
 

 

Cite as: 

“Andriamandroso A.L.H, Lebeau F, Beckers Y, Froidmont E, Dufrasne I, Heinesch B, 

Dumortier P, Blanchy G, Blaise Y, Bindelle J. 2017. Development of an open-source 

algorithm based on inertial measurement units (IMU) of a smartphone to detect cattle grass 

intake and ruminating behaviors. Computers and Electronics in Agriculture, 139, 126-137: 

https://doi.org/10.1016/j.compag.2017.05.020." 

https://doi.org/10.1016/j.compag.2017.05.020


 

 

Development of an open-source algorithm based on inertial 1 

measurement units (IMU) of a smartphone to detect cattle 2 

grass intake and ruminating behaviors. 3 

Andriamasinoro Lalaina Herinaina Andriamandroso 
a, b, c ¥

, Frédéric Lebeau 
b
, Yves Beckers

c
, 4 

Eric Froidmont
d
, Isabelle Dufrasne

e
, Bernard Heinesch

a
, Pierre Dumortier

a
, Guillaume 5 

Blanchy 
b
, Yannick Blaise 

b,c
, Jérôme Bindelle 

a,c, § 6 

a
TERRA - AgricultureIsLife/EnvironmentIsLife, Gembloux Agro-Bio Tech, University of Liège, 7 

Passage des Déportés 2, 5030 Gembloux, Belgium 8 

b
BIOSE, Precision Agriculture, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 9 

2, 5030 Gembloux, Belgium 10 

c
AgroBioChem, Precision Livestock and Nutrition, Gembloux Agro-Bio Tech, University of Liège, 11 

Passage des Déportés 2, 5030 Gembloux, Belgium 12 

d
Production and sectors, Animal Nutrition and Sustainability, CRA-W, Rue de Liroux 8, 5030 13 

Gembloux, Belgium. 14 

e
Animal Productions, Faculty of Veterinary Medicine, University of Liège, Boulevard de Colonster 15 

20, 4000 Liège, Belgium. 16 

¥
Corresponding author 1: alh.andriamandroso@ulg.ac.be, naina.andriam@gmail.com 17 

§
Corresponding author 2: jerome.bindelle@ulg.ac.be 18 

 19 

Results were partially presented at the International Conference on Precision Agriculture 20 

(Sacramento, USA, July 2014) and the European Conference on Precision Livestock Farming 21 

(Milan, Italy, September 2015) and published in the respective conference proceedings. 22 

  23 

mailto:naina.andriam@gmail.com


 

 

Abstract 24 

In this paper, an open algorithm was developed for the detection of cattle’s grass intake and 25 

rumination activities. This was done using the widely available inertial measurement unit 26 

(IMU) from a smartphone, which contains an accelerometer, a gyroscope, a magnetometer 27 

and location sensors signals sampled at 100 Hz. This equipment was mounted on 19 grazing 28 

cows of different breeds and daily video sequences were recorded on pasture of different 29 

forage allowances. After visually analyzing the cows’ movements on a calibration database, 30 

signal combinations were selected and thresholds were determined based on 1-second time 31 

windows, since increasing the time window did not increase the accuracy of detection. The 32 

final algorithm uses the average value and standard deviation of two signals in a two-step 33 

discrimination tree: the gravitational acceleration on x-axis (Gx) expressing the cows’ head 34 

movements and the rotation rate on the same x-axis (Rx) expressing jaw movements. 35 

Threshold values encompassing 95% of the normalized calibrated data gave the best results. 36 

Validation on an independent database resulted in an average detection accuracy of 92% with 37 

a better detection for rumination (95%) than for grass intake (91%). The detection algorithm 38 

also allows for characterization of the diurnal feeding activities of cattle at pasture. Any user 39 

can make further improvements, for data collected at the same way as the iPhone’s IMU has 40 

done, since the algorithm codes are open and provided as supplementary data. 41 

 42 

Keywords: dairy cattle, grass intake, behaviors, inertial measurement unit, open algorithm. 43 

 44 

Highlights 45 

- An iPhone 4S can be used to automatically monitor the behavior of grazing cattle using its 46 

built-in inertial measurement unit (IMU).  47 



 

 

- A Boolean classification tree using the IMU signals in the phone reached similar accuracies 48 

for grass intake and ruminating to already available devices  49 

- The classification algorithm codes have been made available to any user for further 50 

development. 51 

  52 



 

 

1. Introduction 53 

Over the past decade precision livestock farming (PLF) has been developed for use on 54 

commercial farms and several tools are now available in animal monitoring applications. 55 

Recent technological developments have eased the use of sensors to monitor many physical 56 

variables both for animal science research and in practical farm level applications 57 

(Berckmans, 2014). Many researchers now focus on analyzing behaviors using sensor-based 58 

technologies and various data analysis approaches (Andriamandroso et al., 2016). Monitoring 59 

the specific behaviors of ruminants, particularly grazing and rumination, is important because 60 

these behaviors occupy much of the grazing cattle’s time-budget. However, duration varies 61 

greatly: over a 24-hours period, grazing occupies 25% to 50% of cow’s daily time-budget and 62 

rumination 15% to 40% (Kilgour, 2012).  63 

The ability of sensors to detect cattle behaviors though movements is based on recording three 64 

main parameters: 65 

- location, using mainly global positioning system (GPS) and geographic information 66 

system (GIS) (e.g. Ganskopp & Johnson, 2007; Swain et al., 2008); 67 

- posture of the animal, which is the low frequency component of behavior such as the 68 

position of the head or back (e.g. Poursaberi et al., 2010; Viazzi et al., 2013); 69 

- movements, which are the high frequency elements of a given behavior (e.g., Rutter et 70 

al., 1997; Nydegger et al., 2010). 71 

Different types of sensors have been tested to record these parameters and can be used either 72 

alone or in combination. GPS and its incorporation into GIS is generally used to track wild 73 

