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Abstract 18 

Sugarcane mills need sugar content estimates in advance to establish their 19 

commercial strategy. To obtain these estimates, mills rely on historical averages 20 

or maturation curves. Crop models have also been developed to provide those 21 

estimates. Leveraging mill data about fields and sugar content at harvest, we 22 

developed empirical models using different data mining techniques along with the 23 

RReliefF algorithm for feature selection. The best model was attained with 24 

Random Forest with features selected by RReliefF, having a mean absolute error 25 

of 2.02 kg Mg-1. This model outperformed Support Vector Regression and 26 

Regression Trees with and without feature selection. Models were also evaluated 27 

by the Regression Error Characteristic Curves, which showed that the best model 28 

was able to predict 90% of the observations within a precision of 5.40 kg Mg-1.  29 
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1. Introduction  35 

Planning in the sugar industry requires estimates about the amount of sugar 36 

that will be produced in the following cycle. This information is then used in 37 

forward selling, forward pricing, and managing storage and shipping schedules 38 

(Everingham et al., 2007). In Brazil, where harvests mostly occur from April until 39 

November, the commercial strategy for the following season starts being 40 

established in August of the current season (Bocca et al., 2015). Overestimates 41 

could compromise previous selling commitments while underestimates could lead 42 

to difficulties in storing and shipping (Everingham et al., 2003). Sugar estimates 43 

are also useful for operational level plans, such as prioritizing harvesting areas 44 

(Scarpari and Beauclair, 2004).  45 

Two forecasts are required to achieve such estimates: sugarcane (Saccharum 46 

spp.) fresh mass yield and sugar content in sugarcane stalk (Alvarez et al., 1982; 47 

Bocca et al., 2015). The former has been addressed by Everingham et al. (2009, 48 

2016) and by Bocca and Rodrigues (2016). For the latter, industries use either 49 

averages from the previous years or variety-specific maturity curves (Scarpari and 50 

Beauclair, 2004, 2009). Both approaches, however, do not allow for the inclusion 51 

of factors that favor sucrose storage in sugarcane stalks, e.g. weather variability 52 

and management practices (van Heerden et al., 2013). Particularly for the case of 53 

weather, the increase in weather variability leads to the need of tools to assess the 54 

effect of weather uncertainty in production. The urge for climate risk assessment 55 

is increasing among companies as an effect of climate change (Surminski, 2013). 56 

To take weather variability and management practices into account, crop 57 

models could also be explored. Crop yield models gather knowledge about crop 58 
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growth and development and are able to predict its behavior (Boote et al., 1996; 59 

Monteith, 1996).  60 

There are mainly two approaches to modeling: to deepen understanding and 61 

knowledge of a topic and to make accurate predictions for specific decisions. 62 

Frequently, different levels of both can be found in most models (Shmueli, 2010; 63 

Singels, 2013). The first approach is seen in models that simulate sugarcane 64 

phenological and physiological processes. These models try and describe plants’ 65 

processes and deepen the understanding of plant physiology and its interactions 66 

with the environment (Passioura, 1996; O’Leary, 2000; Singels, 2013). To 67 

achieve higher prediction accuracy, aiming at production planning, one could use 68 

empirical models, which are independent of the simulations aforementioned.  69 

Empirical models are conceptually simpler models and are based on 70 

relationships between crop outputs and its driving factors, e. g. water availability, 71 

weather conditions, and agricultural practices (Monteith, 1996; Passioura, 1996; 72 

Surendran Nair et al., 2012; Singels, 2013). The relationships explored in these 73 

models vary from proxies to direct effects, such as the distance from the lake 74 

feature used by Alvarez et al. (1982) and variety, respectively. 75 

Scarpari and Beauclair (2004, 2009) developed empirical models to predict 76 

total recoverable sugar by using stepwise regression. In the paper published in 77 

