performance with a specificity of at least 98%, a precision of
more than 75% and a sensitivity above 50%.

The classification was based on the features calculated under
Section 2.9.2 : the duration, the peaks and, the rough spectrogram.
The classification was made on 66% of the labelled data from house
1 and afterwards validated on the remaining data from house 1,
and the data from houses 2 and 3. Therefore, the initial dataset
from the labelled sound files of house one was randomly divided
into an example set and a validation set. The example set or train-
ing set consisted of 169 coughs and 2698 other sounds events.

To achieve the chosen target performance, the example based
classifier that was used was based on the rough spectrogram and
subsequently, two more rules were added, based on duration and
peak information. The example based classifier compared the
rough spectrum values of a sound event on each time and fre-
quency value with those of a labelled cough. The comparison
was done with the Euclidean distance between the two rough
spectrograms. This resulted in a Euclidean distance value per
sound event. The lower the value the more a sound event resem-
bled the labelled cough. If Fijl represents the rough spectrogram
of sound l at time i and at frequency j and Gijm the rough spectro-
gram of labelled cough m, then the Euclidean distance elm between
both is calculated as

elm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i¼1

X
j¼1

F2
ijl � G2

ijm

� �r
: ð4Þ



Table 3
The performance of the algorithm on the labelled data for each calf house. The results for house 1 are divided between training and validation data. The other houses provided
validation data only. In these houses the results are divided between the non-calibrated and the calibrated data.

Sensitivity Specificity Precision

House 1 Training data 62.13 98.96 78.95
(%) Validation data 57.52 98.89 76.47
House 2 Non-calibrated 52.46 98.66 84.21
(%) Calibrated 50.82 98.88 86.11
House 3 Non-calibrated 16.67 99.80 87.50
(%) Calibrated 42.86 100.00 100.00
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Therewas a big spread in resemblances between the rough spec-
trograms of labelled coughs. A few sound events labelled as coughs
did not have a comparable rough spectrogram to the majority of
labelled coughs. Other sound events labelled as coughs were only
comparable to a restricted number of other labelled coughs. To con-
sider these irregular coughs, a weighted threshold was developed
on the Euclidean distance value. The higher the threshold, the more
a sound event could deviate from that labelled cough, or the higher
the Euclidean distance value could be. This threshold was chosen as
the highest Euclidian distance value which achieved a precision of
90% for that specific labelled cough in the training set. This method
is a simplified version of a pig cough detection algorithm from the
literature (Van Hirtum et al., 2003). This version is faster compared
with their use of a dynamic time warping method (Rabiner and
Juang, 1993). The threshold tm for each labelled coughm had to fulfil
the following equation in which the result between square brackets
is either 1 if true or 0 if false. The threshold was found by exhaus-
tively going over all thresholds tm.

0:9 ¼
Pnl

l¼1 elm < tm& l is a labelled coughð Þ½ �Pnl
l¼1 elm < tm½ � ð5Þ

These threshold calculations were made on the training set of
66% of the labelled data of house 1. Each detected sound event
received a value per labelled cough. Any sound event which was
below the threshold, was classified as a cough. This gave a preci-
sion of 70% on the training set which was inadequate compared
to the chosen target. To improve the classification, two more fea-
tures, the peaks and the duration, were added. Coughs could not
have more than one peak as seen in Fig. 3 and in Fig. 5. This
improved the precision to 73%. Additionally, the duration was lim-
ited by an empirical threshold equal to 3 units in the rough spec-
trum for the intercept values of the duration, leading to a
precision of 79%.

2.9.4. Calibration of algorithm
Finally, to consider the difference in recordings between the

three houses, a second version of the algorithm was developed
which had a calibration step after the calculation of the rough
spectrogram. The purpose of the calibration step was to improve
the algorithm’s performance to an acceptable level in all three
houses, 3 because the algorithm was developed on recordings of
house 1 and performed poorly in house 3.