(e.g. Forin-Wiart et al., 2015) and domestic animals (e.g. de Weerd et al., 2015), and, using 74 

changes in path speed, to detect unitary behaviors, such as grazing, resting and walking. 75 

Nevertheless, successful behavior classification remains poor varying between 71 and 86% 76 

calculated from 3-minutes data segments (Schlecht et al., 2004; Godsk & Kjærgaard, 2011; 77 



 

 

Larson-Praplan et al., 2015). Other types of sensors, which measure pressure or changes in 78 

electrical resistances, have pioneered movement analysis by focusing on jaw types to detect 79 

chewing behaviors. This has led to correct classification of eating and ruminating behaviors 80 

with over 91% of exactness based on 5-minutes time windows (for example, IGER Behaviour 81 

recorder, Rutter et al., 1997 and ART-MSR by Nydegger et al., 2010). Acoustic sensors 82 

(microphones) use sounds made by jaw movements and swallowing/deglutition to 83 

differentiate grazing and ruminating which have been successfully detected at a rate of 94% 84 

based on 1 to 5-minutes time windows (Clapham et al., 2011; Navon et al., 2013; Benvenutti 85 

et al., 2015). Movement measurements that detect or quantify animal behaviors now mostly 86 

use accelerometers.  87 

Pressure and tension-based sensors seem to have yielded the highest possible information they 88 

can provide on feeding behavior or estimated intake (Nydegger et al., 2010, Pahl et al., 2015, 89 

Leiber et al., 2016) and acoustic sensors suffer from interferences with other animals (Ungar 90 

& Rutter, 2006). Therefore, accelerometers seem the most promising tool for PLF 91 

applications for research relative to grazing cattle (Andriamandroso et al., 2016). Behavior 92 

classification precisions from accelerometers differ according to the recording frequency 93 

(commonly varying between 0.1 and 20 Hz), to the method used for data processing and to 94 

the objective. For example, accelerometers are successfully used in the automated detection of 95 

lame animals. Based on a descriptive statistical classification method, lame and non-lame 96 

cows can be correctly classified with an average precision of 91% using data analysis with 10-97 

seconds time windows (Mangweth et al., 2012). Detection of other behaviors such as walking, 98 

standing or lying, with accelerometers placed on the neck (e.g. Martiskainen et al., 2009), legs 99 

(e.g. Robert et al., 2009; Nielsen et al., 2010) or ears (Bikker et al., 2014) is accurate to 100 

between 29% and 99% using machine learning (Martiskainen et al., 2009) or a classification 101 



 

 

tree method (Robert et al., 2009; Nielsen et al., 2010) with 5-seconds to 5-minutes time 102 

windows.  103 

Other methods have combined different kinds of sensors to increase detection precision. For 104 

example, González et al. (2015) combined GPS and accelerometers to achieve an overall 105 

correct classification of grazing behaviors between 85 and 91% using a decision tree and 106 

based on the analysis of 10-seconds time windows. Dutta et al. (2015) combined 107 

accelerometers with magnetometers to reach precisions ranging between 77% and 96% with 108 

different supervised classification methods on 5-seconds time windows such as binary tree, 109 

linear discriminant analysis, naïve Bayes classifier, k-nearest neighbor and adaptive neuro- 110 

fuzzy inference. 111 

Nonetheless, because all these methods are either based on black-box statistical approaches or 112 

in-lab made prototype devices, an open detection algorithm that can be easily used for 113 

research purposes across various grazing conditions is not yet available. Commercial PLF 114 

systems designed for on-farm use incorporate accelerometers and gyroscopes that are similar, 115 

if not identical, to the ones used in smartphones. However, these commercial systems are 116 

designed for on-farm use and generally do not provide raw data that can be used by PLF 117 

researchers. Invariably, they also sample accelerometers at a fixed rate limiting the potential 118 

for data mining for ruminant ethology, especially that related to feeding behavior on pasture.  119 

By offering an open method for the detection of grazing cattle behaviors that can be shared, 120 

this paper proposes a flexible platform for PLF researchers to collect accelerometer data and 121 

process it to extract useful behavior information. The algorithm should comply with three 122 

criteria: (1) be based on an open approach in order to allow further development and 123 

improvement by users, (2) be valid across a wide range of grazing conditions regarding both 124 

the animal as well as the pasture condition, and (3) using sensors that are easily available to 125 

users without any need for hardware development. For the third criteria, the choice was made 126 



 

 

to work with the inertial measurement unit (IMU) of an iPhone (Apple, Cupertino, CA, USA). 127 

IMUs generally comprised two or three sensors which measure velocity, orientation and 128 

gravitational force using an accelerometer for inertial acceleration and gyroscopes for angular 129 

rotation. In recent devices, a magnetometer has also been added to measure magnetic 130 

deviation and improve gyroscopic measurements. After internal calibration, IMUs can 131 

measure many physical parameters within three axis, such as linear acceleration, rotation 132 

angle (pitch, roll, and yaw) and angular velocity (Ahmad et al., 2013). To fulfill our objective, 133 

the work was divided into (1) assessing the individual and combined capabilities of IMU-134 

acquired signals to detect cattle movements on pasture, and (2) constructing and evaluating a 135 

decision tree based on a simple Boolean algorithm to classify grass intake and rumination 136 

unitary behaviors. 137 

 138 

2. Material and methods 139 

All experimental procedures performed on the animals were approved by the Committee 140 

for Animal Care of the University of Liège (Belgium, experiment n°14-1627). Measurements 141 

were carried out over three years between 2012 and 2015, in four different locations in 142 

Wallonia (Belgium) and with different breeds in order to achieve a more representative and 143 

variable dataset. 144 

2.1. Animals 145 

A total of 19 cows of different breeds across four different farms were used, aged 146 

between 4 to 12 years, and with estimated weights between 450 and 650 kg:  147 

- 9 dry red-pied Holstein (Gembloux, Gembloux Agro-Bio Tech, University of Liège 148 

experimental farm, 50°33'54.6"N 4°42'04.6"E, GBX); 149 

- 2 black-pied Holstein (Liège, Faculty of Veterinary science, University of Liège 150 

experimental farm, 50°34'45.4"N 5°35'14.1"E, FVS); 151 



 