2004, the only variables used by the authors were negative degree-days and 78 

available water content during crop development. In 2009, they added another 79 

one, concerning photoassimilate production. Despite aiming not to make 80 

predictions but to describe the relationship between variables, Lawes et al. (2002) 81 

modeled commercial cane sugar by using linear mixed models. Their final model 82 

included the year, month of harvest, farm of origin, variety and an interaction 83 
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between the month of harvest and year of harvest. More recently, Cardozo et al. 84 

(2015) established an exponential relationship between total recoverable sugar 85 

and accumulated rainfall in the 120 days before the harvest. 86 

In 1982, Alvarez et al. (1982) had already highlighted not only the vast 87 

number of variables that could affect sugarcane yield, but also the complexity of 88 

the relations between them. Different approaches have been used to address these 89 

issues. Scarpari and Beauclair (2009) generated a set of models: one model was 90 

fitted for each combination of variety, number of cuts and type of management 91 

zone, for early, mid and late period of harvest during the season. Lawes et al. 92 

(2002), in turn, used pairwise combinations of variables, while Cardozo et al. 93 

(2015) selected one variable most correlated to sugar content to be included in 94 

their three models, for each ripening pattern. 95 

These examples draw attention to the limitations of the methods being used 96 

to model sugar content: they either assume linearity, do not extensively account 97 

for interactions or both. Also, they should not be directly used for non-normal 98 

data with auto-correlated features, which underlines the need for other techniques, 99 

such as those highlighted by Breiman (2001), which he called algorithmic models, 100 

referring to the models obtained by data mining or machine learning techniques. 101 

Data mining techniques have been long applied in agriculture-related 102 

problems, e.g. prediction of wine-fermentation results, evaluation of imperfections 103 

in fruits, both with images and X-ray, classification of sounds from pigs and birds, 104 

meat analysis and the use of energy in agriculture (Mucherino et al., 2009). The 105 

successful application of these techniques is due to their capacity to deal with the 106 

previously mentioned aspects of agricultural data. 107 
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One further reason to use these other techniques is the availability of data. 108 

Lawes et al. (2002) stated that for the Australian production context, some sugar 109 

mills collect block-productivity data such as cane yield and commercial cane 110 

sugar from every block or paddock harvested during the season, as well as 111 

information on the block size, the cane variety, the time of harvest and how many 112 

ratoons the cane has. Data collection for Brazilian context is not only similar but 113 

also enhanced by the fact that the mill is either owner or responsible for the 114 

production (Bocca et al., 2015) and therefore has additional information regarding 115 

soil analysis and agricultural practices. 116 

Furthermore, the use of data mining techniques allows for more accurate 117 

models since they can identify new and unknown patterns in large datasets 118 

(Witten et al., 2011). An attempt in this direction has already been made by 119 

Everingham and Sexton (2011), although still with a limited number of variables. 120 

It is possible to achieve better estimates by exploring more variables, and by 121 

looking at further available algorithms. 122 

Bocca et al. (2015) suggested the use of yield models associated to climate 123 

forecasts and production data in an integrated system in order to obtain yield 124 

forecasts. In this study, we present the development of an element of this system: 125 

a sugar content model that could be used in conjunction with both weather 126 

forecasts and production data. To model sugar content (Total Recoverable Sugar - 127 

TRS), we use a commercial sugarcane production database and the data mining 128 

framework (feature selection, parameter tuning, modeling and validation in an 129 

independent set).  130 

 131 
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2. Materials and methods 132 

2.1. Dataset 133 

Data used in this study were supplied by Alcídia mill, operated by 134 

Odebrecht Agroindustrial, located in the city of Teodoro Sampaio, state of São 135 

Paulo (SP), Brazil. The mill annual production area is almost 25 thousand hectares 136 

of land and its production reaches 1.6 million tons of sugarcane. Harvests that 137 

happened in 2011 and 2012 provided 2,102 observations, with each observation 138 

referring to one block in the farms in each year. The 53 variables of the dataset 139 

belong to four categories: soil physics and soil chemistry, weather, agricultural 140 

practices, and those related to the crop (Table 1). 141 

It is worth noting that some variables were created, particularly regarding 142 

the developmental stages of the crop, based on the planting dates. Plant cycle was 143 

simplified into four stages: (1) sprouting, (2) tillering, (3) growth and (4) maturity. 144 