First, the calibration calculated the average rough spectrogram
of labelled coughs in houses 1, 2 and 3. In the following formula
Xij represents the time-frequency value of the average rough spec-
trogram at time i and at frequency j. Fijkl represents the value of
rough spectrogram number l at house k. Furthermore, nk is the total
number of cough spectrograms in house k.

Xijk ¼
Pnk

l¼1Fijkl

nk
ð6Þ

The ratio per time-frequency value of the averaged rough spec-
trograms between house 1 and house 2 (R2ij), and between house 1
and house 3 (R3ij) was calculated as
Rkij ¼ Xij1

Xijk
: ð7Þ

Subsequently, this ratio was used to normalise or calibrate the
rough spectrogram of each sound event in houses 2 and 3, to better
resemble the sound events in house 1. The time-frequency value
CFijkl of this calibrated spectrogram for house k can be represented
as

CFijkl ¼ Rkij Fijkl: ð8Þ
3. Results

In the present study a cough monitor was developed for calves
which is capable of providing an early warning system for BRD
recognition. Initially, the performance of the calf cough algorithm
will be discussed. Subsequently, the algorithm’s results of the
number of coughs recorded are shown for sixty days in all three
houses. The number of coughs were later compared with the two
gold standards. Finally, the number of coughs that coincided with
the days of treatment, as described Section 2.6, were examined.

3.1. Algorithm performance results

Two algorithm versions, one without and one with the calibra-
tion step were developed. The performance of these algorithms is
shown in Table 3. The most important requirement was to achieve
a specificity higher than 98% which both algorithms attained. The
algorithm with calibration applied in house 3 achieved 100% speci-
ficity. The sensitivity of the algorithm with calibration applied in
houses 1 and 2 was always higher than 50%, respectively 57.52%
and 50.82%, so these met the criteria. In house 3, the algorithm
without calibration underperformed with only 16% sensitivity
while the algorithm with calibration performed at 42%. The preci-
sion was always above 75% which indicates that three out of four
detected sounds were calf coughs. Despite, using a specificity
higher than 98%, only 75% of the detected sounds were coughs in
house 1.

3.2. Algorithm results

The algorithm needs on average 96 min for one day of data on a
desktop pc as described under Section 2.9. The results of the cali-
brated algorithm over the period from the 1st April to the 11th
June are shown for each house in Figs. 6–8. These figures show
the number of coughs detected per hour. In houses 1 and 2, 48
and 36 coughs, respectively, were detected on average per hour,
while in house 3 only 16 coughs were detected per hour. The algo-
rithm data of houses 1 and 2 show that most coughs were detected
between 23:00 h and 12:00 h. In total 38% more coughs per hour
were detected during this period.

To detect periods of increased coughing, Figs. 6–8 were visually
assesed. When the number of coughs increased from a constant
low level we regarded it as the start of an increased coughing per-



Fig. 6. The number of coughs per hour in house 1. The x-axis indicates the day, the y-axis shows the time of day and the colours denote the number of coughs. Periods with
increased coughing are indicated with an ellipse.

Fig. 7. The number of coughs per hour in house 2. The x-axis indicates the day, the y-axis shows the time of day and the colours denote the number of coughs. Periods with
increased coughing are indicated with an ellipse.

Fig. 8. The number of coughs per hour in house 3. The x-axis indicates the day, the y-axis shows the time of day and the colours denote the number of coughs.
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iod. In house 1, in Fig. 6, two relative increases in cough number
were detected using the visual approach. There was a sharp
increase in coughing on the 19th April which was named period
1. This was followed by a further increase between the 20th and
the 26th May occurring usually in the morning hours and this
increase was named period 2. In house 2, in Fig. 7, three relative



Fig. 9. House 1: Number of calves which presented with BRD according to GS1, GS2 and were treated for BRD. The two periods with increased coughing are shown in yellow.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. House 2: Number of calves which presented with BRD according to GS1, GS2 and were treated for BRD. The periods with increased coughing are shown in yellow. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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increases in cough numbers were detected. On the 3th April there
was a small increase in cough numbers (period 1). Afterwards
there were two increases between the 20th April and the 25th
April (period 2), and between the 21th and the 23rd May (period
3). In house 3, in Fig. 8, no periods with increased cough numbers
were detected.