 

- 2 Blonde d’Aquitaine x Belgian White and Blue cross-bred (Corroy-le-Grand, 152 

commercial farm, 50°39'43.4"N 4°40'43.0"E, CLG); 153 

- 6 Belgian White and Blue cows (Dorinne, commercial farm, 50°18'43.9"N 154 

4°57'58.1"E, DOR and Tongrinne, commercial farm, 50°30'37.4"N 4°36'12.6"E, 155 

TON).  156 

 157 

2.2. Materials  158 

Each cow was fitted with a halter containing an iPhone 4S (Apple, Cupertino, CA, 159 

USA) inside a waterproof box (Otterbox Pursuit series 20, 152.4 × 50.8 × 101.6 mm, 142 g, 160 

Otter Products, LLC, USA) (Figure 1B). Each mobile phone was equipped with an 161 

application (SensorData, Wavefront Labs) downloaded from Apple Store (Apple, Cupertino, 162 

CA, USA) which captures and stores data from the IMU of the iPhone at 100Hz. The IMU of 163 

the iPhone 4S uses STMicro STM33DH 3-axis as an accelerometer, STMicro AGDI 3-axis as 164 

a gyroscope (STMicroelectronics, Geneva, Switzerland) and AKM 8963 3-axis electronic 165 

compass as a magnetometer (Asahi Kasei Microdevices Corporation, Tokyo, Japan). 166 

To extend the data recording duration from 8 to 24 hours, the original 3.7V 1420mAh Li-167 

Polymer battery was connected to an additional external battery (Anker Astro E5 16000mAh 168 

portable charger, 150 × 62 × 22 mm, 308 g, Anker Technology Co. Limited, CA, USA) and 169 

attached as a collar around the neck of the animal (Figure 1C).  170 



 

 

 171 

Figure 1: Inertial measurement unit (IMU) device description, (A) IMU 3-D axis 172 

representation on a grazing cow, x-axis is aligned with the tail to head symmetry axe of the 173 

animal, y-axis describes lateral movements, and z-axis gives up and down movements; (B) 174 

iPhone 4S and its IMU placed in a waterproof box; (C) all equipment components including 175 

the iPhone box (1), the halter (2) and the supplementary battery (3).  176 

 177 

Choice of this anatomical position was made because it has already proved effective in 178 

detecting cattle behaviors(e.g. Martiskainen et al., 2009), ensured minimal disturbance to the 179 

animal, and limited risk of the animal removing or damaging the device by scratching or 180 

smashing. Velcro tape was stitched on each halter and the waterproof box fixed onto the 181 

halter using Velcro straps as shown on Figure 1C.  182 



 

 

The SensorData application captures acceleration and gyroscope data along three axes (as 183 

showed in Figure 1B) as well as magnetometric and GPS information, providing a total of 40 184 

signals (Table 1). 185 

Table 1 : List of signals captured by the iPhone 4S using SensorData application (Wavefront 186 

Labs). 187 

Sensors Measured signals Unit 

Accelerometer Acceleration on x (Ax), y(Ay) and z (Az) g
1
 

Gyroscope Euler angles (pitch x, roll y, yaw z) radian 

Attitude quaternion on x, y, z and w (Qx, Qy, Qz, Qw) radian 

Rotation matrix (3×3 matrix of rotation)  

Gravitational component of acceleration (Gx,Gy,Gz) g 

User component of acceleration (Ux,Uy,Uz) g 

Rotation rate (Rx,Ry,Rz) radian.s
-1

 

Magnetometer Magnetic data (x,y,z) μTesla 

Magnetic and true heading degrees  

Location Latitude and longitude degrees 

Altitude and accuracies m 

Course degrees 

Speed m. s
-1

 

Proximity sensor not defined 

1
 g, acceleration of gravity (g=9.81 m.s

-2
)  188 

 189 

2.3. Data acquisition, calibration and validation of the detection algorithm 190 

The Figure 2 illustrates the whole process from observations to algorithm validation. 191 

This comprised four major steps: (1) data acquisition, (2) animal observation through 192 



 

 

recorded videos, (3) calibration and construction of a behavior detection algorithm and finally 193 

(4) its validation. 194 

 195 

 196 

Figure 2: From observation to detection algorithm: summary of the 4-steps process used for 197 

the construction of cattle behavior detection algorithm. 198 

 199 

2.3.1. Data acquisition 200 

The algorithm development began by constructing a behavior database that combined 201 

visual observations and related measured signals. For this purpose, animals wearing the 202 

equipment were set to graze ryegrass (Lolium perenne) and white clover (Trifolium repens)-203 

based pastures, while being video recorded as reference for behavior detection. The mobile 204 

devices’ IMU and the operators’ video cameras were time synchronized beforehand for 205 



 

 

further data analysis. In the experimental farm (GBX), three data acquisition sessions were 206 

performed over three years. The first, fall 2012 and spring 2013, were performed on two red-207 

pied dry Holstein cannulated cows (RPc1 and RPc2) grazing a 0.19 hectare pasture, 208 

disregarding sward characteristics. The second session, summer and fall 2014, was performed 209 

on 1.4 hectare pasture with four red-pied Holstein dry cows (RP1, RP2, RP3 and RP4), with 210 

three pre-grazing forage allowances measured using a rising plate meter with an in-house 211 

calibration (1000, 2000 and 3000 kgDM.ha
-1

). Finally, in summer and fall 2015, a third data 212 

acquisition session was performed on seven red-pied Holstein dry cows (RP1 to RP4 and 213 