With this approach, we could group weather and phenological information, 145 

providing estimates of the weather in each of the plant’s stage, rather than 146 

averages for the whole cycle. 147 

Variables that delve too much into the cycle, i.e. that are intrinsically related 148 

to harvest, such as the occurrence of pests, that is only verified by harvesting time 149 

and cannot be predicted in advance, were removed. The remaining variables are 150 

either defined in the beginning of the cycle, as is the case for fertilization, or refer 151 

to the weather and can be estimated by weather forecasts. 152 

Two scenarios were modeled: (a) using all available features, and (b) 153 

performing feature selection and using only the selected features in the modeling 154 

process. Feature selection will be further explained in section 2.2.2. 155 

 156 
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2.2. Model development 157 

2.2.1. Algorithms deployed 158 

In data mining, the prediction of a continuous variable, such as Total 159 

Recoverable Sugar, is known as a regression problem. In this paper, three 160 

techniques were used to tackle this problem: Support Vector Regression (SVR), 161 

Random Forests (RF) and Regression Trees (RT). Statistical software R, version 162 

3.1.1 (R Core Team, 2015) was used in the modeling process with packages 163 

e1071 (Meyer et al., 2014), randomForest (Liaw and Wiener, 2002) and rpart 164 

(Therneau et al., 2014). 165 

 166 

2.2.2. Feature selection 167 

Feature selection was only performed on the part of the dataset reserved for 168 

training, with 1,402 observations. The algorithm that was chosen to perform 169 

feature selection was RReliefF (Robnik-Šikonja and Kononenko, 2003) as it is 170 

able to estimate the quality of attributes in problems with strong dependencies 171 

between attributes. Since the dataset is comprised of weather and edaphic 172 

features, this has turned out to be an important characteristic. The parameters 173 

number of neighbors and number of iterations were kept as suggested in Robnik-174 

Šikonja and Kononenko (2003) and Robnik-Sikonja and Kononenko (1997): 10 175 

and 100, respectively. Importance values provided by the algorithm were 176 

averaged after 10 repetitions. The RReliefF algorithm implemented in the 177 

CORElearn package was used (Robnik-Šikonja et al., 2015). 178 

Robnik-Šikonja and Kononenko (2003) state that importance value is 179 

analogous to the percentage of explained variance if scaled to sum 1. Based on 180 

that, the criterion to limit the number of features was to select only the best-181 
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ranked attributes that accounted for 0.9 – 90% – of the RReliefF explained 182 

variance. 183 

We chose not to perform the variable importance for Regression Tree and 184 

Random Forest so that we could use the same variables, chosen by the criteria 185 

proposed by RReliefF, in all models. 186 

 187 

2.2.3. Parameter tuning 188 

To achieve better results, parameters were tuned using a two-stage grid 189 

search. The second stage used smaller step sizes for the grid search in the region 190 

close to the best result found in the first stage. Different parameters were searched 191 

for the different feature sets used. Details of the ranges and step size for each 192 

parameter can be found in the Appendix. Optimal values obtained can be seen in 193 

Table 2. Tuning and modeling processes used only data available in the training 194 

set, in the two situations modeled, after the groups of features were defined. 195 

 196 

2.2.4. Validation 197 

Models were trained in a dataset constituted by two-thirds of the records and 198 

validation was achieved through testing in the remaining third (700 observations), 199 

still unseen by the model. This strategy is also known as hold-out validation. 200 

Three metrics were computed to report model quality: root mean squared 201 

error (RMSE), mean absolute error (MAE) and coefficient of determination 202 

between model output and observed values (R²). The REC Curve, developed by 203 

Bi and Bennet (2003), was also used with this objective. All metrics of evaluation 204 

were reported for the hold-out data. 205 

 206 
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3. Results and discussion 207 