3.3. Comparison of algorithm results with gold standard

The number of calves with high rectal temperature and high RS
(GS1) and with high neutrophil number (GS2) were compared to
the increased coughing periods (Figs. 9–11). The number of calves
treated for BRD is also shown. It is evident that a greater number of
calves presenting with BRD (GS1) were present in house 1 and 2
than in house 3. In total 24, 14 and, 6 animals presented with
BRD in house 1, 2 and, 3 respectively. This is also supported by
the number of coughs detected by our algorithm.
3.3.1. House 1
In house 1, in Fig. 9, GS1 indicated calves presented with

BRD between the 8th and the 10th April but this did not corre-
spond to an increased number of coughs. However, the calves in
house 1 received a booster vaccination on the 9th April which
may have induced some clinical manifestations of BRD. In
Fig. 9, the first increased coughing period (period 1, Fig. 6) coin-
cided with three cases of BRD determined by GS1. The data
shows that one calf had BRD on the 18th April and two differ-
ent calves had BRD on the 21st April. The second increased
coughing period (period 2, Fig. 6) also coincided with calves
presenting with BRD on the 23rd (two cases) and the 27th
May (two new cases). However, on the 21st May no calves pre-
sented with BRD.

There was only limited data from GS2. On the 13th of May two
calves had a higher GS2 (neutrophil) value. These GS2 values did
not coincide with an increased coughing period.



Fig. 11. House 3: Number of calves which presented with BRD according to GS1, GS2 and were treated for BRD. There were no periods with increased coughing.

Table 4
Comparison between literature on pig cough detection methods and our developed calf cough detection algorithm. The ratio between coughs and total number of sounds,
sensitivity, specificity and precision are shown.

Van Hirtum and Berckmans (2003) Guarino et al. (2008) Chung et al. (2013) Calf cough detection

Ratio coughs/total sounds (%) 38.2 26.9 60.0 6.3
Sensitivity (%) 92.0 85.5 94.0 50.3
Specificity (%) 71.0 86.6 94.6 99.2
Precision (%) 66.0 70.1 96.2 87.5
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3.3.2. House 2
In house 2, three periods with increased coughing were

detected before calves presented with BRD using GS1 (Fig. 10).
For the first period, increased number of coughing sounds were
detected on the 3th April but no calves presented with BRD using
GS1. On the 5th April two calves presented with BRD. Therefore,
coughing sounds (period 1, Fig. 7) were detected a day before clin-
ical signs were observed (GS1). For period 2, no calves presented
with BRD using GS1 on the 18th April. Five calves presented with
BRD on the 23rd April which coincided with this period 2 of
increased coughing (Fig. 7). During period 3, no calves presented
with BRD using GS1.

The limited dataset of GS2 showed a clear increase in neutrophil
number during the second coughing period. A total of six calves
had higher values for GS2 on the 23rd April, confirming period 2
of increased coughing. However, between the 29th April and the
13th May, several calves had higher GS2 values which were not
confirmed by GS1 or by increased coughing.

3.3.3. House 3
In house 3, in Fig. 11, there were no periods of increased cough-

ing. There was never more than one calf presenting with BRD
according to GS1 at any time. However, the GS2 of three calves
was increased on the 13th May.