RP5, RP6, RP7) on 1.4 ha-pastures with two pre-grazing forage allowance (1000 and 3000 214 

kgDM.ha
-1

).  215 

Four additional data recording sessions were performed in commercial and experimental 216 

farms with ten cows (dry and in milk) in four different locations (DOR1 and DOR2 in fall 217 

2013, CLG1 and CLG2 in summer 2014, FVS1 and FVS2 in summer 2014, TON1, TON2, 218 

TON3 and TON4 in fall 2015). These were with Belgian White and Blue, Holstein and 219 

Blonde d’Aquitaine pure or crossbred cows as indicated above. 220 

A total of 106 videos of 15 to 30 minutes were obtained from all these periods and used to 221 

calibrate and validate the detection algorithm. For each animal, video sequences where shot in 222 

daylight in such a way that they covered all desired behaviors. No video was shot at night. For 223 

each video, a coded behavior matrix was built using CowLog 2.0 (Hänninen & Pastell, 2009) 224 

at a frequency of 1 Hz, i.e. every second, and the behavior vector was synchronized and 225 

merged with the corresponding signal matrix obtained with the IMU. Following the definition 226 

of Gibb (1996), observed behaviors from the videos were coded as grass intake (GRA) when 227 

the animal was acquiring herbage into the mouth. GRA comprises acquisition of herbage into 228 

the mouth, its mastication and subsequent swallowing, short periods of searching or moving 229 

from a feeding station to another are not considered as in this activity. Behaviors were coded 230 



 

 

RUM when the animal was ruminating, either standing or lying including bolus mastication, 231 

as well as bolus regurgitation and swallowing. Activities not corresponding to either GRA or 232 

RUM were coded as OTHERS, and included standing and walking without grazing, resting, 233 

drinking, grooming, social activities, etc. During each video sequence, only three different 234 

behaviors (GRA, RUM, OTHERS) were coded.  235 

 236 

2.3.2. Methods for data analysis 237 

 The complete dataset was then divided into two, one for calibrating the detection 238 

algorithm exclusively and the other for its validation. Seven video sequences were chosen 239 

from each period of data collection and used for calibrations (for grazing, RPc1 in fall 2012, 240 

RPc2 in fall 2012, RP5 in fall 2014 and CLG1 in summer 2014 ; for rumination, RP5 in 241 

summer 2014 and CLG1 in summer 2014). The other 99 sequences were used to validate the 242 

algorithm by comparing detected behaviors with observations from the videos. Signal 243 

analyses were performed in MatLab R2013b (Mathworks, NL) and followed the steps 244 

explained in the next section, illustrated in Figure 2. 245 

 246 

a) Data preprocessing and choice of the signals describing GRA and RUM 247 

movements on pasture 248 

First, the choice of the signal was based on the observation of cattle posture and 249 

movements decomposed into head and jaw movements (HM and JM). Animal movements 250 

were observed on the 7 calibration database videos and their translation into IMU signals was 251 

then assessed. The hypothesis is that GRA and RUM behaviors combine different HM and 252 

JM. Grazing is characterized by the head being down with active JM, while during rumination 253 

the head is slightly raised and JM are quieter and more regular (Vallentine, 2001). In order to 254 

differentiate GRA from RUM, these parameters for HM and JM were chosen to describe how 255 



 

 

movements are translated into signals along the 3 axes of the IMU. To reduce signal noise 256 

before further analysis, HM magnitude along the 3 axes was normalized using ‘min-max 257 

normalization’ (E1 in Table 2, Kotsiantis et al., 2006). This normalization transformed each 258 

recorded signal value into a value between 0 and 1, and also allowed minimized the biases of 259 

morphological difference amongst cows and differences in the positioning of the IMU on the 260 

animal. For JM, signal data was filtered between 1 and 2 Hz to isolate repetitive JM searched 261 

during GRA and RUM. This frequency range was isolated by a second order Butterworth 262 

bandpass filter (E2 in Table 2). Finally, in order to limit the number of combination that were 263 

to be tested in the development of the detection algorithm, a cluster and histogram analysis of 264 

the signals along the 3 axes was used to select the signals expressing the highest 265 

discrimination potential between GRA and RUM. 266 

 267 

Table 2: Data pre-processing and algorithm quality evaluation criteria  268 

Parameters Equation 

Data pre-processing 

Normalization 

(E1) 

E1 = [input − minimum(input)]/[maximum(input) −

minimum(input)] 

Filter design (E2) Parameters: [b,a] = butter (order, [frequency 

minimum/(sampling_frequency/2) frequency 

maximum/(sampling_frequency/2)], ‘bandpass’) 

Filtering: filtered signal = filter (b, a, input signal) 

Algorithm quality evaluation 

True positive (TP) A behavior is correctly detected as it is in the observation 

True negative 

(TN) 

A behavior is correctly undetected as it is in the observation 



 

 

False positive (FP) A behavior is incorrectly detected as another behavior  (type I 

error) 

False negative 

(FN) 

Another behavior is incorrectly detected instead of the right 

behavior (type II error) 

Sensitivity (Se) Se = TP x 100 / (TP + FN) 

Specificity (Sp) Sp = TN x 100 / (TN + FP) 

Precision (P) P = TP x 100 / (TP + FP) 

Accuracy (A) A = (TP + TN) x 100 / (TP + FP + TN + FN) 

 269 

b) Thresholds determination, time windows and detection algorithm  270 

Following the step described above, nine acceleration and gyroscope signals were 271 

considered out of 40 candidate signals: the 3-D gravitational component of the acceleration 272 

(G), the 3-D user component of the acceleration (G), the 3-D rotation rate (rad.s
-1

), each on 273 

the three axes. Data from the seven calibration database sequences were merged. Descriptive 274 

statistics were calculated for each of the 9 signals considered for each of the 3 behaviors being 275 

discriminated: GRA, RUM and OTHERS. To allow detection of activity change at a high rate, 276 

minimum and maximum values were calculated for each signal to encompass 80% (from 277 

percentile 0.100 to percentile 0.900), 90% (from percentile 0.050 to percentile 0.950), 95% 278 