3.1. Feature Selection 208 

As expected, Algorithm RReliefF was able to identify those variables more 209 

often associated with sugar accumulation, e.g. the occurrence of precipitation 210 

events and low temperatures close to harvesting (van Heerden et al., 2013). The 211 

algorithm was also able to distinguish other variables that could bring information 212 

to the model, even though they are less obvious, such as Silt in the intermediate 213 

layer. RReliefF selected 31 features from the 53 in the original set (Figure 1). 214 

One can see how weather and crop variables predominate, as not only all of 215 

the available ones were selected, but also all of the 13 most important belong to 216 

one of those two categories (up to Mean Min Temp 1 - Figure 1). Soil variables 217 

were already deemed less important and only 7 remained from the original 24. 218 

Even though soil variables are usually autocorrelated, which could have lowered 219 

their importance (Robnik-Šikonja and Kononenko, 2003), weather variables are as 220 

well. Despite that, these variables had the highest values of importance, 221 

highlighting how much they influenced sugar production and accumulation 222 

processes. 223 

We do not aim to try and explain every feature chosen by the algorithm, but 224 

some will draw attention to other important points. In the already mentioned case 225 

of Silt, its selection could have been caused by autocorrelation among features. 226 

Along with Texture, they are probably proxies for other soil features and, due to 227 

the aforementioned behavior of RReliefF, only Silt and Texture showed enough 228 

importance.  229 

The use of soil fractions as features for the models requires a brief 230 

discussion. Since soil fractions are compositional data, this characteristic must be 231 
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addressed for the use in models such as least squares linear regressions in which 232 

independence between features is important and compositional data explicitly 233 

violate this assumption. Empirical investigations seem to indicate that such 234 

transforms are not required (Ranganathan and Borges, 2011), or that they can be 235 

alleviated by the use of GLM models, in which one can specify different error 236 

distribution and link functions, or by the use of random forests (Lopatin et al., 237 

2016). In a practical sense, tree methods are invariant to monotonic 238 

transformations in the data, meaning these transformations would not change the 239 

models. For Support Vector Machines/Regression, if transformations do not 240 

change the relative distances between samples, relation between inputs and 241 

outputs would not change, but some changes in the internal structure could 242 

happen.  243 

Reproducing this methodology with another dataset would probably not 244 

present the same outcome, i.e. instead of Silt, Clay could have been chosen. Other 245 

ways of engineering the data, such as including latent variables, could also have 246 

lead to different outcomes. Despite that, the most important variables are expected 247 

to be quite similar. 248 

Another noteworthy result in this selection is the low score presented by the 249 

Ripeners feature, which may have occurred due to bias introduced in the dataset. 250 

In both cases, when ripeners were applied and when they were not, TRS would 251 

never present an excessively low value, or else the area would not have been 252 

harvested. Since low TRS fields were not harvested, they did not make it into the 253 

commercial dataset. This illustrates how biases might often be unaccounted for in 254 

the modeling process. 255 

 256 
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 257 

Figure 1. Ranked feature importance of features selected by the RReliefF 258 

algorithm. Weather features names follow the pattern of Mean/Sum, variable 259 

studied and period for the calculation (1 for sprouting, 2 for tillering, 3 for growth 260 

and 4 for maturity), e.g. Sum DD 4 is the sum of degree days in the maturity 261 

period and Mean Max Temp 1 is the mean value of the daily maximum air 262 

temperature for the sprouting period. 263 

 264 

This unexpectedness of some selected features, nevertheless, creates 265 

opportunities for investigating other unknown variables that play a role in sucrose 266 

accumulation in sugarcane stalks. 267 

 268 

3.2. Modeling 269 

On average, developed models achieved mean absolute error values that 270 

represent about 2.5% of the smallest value in the test set. This result means that 271 
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decision makers are prone to forecast errors that depend almost exclusively on the 272 

quality of the weather forecast models available. 273 

Based on MAE or RMSE values, one could affirm the best prediction 274 

outcome came from algorithm Random Forest both when feature selection was 275 

performed and when it was not (Table 3). However, the REC curve allows for 276 

further understanding of the prediction errors (Figure 2). We observe that once the 277 

acceptable error is larger than 15 kg Mg-1, all models present similar performance. 278 