3.4. Comparison algorithm with treatment practice

The periods of increased coughing were compared to the times
when the calves were treated for BRD (Figs. 9–11). Most calves
were treated in house 1 (23 treatments in total) while in house 2
and house 3 calves received 12 and 5 treatments, respectively.
Figs. 9 and 10 showed that during or after each period of increased
coughing at least one animal was treated.
In house 1, two calves were treated after the first coughing per-
iod. Furthermore, two calves were treated during the period 2, and
three calves were treated after period 2. In house 2, the first, sec-
ond and third period of increased coughing, respectively, corre-
sponded to treatment for BRD of two, four and, one calf. In house
3, only five calves were treated for BRD in total. Moreover, in each
house, on several occasions, calves received repeated treatments
for BRD which did not correspond to periods of increased coughing.
4. Discussion

4.1. Algorithm performance indicators

The algorithm attained a sensitivity of 57%, 51% and 43%, for
houses 1, 2 and 3, respectively, which is lower than values reported
for algorithms used to detect pig coughs (Chung et al., 2013;
Guarino et al., 2008; Van Hirtum and Berckmans, 2003). These
authors reported sensitivities ranging from 85% to 94% (Table 4).

However, the main difference between the present study and
the reported literature (Chung et al., 2013; Guarino et al., 2008;
Van Hirtum and Berckmans, 2003) is the ratio of number of cough
sounds to total number of sounds. The ratio in these studies was
between 60% and 26.9% while in the present study it was only
6.3%. Due to this ratio, the specificity was regarded as more impor-
tant than the sensitivity in the present study. Table 4 shows the
ratio, sensitivity, specificity and precision of this study’s algorithm
and the algorithms from literature. The table shows that the cur-
rent algorithm attained a similar precision compared with litera-
ture while having a greater number of other sounds and a
smaller ratio of cough sounds to total sounds. This resulted in a
superior specificity compared to the other studies.

Different to existing studies, our method was developed and
tested in three different houses. Therefore, a calibration step was
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added to the algorithm in the present study as described under
Section 2.9.4. The calibration step considered the difference in
recordings between the three houses. These differences could pos-
sibly be explained by different building acoustics of the houses or a
different set-up of the sound recording equipment. The perfor-
mance results of Table 3 shows that the recordings of house 3 were
more different compared to the two other houses. This difference
in recording had previously been remarked by the labeller. The
table further shows that the calibration step improved the perfor-
mance in house 3 as intended but decreased the sensitivity with
two percent in house 2 (Table 3). The reason for the decreased sen-
sitivity was not investigated as the performance was still accept-
able. This showed that calibration mainly improved the house
that sounded differently and this difference will most likely hap-
pen in practice. This performance difference also demonstrates
that applying the pig coughing algorithms as described in litera-
ture on another experimental set-up is probably not
straightforward.

Lastly, it was concluded that the algorithmwith calibration step
applied in house 3 was too strict (Table 3) as the specificity and
precision were both 100% and the sensitivity was below 50%. How-
ever, the algorithm was not modified as it was decided that 42%
sensitivity was acceptable.

4.2. Comparison with gold standards

In order to check if 50% sensitivity is sufficient for practical use,
the performance of the algorithm was assessed against periods
when calves presented with BRD as determined by gold standards.
First we determined the periods of increased coughing based on
visual inspection of data from Figs. 6–8. When the number of
coughs increased from a constant low level we regarded it as the
start of an increased coughing period.

The GS’s indicated BRD at discrete times, while the calf cough
algorithm provided information on a continuous basis. Although,
the GS’s indicate BRD, they do not indicate if the BRD caused an
increase in the number of coughs. As the symptoms of BRD vary,
it is possible that calves may present with clinical manifestations
of BRD, but do not develop a cough (Van der Fels-Klerx et al., 2002).

4.2.1. Gold standard 1
Four out of the five indicated coughing periods coincided with

an increase in the number of calves presenting with BRD. For
example, period 1 in house 1 coincided with the increase of BRD
cases from one to two different calves over five days. So in total
three different calves were detected as being sick. However, there
were no GS scores recorded in between these two days. A similar
increase in the number of calves presenting with BRD was
observed for every detected period with an increased coughing fre-
quency, except for the last period of increased coughing frequency
in house two. In house 3 we did not find an increased coughing
period which was confirmed by the GS1. Based on these results,
we decided that detecting more than one calf presented with
BRD is possible based on visually analysing Figs. 6–8.