(from percentile 0.025 to percentile 0.975), and 99% (from percentile 0.005 to percentile 279 

0.995) of the data for both the mean and the standard deviation calculated over the shortest 280 

time window possible (i.e. 1-second). Mean was calculated to determine the average position 281 

of the head of the animal when moving to perform GRA or RUM while standard deviation 282 

was calculated to detect changes in the signal during GRA or RUM expressing in particular 283 

differences in jaw movements: intensive for GRA and non-intensive for RUM. Indeed, while 284 

signal sampling was performed at 100 Hz, behavior observation using video recordings was 285 



 

 

done at 1 Hz (i.e. each second). These minimum and maximum values encompassing 80, 90, 286 

95 and 99% of the data were then used as thresholds to discriminate behaviors in the tested 287 

algorithms, combining different signals as described before. For this purpose, simple Boolean 288 

algorithms were built (shown in Figure 3), in the form of a one- or two-step decision tree 289 

based on different signal combinations and minimum/maximum threshold values. The ability 290 

of each Boolean algorithm to discriminate behaviors was assessed. 291 

 292 

Figure 3: Structure of a Boolean algorithm allowing the automated classification of GRA and 293 

RUM based on means and standard deviations levels of gravitational acceleration and rotation 294 

rate signals (mGx, sGx, sRx and sRy) related to head (HM) and jaw movements (JM) 295 

measured on cows wearing the iPhone 4S IMU on the neck  296 

1
mGx: mean of gravitational acceleration on x-axis 297 

2
sGx: standard deviation of gravitational acceleration on x-axis 298 

3
sRx: standard deviation of rotation rate on x-axis 299 

4
sRy: standard deviation of rotation rate on y-axis 300 

 301 



 

 

The first step of the calibration was to use the calibration dataset to test different combinations 302 

of signals and threshold levels for the corresponding signals. The following combinations of 303 

signals were tested, which are those that in the previous step had best reflected the changes in 304 

HM and JM: mGx, sGx, sRx, sRy, (mGx, sGx), (mGx, sRx), (mGx, sRy), (mGx, sGx, sRx), 305 

(mGx, sGx, sRy), (mGx, sGx, sRx, sRy). For the different algorithms, namely signal 306 

combinations, detection accuracies were compared depending on the threshold levels (80%, 307 

90%, 95%, and 99%) for prediction of GRA, RUM and OTHERS. The final algorithm, used 308 

later in the validation step, was constructed with the most accurate threshold values and signal 309 

combinations. All parameters used in the different algorithms were calculated using 1-second 310 

time windows. Finally, to assess how important it was to use the shortest time window (1-311 

second) to calculate average and standard deviations of the different signals used in the best 312 

classification algorithm (mGx, sGx, sRx and sRy), the classification’s accuracy was 313 

calculated using extended time windows (1s, 5s, 10s, 15s, 30s, 60s) and the detection 314 

accuracies of GRA, RUM and OTHERS were then compared for the calibration dataset.  315 

 316 

c) Validation of the algorithm 317 

 To validate the algorithm that had been developed, data from the remaining 99 video 318 

sequences of the validation database were processed by the algorithm. This estimated 319 

detection quality using the different formulas set out in Table 2. To explore the usefulness of 320 

the algorithm, its ability to describe daily behavior patterns over a 24-hours time period was 321 

also tested on one cow grazing swards with two contrasted forage allowances (1000 and 3000 322 

kg DM.ha
-1

). 323 

  324 



 

 

3. Results 325 

3.1. Algorithm calibration 326 

3.1.1. Choice of signals for adequate HM and JM description 327 

Regarding head movements (HM), due to the position of the IMU device on cows, 328 

three IMU parameters were considered good candidates to reflect changes in head position: 329 

acceleration, Euler angles and gravitational component of acceleration. When cows are 330 

grazing, their heads stay down but when ruminating, the IMU points slightly upwards. 331 

Consequently, as shown in Figure 4, the gravitational component along the x-axis increases 332 

when cows take grass and move the head down, getting closer to 1 g. The opposite occurs on 333 

the z-axis: gravitational acceleration decreases when switching from RUM (head up) to GRA 334 

(head down). Logically, changes along the y-axis are not of concerned. As Figure 4 shows, 335 

Euler angles can also reflect such changes, although for these signals, the response seems to 336 

be more dependent on the individual animal, making the choice of thresholds for this criterion 337 

less universally discriminating. Total acceleration, combining both user (U) and gravitational 338 

components (G), was not accurate enough because the values caused by the back and forth 339 

HM associated with GRA were too dispersed. Normalized gravitational acceleration (G) 340 

presented the best potential for discriminating between GRA and RUM behaviors on the x 341 

and z axes (Figure 4), and the mean and the standard deviation of this normalized signal 342 

distribution were therefore used to characterize cattle head movements (respectively mGx and 343 

sGx). 344 



 

 

 345 

 Figure 4: Frequencies distribution of normalized values along the 3 axes of the IMU signals 346 

expressing head movements during tagged sequences of GRA, RUM and OTHERS activities. 347 

With (a) the acceleration (Ax, Ay, Az) expressed in g (acceleration of gravity, g=9.81 m.s
-2

), 348 

(b) the gravitational component of the acceleration (Gx, Gy, Gz) expressed also in g and (c) 349 

the Euler angles (pitch, roll, yaw) expressed in Rad (Radian), all on the (x,y,z) axes of the 350 

IMU. Gx is the most relevant signal to discriminate head movements occurring during GRA 351 

and RUM.  352 

 353 

Although head position seems sufficient to discriminate grazing from rumination, the range of 354 

values in Figure 4 indicates that this single criterion does not allow for discrimination 355 

between RUM or GRA from OTHERS. This is due to overlap in frequencies. Therefore, a 356 

second discrimination step was necessary using the remaining information related to HM and 357 