This means criteria other than the accuracy of the predictions might be used, e.g. 279 

processing speed and interpretability. Regression trees often have an advantage of 280 

interpretability (Breiman, 2001), but taking into account the complexity parameter 281 

achieved through tuning, this is not the case for the models obtained. The trees 282 

turned out to have more than 150 nodes. 283 

One should note that not only the Random Forest mean absolute error is 284 

2.02 kg Mg-1, but that 80% of the predicted values have a mean absolute error 285 

lower than 3.00 kg Mg-1 and that 90% have an error lower than 5.40 kg Mg-1. 286 

These limits – if acceptable to decision makers – reinforce the model’s utility in 287 

the decision support process. 288 

 289 
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 290 

Figure 2. REC Curve. Dotted line indicates an error threshold of 3.00 kg Mg-1. 291 

Dashed line indicates an error threshold of 5.40 kg Mg-1. Letter “s” indicates 292 

feature selection. 293 

 294 

Even though the coefficient of determination between model output and 295 

observed values should not be used as a validation metric (Harrison, 1990; 296 

Mitchell, 1997), we do so (Figure 3) as this is the only reported metric regarding 297 

the validation process in some of previous research papers.   298 

We stress that comparisons of the present models with previous works 299 

should consider the differences in the validation strategy. Everingham and Sexton 300 

(2011) used a cross-validation approach and obtained R² of 0.55, while Scarpari 301 

and Beauclair (2004) reported R² of the training set of 0.70. 302 

Likewise, we believe our results should not be compared to the ones 303 

obtained by Scarpari and Beauclair (2009) and by Cardozo et al. (2015) due to the 304 

different strategies of validation. In the former paper, several models were 305 

developed and different coefficients are presented for each model. In the latter, 306 

measured values of TRS are averages of all of the blocks in each city, weighted by 307 

the proportion of each group of cultivars, for each month. The average value is 308 

then compared to the predicted TRS for each month of harvest. Due to this 309 
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aggregation, observed data variability is reduced, diminishing residuals from 310 

comparison between predicted and observed values. 311 

 312 

 313 

Figure 3. Real values vs. predicted values obtained by the different models. 314 

Techniques used were Support Vector Regression (SVR), Random Forests (RF) 315 

and Regression Tree (RT). Straight line indicates the 1:1 reference. Letter “s” 316 

indicates feature selection. 317 

 318 

A data mining approach is different from those used in previous modeling, 319 

not only regarding the choice of which variables would be included in the model, 320 

but also because it allows for variables that are less generic than Farm and Year. 321 

Lawes et al. (2004) pointed out that the Farm and Year variables capture the 322 

influence of management and local variations in the environment. In variables 323 

such as month or year there is an implicit consideration of past weather, which 324 
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happened during the months of growth of the observations in the training set. 325 

Breaking these variables into several others allows the algorithms to extract the 326 

knowledge that each individually brings to the pool, as well as prevent inclusion 327 

in the model of information that would not be useful. Also, when variables are 328 

explicitly considered, they allow for including estimates, such as the amount of 329 

nitrogen applied for the cycle. 330 

We acknowledge that the modeling errors do not correspond to forecasting 331 

errors, since weather data used correspond to past data. These models, when used 332 

with forecasting intentions, have to be used in combination with weather 333 

forecasting technologies (Everingham et al., 2007). In the system proposed by 334 

Bocca et al. (2015), in what concerns production data, some estimates should be 335 

included, such as amount of fertilizer applied, ripener application, etc. 336 

Therefore, the highest importance of weather variables in the last period has 337 

both a positive and negative impact on the potential use of the models for 338 

operational decision-making. Concerning decisions regarding harvesting dates – 339 

which can be changed late in the crop cycle – weather forecasts will be needed 340 

only a few months in advance, leading to better estimates. On the other hand, 341 

decisions that depend on long-range forecasts will have larger errors for the latest 342 

months. 343 

As for feature selection, one can note how similar the results were when the 344 

technique was performed and when it was not. We expected improvements in the 345 

results, since the technique was developed to deal with performance degradation 346 

both in speed and in performance accuracy due to high dimensionality (Kira and 347 