4.2.2. Gold standard 2
The data used for the GS2 (neutrophil number higher than the

reference range) was only available during two increased coughing
periods. In house 1, GS2 failed to indicate BRD in the increased
coughing period nr.2 (Fig. 9) contrary to GS1, while in house 2,
GS2 indicated BRD in the increased coughing period nr.2 consistent
with GS1. However, in house 2, GS2 suggested that more calves
presented with BRD than GS1 on 2nd May. In house 3, GS2 indi-
cated that there were calves presenting with BRD but this did
not correspond to either GS1 or an increased coughing period.
Therefore, it appears that GS1 was better correlated than GS2 with
the increased coughing periods. This may be because an increase in
neutrophil number may be caused by many other infections or
stresses other than BRD (Carroll and Forsberg, 2007)while the
GS1 scoring was specific for symptoms of BRD (Lago et al., 2006).
Recently, research compared blood samples to the number of
coughs from pigs (Finger et al., 2014). They could relate an increase
in pig coughs to Mycoplasma Hyopneumoniae and Swine Influenza
Virus.

4.3. Early warning system: comparison with treatments

If the increased coughing periods can be detected by the algo-
rithm before clinical signs are noticeable, then there is an added
value in an early warning system for the Stockperson. Therefore,
we analysed the time between an increased coughing period and
treatment for BRD. The animals were always treated after or during
a period of increased coughing (Figs. 9 and 10). This suggests that
the veterinarian could have started the treatment earlier. How
much earlier the treatment could have started is dependent on
when the algorithm detects an increased coughing period. In the
current paper this detection was not yet automated but visually
assessed based on the number of coughs. Therefore, it was not pos-
sible to quantify how much earlier. These results show for the first
time that detection of coughs may indeed be an early warning sys-
tem for calves presenting with BRD. Instead of only using visual
inspections in the calf house to detect BRD an automated cough
detection method can assist the Stockperson in recognising BRD.

If the final algorithmwould be able to indicate increased cough-
ing before BRD is recognised by other means, the animals would be
treated earlier. This would reduce the severity of the disease
(Cusack et al., 2003) and decrease the costs for the Stockperson.
Moreover, the method could decrease the use of antibiotics and/
or anti-inflammatory drugs because animals are treated in an ear-
lier stage. This may help reduce the growing antibiotics resistance
trend (Graveland et al., 2010). Additionally, animals remaining sick
for shorter periods would improve animal welfare.

4.4. Cough pattern

When analysing Figs. 6–8, it was observed that during the
increased coughing periods most coughs were concentrated in
the morning. Between 23 h and 12 h there were on average 38%
more coughs than between 13 h and 22 h. The greater number of
coughs could be explained due to husbandry management
between 7 h and 12 h (including feeding and cleaning, replenishing
of bedding, health observations) disturbing the calves. Calves were
consequently more active in the morning hours than during the
afternoon.

Furthermore, the periods of increased coughing in houses 1 and
house 2 were close to each other in time as seen in Figs. 9 and 10.
Period 1 of house 1 lasted from the 19th to the 21st April while
period 2 of house 2 lasted from the 20th to the 25th April. Period
2 in house 1 lasted from the 20th to the 26th May while period 3
of house 2 lasted from the 21st to the 23th May. This agreement
was likely due to the transfer of infection between houses as they
were adjacent to each other.
5. Conclusion

An early warning system to support diagnosis of BRD in calves
was proposed based on the detection of calf coughs using a contin-
uous, automated, sound algorithm. This calf cough detection algo-
rithm achieved on average 50.3% sensitivity, 99.2% specificity and
87.5% precision. Even with the low sensitivity a total of five periods
with increased coughing were observed. For all five periods, a
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number of calves were treated for BRD during or after the observed
coughing period. This indicates that automated detection of coughs
may be an early warning system for calves presenting with BRD.
This automated cough detection method could thus assist the
Stockperson in recognising BRD alongside visual inspections in
the calf house.
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