JM.. Intensities of such movements can be characterized by the standard deviation of user 358 

acceleration particularly along the x-axis (as displayed in Figure 5). During grazing and 359 

rumination, cows show a typical rotation movement with their jaws when chewing and with 360 

their heads when taking grass into the mouth. Therefore, candidate signals to reflect such 361 

movements were rotation rates along the x and y axes of the IMU. The average algebraic 362 



 

 

value of those signals always equals to 0 when the time window is over 1-second because the 363 

jaw and the head return regularly to their original position and so useful information from 364 

these signals must be based on squared values, such as standard deviations (sRx and sRy).  365 

 366 

Figure 5: Frequencies distribution of the values of standard deviation of amplitude signals of 367 

(a) rotation rate (Rx, Ry, Rz) expressed in rad.s
-1

 (radian per second) and (b) user-acceleration 368 

(Ux, Uy, Uz) expressed in g (acceleration of gravity, g=9.81 m.s
-2

) on the (x,y,z) axes of the 369 

IMU, during tagged sequences of GRA, RUM and OTHERS activities. Rx and Ry are the 370 

most relevant signals to discriminate jaw movements intensities between GRA and RUM. 371 

 372 

Subsequently, a total of 40 possible combinations were tested in a Boolean algorithm, when 373 

associating four threshold levels encompassing either 80%, 90%, 95% or 99% of the 374 

observations with 10 possible combinations of signals using the mean of the gravitational 375 

component of the acceleration along the x-axis (mGx), its standard deviation (sGx), and the 376 

standard deviation of the rotation rate around the x- (sRx) and the y-axis (sRy) as explained 377 

above. 378 

  379 



 

 

3.1.2. Choice of threshold values  380 

For each set of observations, the different threshold values (80%, 90%, 95% and 99%) 381 

that were calculated from the normalized calibration database are shown in Table 3.  382 

 383 

Table 3: Minimum and maximum value windows for mGx, sGx, sRx and sRy calculated with 384 

1-second time windows to encompass 80%, 90%, 95% and 99% of the observations in the 385 

calibration dataset  386 

Considered 

data 

percentage 

Behaviors 

Mean of the 

gravitational 

acceleration 

along x 

(mGx) (g) 

SD
1
 of the 

gravitational 

acceleration 

along x (sGx) 

(g) 

SD of the 

rotation rate 

along x (sRx) 

(rad s
-1

) 

SD of the 

rotation rate 

along y (sRy) 

(rad s
-1

) 

Min Max Min Max Min Max Min Max 

80% GRA 0.716 0.922 0.006 0.036 0.151 0.605 0.140 0.619 

 RUM  0.111 0.478 0.003 0.012 0.062 0.157 0.029 0.092 

90% GRA 0.693 0.945 0.005 0.052 0.134 0.793 0.116 0.734 

RUM 0.099 0.493 0.002 0.018 0.056 0.185 0.025 0.145 

95% GRA 0.600 0.950 0.005 0.060 0.134 0.793 0.116 0.734 

 RUM 0.100 0.490 0.003 0.018 0.032 0.185 0.025 0.145 

99% GRA 0.581 0.963 0.002 0.151 0.060 1.214 0.047 1.069 

 RUM 0.066 0.559 0.002 0.067 0.014 0.290 0.017 0.466 

1
SD: standard deviation 387 

 388 

For every combination, detection accuracies for GRA, RUM and OTHERS were lower when 389 

using threshold values that encompassed 80% and 99% of the observations compared to those 390 

for 90% and 95% (Figure 6). Apart from single signals which also provide lower detection 391 



 

 

accuracies than combinations, thresholds for 95% of encompassed data, gave the best 392 

percentage of correctly detected behaviors, although the difference to 90% was rather low.  393 

 394 

 395 

Figure 6: Detection accuracy (% of exact prediction) of feeding activities (GRA, RUM and 396 

OTHERS) with algorithms based on a single or combination of signals given by the IMU 397 

when using value windows that encompass 80% to 99% of the calibration dataset 398 

observations. With (A) mGx: mean of gravitational acceleration on x-axis; (B) sGx: standard 399 

deviation of gravitational acceleration on x-axis; (C) sRx: standard deviation of rotation rate 400 

on x-axis; (D) sRy: standard deviation of rotation rate on y-axis, and with six different 401 

combinations (E) (mGx, sGx), (F) (mGx, sRx), (G) (mGx, sRy), (H) (mGx, sGx, sRx), (I) 402 

(mGx, sGx, sRy) and (J) (mGx, sGx, sRx, sRy). 403 

 404 

After considering those results, the algorithm was built using thresholds that include 95% of 405 

all calibration dataset observations. 406 

  407 



 

 

3.1.3. Choice of signal combinations in the algorithm 408 

The usefulness of combining signals was also compared. Figure 6 clearly shows the 409 

need to use signals representing HM (mGx and/or sGx) and JM (sRx or sRy). These 410 

combinations gave the highest detection accuracies especially for grazing and ruminating 411 

behaviors with average accuracies of up to 93%. Detection accuracy using sRx to translate JM 412 

was slightly higher (94.5%) than when using sRy (94%). The most accurate algorithm, with 413 

an average accuracy of 92%, was therefore built on the combination of mGx, sGx and sRx  414 

(i.e. the H combination on Figure 6). 415 

 416 

3.1.4. Testing the algorithm with different time window lengths 417 

When the precision of the algorithm was evaluated according to the size of time 418 

window used to calculate mGx, sGx, sRx and sRy, the highest accuracy found was with a 1-419 

second time window (Figure 7). When comparing detected behaviors with the observation for 420 

longer time windows (> 1-second) the “cleanliness” of each observation matrix of  was 421 

assessed and every sequence of 5, 10, 15, 30, 45 and 60-seconds which did not contain only 422 