Rendell, 1992). Even though there was no pronounced improvement, the similar 348 
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performance despite the lower number of variables implies that the developed 349 

models were more robust. 350 

We underline that there are also other well-known techniques that could 351 

have been explored, e.g. neural networks, boosted models or even creating an 352 

ensemble of the models. However, due to its iterative nature, data-mining could 353 

be indefinitely performed for improved performance (more data, more features, 354 

refined tuning, etc.), and we have already shown the better performance of data 355 

mining techniques.  356 

Finally, we must add that due to the scope of the data used to fit our models, 357 

their use should be limited to the mill that provided the data. At most, they could 358 

be used by mills with similar conditions of soil and weather. If the conditions 359 

differ, our workflow should be repeated with data from the different mill. 360 

 361 

4. Conclusions 362 

Data mining techniques not only showed potential in Total Recoverable 363 

Sugar prediction at block level, but also showed an improvement when compared 364 

to previous modeling attempts. We attributed this improvement to the inclusion of 365 

more detailed data and to the refinement of these techniques. Developed models 366 

were allowed to explore relationships other than linear or first degree interactions. 367 

By exploring a feature selection technique, we reinforced the importance of 368 

weather variables and we also could detect the introduction of bias in the dataset. 369 

If the technique is to be used, said bias should be removed by either not including 370 

blocks in which ripeners were applied or by including data before and after 371 

ripeners were applied. 372 
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We evaluated models according to several metrics, and all of them 373 

supported the use of these techniques in decision making in the sugar industry, 374 

considering the availability of appropriate weather data. Particularly, the use of 375 

the REC curve provided ranges of accuracy that can also be used by decision 376 

makers. 377 

 378 
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Appendix 

Table 4. Ranges explored in the parameter tuning process. 

Algorithms Parameters First tuning Second tuning 

SVR 

Gamma From 2-9 to 21. Step: 2n 

20 points linearly 

spaced from 2-6 to 2-3. 

Cost From 20 to 210. Step: 2n 

10 points linearly 

spaced from 2 to 8. 

RF 

Percentages of 

attributes in the split 

15%, 22%, 33%, 44%, 

55%, 66%, 77% 

10 points linearly 

spaced from 33% to 

55%. 

Minimum size of 

terminal nodes 

1,2,5,10,20 1,2 

Number of trees to 

grow 

100,250,500,750, 

1000, 1500 

20 points linearly 

spaced from 250 to 

1500. 

RT 

Minimum number of 

objects in a node for a 

split 

2,5,10,25,50 - 

Complexity parameter 

0.001, 

0.005,0.01,0.05,0.1, 

0.25 

- 
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FIGURE CAPTIONS 

 

Figure 1. Ranked feature importance of features selected by the RReliefF algorithm. 

Weather features names follow the pattern of Mean/Sum, variable studied and period 

for the calculation (1 for sprouting, 2 for tillering, 3 for growth and 4 for maturity), e.g. 

Sum DD 4 is the sum of degree days in the maturity period and Mean Max Temp 1 is 

the mean value of the daily maximum air temperature for the sprouting period. 

 

Figure 2. REC Curve. Dotted line indicates an error threshold of 3.00 kg Mg-1. Dashed 

line indicates an error threshold of 5.40 kg Mg-1. Letter “s” indicates feature selection. 

 

Figure 3. Real values vs. predicted values obtained by the different models. Techniques 

used were Support Vector Regression (SVR), Random Forests (RF) and Regression 

Tree (RT). Straight line indicates the 1:1 reference. Letter “s” indicates feature 

selection. 



25 

 

Table 1. List of variables used for modeling in the full dataset.  

 Variable Details [Unit] 

Soil Sand, Clay, and Silt 

Numeric variables. Each percentage is 

available in three depths: 0-0.25 m, 0.25-

0.50 m and 0.80-1.00 m [%]. 

 Texture 

Categorical variable with seven levels. 

The percentage of clay in the soil is the 

main criteria used to define the levels.(a) 

 Fertility 

Categorical variable with seven levels. 

Levels are determined based on soil 

percent base saturation, soil aluminum 

saturation, and soil pH. (a) 

 Soil Density Numeric variable [g cm-3]. 

 Chemical properties 

Numeric variables. Extractable 

aluminum [mmolc dm3], extractable 

calcium [mmolc dm-3], extractable 

potassium [mmolc dm-3], extractable 

magnesium [mmolc dm-3], soil pH, 

phosphorus concentration [mg dm-3], 

organic matter [g dm-3]. 

 Derived chemical properties 

Numeric variables. Cation-exchange 

capacity [mmolc dm-3], exchangeable 

acidity [mmolc dm-3], percent base 

saturation [%], aluminum saturation [%], 

and sum of bases [mmolc dm-3]. 

Weather 

Sum of degree days (Sum 

DD), Accumulated 

Numeric variables. Each one is available 

for the four stages of plant’s 
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precipitation (Sum Ppt), Mean 

maximum air temperature 

(Mean Max Temp), Mean 

minimum air temperature 

(Mean Min Temp) 

development: (1) sprouting, (2) tillering, 

(3) growth and (4) maturity. 

 

Sum of Negative Degree Days 

(Sum NDD 4) 

Numeric variable. Only available in the 

maturity stage.(b) 

Agricultural 

practices 

Ripeners 

Categorical variable referring to whether 

ripeners were applied or not 

 Vinasse 

Numerical variable referring to the 

irrigation depth using vinasse [mm] 

 Cake Filter 

Numerical variable referring to the 

amount of cake filter applied [Mg ha-1] 

 

Fertilization rates of Nitrogen, 

Phosphorus, Potassium and 

Molybdenum. 

 

Rates were calculated according to 

applied bulk rate and formula 

percentages. 

Particularly for Potassium, rate could 

also have been determined by using its 

concentration in vinasse and how much 

vinasse was applied. [kg ha-1] 

 Source of Potassium 

Categorical variable referring to whether 

K source is either mineral fertilizer or 

vinasse. 

Crop 

related 

Variety Categorical variable 

 Days in the cycle 

Numeric variable referring to the interval 

from planting or previous harvest to the 
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following harvest 

 Number of harvests 

Categorical variable with labels 1 to 6. 

Harvests that happened within 12, 15 and 

18 months after planting or previous 

harvest are hardcoded as 1. 

 

Total Recoverable Sugar 

(TRS) 

Numeric variable for the mass of sugar in 

a metric ton of sugarcane. Expressed in 

[kg Mg-1]. 

(a) As proposed by Demattê and Demattê (2009). (b) Negative degree days as described 

by Scarpari and Beauclair (2004). 
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Table 2. Parameters defined by tuning for the full dataset and for the dataset with 

selected features. 

Algorithms Parameters Full dataset 

Dataset with feature 

selection 

SVR 

Gamma 0.02138158 0.06743421 

Cost 6 4 

RF 

Percentages of attributes in 

the split 

43%  

(23 attributes) 

43%  

(13 attributes) 

Minimum size of terminal 

nodes 

1 1 

Number of trees to grow 579 382 

RT 

Minimum number of 

objects in a node for a split 

2 2 

Complexity parameter 0.001 0.001 
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Table 3. Mean Absolute Errors and Root Mean Squared Errors of data mining 

techniques in the considered scenarios (kg Mg-1). 

 Features used 

Regression 

Tree 

Random 

Forest 

SVR 

Null 

model* 

MAE 

All features 3.23 2.08 2.66 9.26 

Selected features 3.27 2.02 2.64 9.26 

RMSE 

All features 5.06 3.62 4.18 11.05 

Selected features 4.98 3.60 4.19 11.05 

*Predicted values correspond to the mean TRS value in the training set. 

 