GRA, only RUM or only OTHERS was discarded from the database. Obviously the longer 423 

the time window, the higher the percentage of unused sequences (up to 38%) as shown on 424 

Figure 7. 425 



 

 

 426 

Figure 7: Comparison of detection accuracies of GRA, RUM and OTHERS when all the 427 

parameters of the algorithm are calculated with 1, 5, 10, 15, 30, 45, and 60-seconds 428 

(respectively 1s, 5s, 10s, 15s, 30s, 45s and 60s) time windows, and percentage of calibration 429 

database sequences discarded for not containing pure GRA, RUM or OTHERS behaviors. 430 

 431 

The final algorithm (Figure 8) therefore uses a 1-second time window and considers mGx, 432 

with sGx and sRx parameters following threshold values encompassing 95% of the calibration 433 

data in a 2-step discrimination tree. The MatLab code and user’s guide are provided in 434 

Supplementary Data 1. 435 

 436 



 

 

 437 

Figure 8: Final structure of the detection algorithm including the thresholds to differentiate 438 

GRA from RUM following the algorithm built in Figure 3 439 

 440 

3.2. Algorithm validation 441 

The validation dataset included 99 sequences with a total of 38.5 hours of video 442 

(N=138332 of 1-second sequences, with 79244 seconds of GRA, 5350 seconds of RUM and 443 

53738 seconds of OTHERS). When the algorithm was applied to the validation dataset, the 444 

average detection accuracy was 92.0% (Table 4). It was more accurate when detecting RUM 445 

(96.5%) than GRA (91%).  446 

  447 



 

 

Table 4: Predictive quality evaluation of the final algorithm when applied to the validation 448 

dataset using (1) Sensitivity = true positive / (true positive + false negative), (2) Specificity = 449 

true negative / (true negative + false positive), (3) Precision = true positive / (true positive + 450 

false positive) and (4) Accuracy = (true positive + true negative) / (true positive + false 451 

positive + true negative + false negative) as indicators. The number N represents the length of 452 

viewed sequences, in second, within validation dataset containing each behavior.  453 

 454 

Behaviors Sensitivity
 
(1) 

(%) 

Specificity (2) 

(%) 

Precision (3) 

(%) 

Accuracy (4) 

(%) 

GRA  

(N=79244) 

91.1 90.9 93.5 91.0 

RUM 

(N=5350) 

53.1 99.4 84.5 96.5 

OTHERS 

(N=53738) 

87.6 87.5 79.1 87.6 

 455 

3.3. Effect of the different sward heights on 24h allocation of cattle activities  456 

With overall detection accuracies of unitary behaviors namely GRA and RUM above 457 

91%, practical uses of this algorithm to characterize cattle feeding activities during a complete 458 

day can be expected. In Figure 9, 24-hours activities of the same cow grazing a sward with 459 

two different pre-grazing heights (i.e. 1000 and 3000 kg DM.ha
-1

) in two different seasons 460 

(summer 2015 and fall 2015) were plotted using this algorithm. Based on the 1-second 461 

detection output of the algorithm, the proportion of detected behavior was calculated per 462 

minute. At first glance, the usefulness of the algorithm could be verified, because in this 463 

instance it highlighted that grazing bouts depend on forage allowance (they were not even in 464 



 

 

both forage allowances) and that only a few GRA events are observed at night, leaving more 465 

time for RUM and OTHERS.  466 

 467 

Figure 9: Allocation of activities during 24-hours for a non-supplemented cow grazing the 468 

same pasture at two different times of the grazing season and with two different forage 469 

allowances: 1000 kg DM.ha
-1

 (A) and a 3000 kg DM.ha
-1

 (B).  470 



 

 

4. Discussion 471 

The aim of this paper was to propose an open method for detecting grazing cattle 472 

behaviors using readily accessible devices with little requirement for hardware development. 473 

For this purpose, smartphones were used, more specifically the iPhone, which was preferred 474 

because of the standardization of models and the accurate description of their inner 475 

components, particularly their inertial measurement units (IMU). As expected, an IMU placed 476 

on the neck of an animal was able to record changes in posture and movements in all 477 

directions. This is not surprising given that the speed and acceleration one would expect a 478 

cow to relay to the device fits into the ranges of human user exertion. Other smartphones 479 

equipped with IMUs or even tailor-made devices could also be used with the same algorithm, 480 

assuming they provide the same characteristics in terms of sensitivity and recording frequency 481 

and have an appropriate application installed to record IMU signals. The approach used to 482 

build the algorithm based on observation of cattle movements proved an efficient strategy to 483 

build an algorithm since validation on a completely independent database reached high 484 

accuracies for detecting GRA and RUM behaviors using a very short time window (1-485 

second). Dutta et al. (2015) chose 5-second time windows when combining GPS recording at 486 

4 Hz sampling frequency and 3-D accelerometer at 10 Hz to detect grazing behaviors and 487 

attained 96% accuracies using a neural network method. Similar experiments by González et 488 

al. (2015) using 10-second time windows reached an average detection accuracy of 90.5%. To 489 

detect JM, other published works have used longer time windows, between 1 to 15-minutes 490 

(e.g. Oudshoorn et al., 2013 with 10-minutes). With our algorithm changes in behavior can be 491 

measured at a very high rate, thanks to the high frequency of data acquisition that the IMU 492 

allows (100 Hz) compared to previous studies that sampled signals from 1 to 20 Hz, and for 493 

which accuracies ranged between 65 and 90% (e.g., Oudshoorn et al., 2013). In these previous 494 

studies, increasing the time windows to up to 10 to 15-seconds was shown to significantly 495 



 

 

increase the specificity and sensitivity of classification (González et al., 2015, Smith et al. 496 

2016). As shown in Figure 7, this was not the case using the algorithm proposed here, 497 

notwithstanding that a number of sequences had to be discarded from the database because an 498 

increasing proportion of sequences were comprising more than one behavior, especially GRA 499 

and OTHERS. These differences stem from the behavior classification method based on 500 

visual observation. In our experiment, animal behavior was video recorded while in previous 501 

works, animal behavior was observed on the spot. The latter method does not allow the 502 

detection of the very short term changes in activity that can occur when grazing, for example 503 

discriminating grass intake (classified as GRA in the present work) from searching for a 504 

feeding station with the head still pointing downwards (classified as OTHERS) .As showed 505 

by Hämäläinen et al. (2016), high frequency sampling allows for better data acquisition, 506 

greatly improving detection accuracy with small time windows. This is especially so when it 507 

comes to distinguish specific behaviors (for example, different phases of grass prehension to 508 

investigate grazing strategies). In addition, the high sensitivity of the IMU leads a rapid 509 

change of the rotation rate signal on x-axis, and has given poorer results when the time-510 

windows was increased unlike in other researches where different kind of variables were used 511 

for classification and use of longer time-window had given better result.  512 

In future, a precision grazing management application might need to detect changes in grazing 513 

behavior as accurately as possible, and so an automated detection algorithm should aim to 514 

reach the highest accuracy possible with the shortest time window. 515 

When comparing different detection accuracies among unitary behaviors, the algorithm shows 516 

better performances with GRA, where corresponding sensitivity (89.3%) and specificity are 517 

highest (87.0%). This is logical since it is the only behavior for which the cow puts her head 518 

down for a long time. The only possible confusing behaviors are when the cow has her head 519 

in a similar position, for example when drinking or searching for a feeding station without 520 



 

 

eating and therefore not performing any specific JM considered part of grazing behavior 521 

(Gibb, 1996). But the intensity of these movements is much lower resulting in lower standard 522 

deviations, and the time allocated to these behaviors is not as important as for grazing 523 

(Vallentine, 2001). For RUM, high specificity (99.4%) combined with low sensitivity (53.1%) 524 

results in a high false negative rate. This can be ascribed to possible confusion between RUM 525 

and resting periods, standing or lying down without rumination which are included in 526 

OTHERS. These behaviors are only differentiated by the JM performed during RUM and by 527 

detecting sequences of chewing and regurgitation phases which occur approximately once per 528 

minute. Since even with longer time windows the accuracy was not improved, an option 529 

would be to improve the algorithm to detect regurgitation from chewing within the rumination 530 

phase. The signal representing jaw movement was filtered between 1 Hz and 2 Hz where a 531 

characteristic peak could be shown in the frequency-domain for RUM. When toggled in the 532 

time-domain for the Ry analysis, RUM bouts are composed of a succession of chewing peaks 533 

interrupted by a stop period during the swallowing and regurgitation of the bolus (Gibb, 534 

1996). For better monitoring of RUM patterns in cows, a discrimination loop considering the 535 

detection of typical patterns in the Rx or Ry signal could be added to improve the detection of 536 

RUM and at the same time to allow counting the numbers of chewing movements, for 537 

example, as it is done by the IGER behavior recorder (Rutter et al., 1997; Rutter, 2000).  538 

Finally, the algorithm was tailored to be as general as possible. The normalization step of raw 539 

signals allowed for high accuracy levels for a range of cattle of different weights and 540 

conformation (dairy and beef) and under various sward heights. Although the algorithm was 541 

not built to detect differences in grazing conditions, using it to reconstruct different daily 542 

feeding activity kinetics is one possible prospect of further use, which could provide useful 543 

information for grazing management research. Nevertheless, such approaches still require 544 

proper validation and should be compared to studies of factors influencing grazing and eating 545 



 

 

behaviors of cattle under similar pasture conditions such as time of day (Gibb et al., 1998), 546 

sward height (e.g. Gibb et al., 1999, Orr et al., 2004) or bulk density (Mayne et al., 1997). The 547 

example given in Figure 9, describes how grazing periods are more ‘grouped’ in a paddock 548 

with a higher sward height, suggesting that cows perform longer grazing bouts when more 549 

grass is available. Griffiths et al. (2003) have shown similar results with a longer residence 550 

time when the sward is high. However, quantifying the whole grazing duration is not enough 551 

since additional information about intake such as bite characteristics are an essential part of 552 

improving the understanding of cattle grazing processes under different contexts, preferably 553 

under long-term experiments (Chilibroste et al., 2015).  554 

 555 

5. Conclusions 556 

Using a smartphone with an efficient IMU that is readily available worldwide, it was 557 

possible to detect grass intake (GRA) and rumination (RUM) behaviors of cattle fed on 558 

pasture based on observations assuming that cows perform different group of head and jaw 559 

movements when performing these behaviors. Different signals recorded by the IMU were 560 

then chosen to describe these physical movements and to define thresholds used for GRA and 561 

RUM behaviors classification. Data collection is possible by simply installing an application 562 

on the smartphone, which allows for recording many signals from the accelerometer, 563 

gyroscope or location sensors at different sampling rates. Average accuracies ranged between 564 

90 and 95% when detecting grass intake and ruminating behaviors, and 86% for others.  565 

Until now, raw data is transferred and analyzed on a computer. Nevertheless, real-time 566 

acquisition and analysis of the data is possible and in progress in the scope of Precision 567 

Livestock Farming approach.  568 

The developed algorithm was coded in MatLab and is available in the supplementary data of 569 

this manuscript. It can be used by others for research or teaching purposes, or to further 570 



 

 

improve it highlighting the open character of the algorithm. Obviously, before being used, in 571 

the tropics for example, the algorithm should be validated for more diverse conditions with 572 

more heterogeneous vegetation and with more breeds, especially zebus. Using similar method 573 

with other domestic species and pets could also be possible but there is a need to find the best 574 

anatomical place for the device before testing the method itself. Finally, deeper analyses of 575 

each behavior through peak or frequency signal analysis are needed to further explore 576 

potential of accelerometer-based behavior monitoring methods.  577 
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