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ABSTRACT 

In agriculture, crop monitoring and plant phenotyping are mainly manually measured. However, 

this practice gather phenotyping information at a lower rate than genotyping evolves, thus 

producing bottleneck. This paper presents vitisBerry, a smartphone application for assessing in 

the vineyard, using computer vision, the berry number in clusters at phenological stages 

between berry-set and cluster-closure. The implemented image analysis algorithm is an 

evolution of a previous development, providing 1.63% and 7.57% of Recall and Precision 

improvement, respectively. The application was evaluated using two devices, taking and 

analysing 144 images from 12 different grapevine varieties. The Recall and Precision results 

ranged between 0.8762-0.9082 and 0.9392-0.9508, depending on the device. The average 

computational time required to analyse the 144 images varied from 3.14 to 8.40 sec. According 

to these results, vitisBerry constitutes a tool for viticulturists to acquire phenotyping information 

from their vineyards in an easy and practical way. 
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INTRODUCTION 

Plant phenotyping involves a quantitative description of a plant’s physiological, biochemical 

and morphological traits (Walter et al. 2015). It evaluates the effects on the phenotype as a 

result of the different interactions between the diverse genotypes and the environmental 

conditions to which the plant has been exposed (Minervini et al. 2015). Classically, the 

collection of phenotypes has been manually performed, but more recently, non-invasive image-

based methods are increasingly being used to non-invasively capture detailed information of 

key agronomical and physiological traits of the plant throughout its life cycle (Spalding and 

Miller 2013; Li et al. 2014; Diago et al. 2012; Diago et al. 2016; Rabatel and Guizard 2007; 

Cubero et al. 2015; Aquino et al. 2015). Indeed, Herzog et al. (2014), and more recently Klodt 

et al. (2015), have studied the potential of the use of image analysis for high-throughput 

phenotyping in vineyards. 

Within plant phenotyping in viticulture by using image analysis, the topic that has received 

more attention from the scientific community is yield estimation. Either from a breeding 

perspective (to identify and develop genotypes with specific yielding capacity) or from a 

grapegrowing approach, accurate yield assessment is of key importance in viticulture, and has 

been identified as one of the most profitable and strategical fields of research in viticulture 

(Dunstone 2002). Berry yield is defined by the yield components, involving the number of 

clusters, the berry number per cluster and the berry size. While the number of clusters per vine 

or per linear meter is mostly established at winter pruning, and remains stable across seasons, 

the number of berries per cluster is a more labile variable, even within a given genotype. It is 

influenced by the number of flowers per inflorescence and the fruit-set rate (fertility indicator), 

both parameters highly dependent upon the weather conditions during inflorescence 

development (at bud dormancy) and berry-set, respectively (May 2004). The number of berries 

per cluster is fully established at berry-set and remains invariable until harvest, determining not 

only the final yield but also the cluster compactness or cluster architecture and degree of berry 

aggregation (Cubero et al. 2015), which impacts berry ripening and disease incidence among 

other features.  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



4 
 

As mentioned before, there is considerable bibliography on yield prediction, with methods 

working either under laboratory or field conditions. On the one hand, previous image-based 

studies for berry number estimation per cluster carried out under controlled laboratory 

conditions (Diago et al. 2015; Liu et al. 2015) offer a limited applicability, as plants experience 

more heterogeneous situations in the field, including environmental and lightning changes and 

competition from adjacent plants. Moreover, the rate at which plant phenotyping information is 

gathered under laboratory or field conditions does not match the speed of genotyping and, as a 

result, a bottleneck is being produced (Houle et al. 2010). As a consequence, image analysis 

algorithms towards yield prediction working under ‘real’ uncontrolled conditions have been 

presented over the recent years (Fernandez et al. 2013; Font et al. 2015; Nuske et al.2011; Nuske 

et al. 2011b; Nuske et al. 2012; Nuske et al. 2014; Berenstein et al. 2010; Liu et al. 2013; Reis et 

al. 2011; Reis et al. 2012). However, these methods are hardly directly applicable by 

viticulturists, since they often use complex mobile sensing platforms or specialized capturing 

devices. 

Currently, there is a very mature and stablished market of mobile devices or smartphones 

offering a wide range of options. At this time, even low-range devices with affordable prices 

offer outstanding computational processing and photographic capabilities, which have made 

possible the development of specialized applications in multiple fields. Nevertheless, viticulture 

is not prolific in this sense yet, since there are only a few examples of available applications for 

managing vineyard features. The applications by De Bei et al. (2015) and Fuentes et al. (2012) 

for measuring grapevine canopy architecture, and that by Aquino et al. (2015) and Millan et al. 

(2016) (vitisFlower) for assessing the number of flowers per inflorescence are surely the most 

remarkable among those presented. 

This paper presents the development and testing of a novel smartphone application, called 

vitisBerry, for counting the berry number per cluster visible in images of clusters at a 

phenological stage between berry-set and cluster-closure; the number of berries in a cluster 

image is strongly correlated to the actual number in the real cluster (Aquino et al. 2016). The 
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application integrates the capturing and image analysis processes by exploiting the smartphone 

capabilities, providing the viticulturist with an easy-to-use tool to acquire phenotypic 

information directly in the field. 

MATERIALS AND METHODS 

Image analysis algorithm for berry counting in cluster images 

The vitisBerry application developed for Android devices, is a novel tool for viticulturists to 

assess the number of berries in grapevine clusters at a phenological stage between berry-set and 

cluster-closure (stages K and L according to the scale proposed by Baggiolini (1952)). The 

application allows to take a cluster picture and implements an improved version of the 

algorithm presented by Aquino et al.(2016) for its analysis. As a result, the number of visible 

berries in the cluster is given. 

The image analysis algorithm included in vitisBerry is based on mathematical morphology and 

pixel classification by means of supervised learning. As a pre-requisite, the photo to be analysed 

has to be taken by placing a dark background behind the cluster. Concretely, a simple capturing 

box as the one shown in Figure 1 made with a Din A3 cardboard was employed. The use of this 

artefact offered applicative advantages. On the one hand, it eased the individual capture of 

clusters, since very often they were located so close together within the grapevine, or even 

touching themselves, that it was impossible to photograph them individually without picking or 

damaging them. In addition, it also favoured the accurate extraction of a region of interest (ROI) 

by image analysis. Moreover, the capturing box also improved the experience with respect of 

using a flat cardboard, as the box’s borders prevented from the generation of undesired bright 

spots on the berrys’ surface originating from light reflections on leaves or other elements. 

The algorithm is divided into three main steps: 

 Image pre-processing: this step is basically aimed at extracting the cluster in the image from 

the background. Firstly, the image is downsized to a resolution of 1170 x 1578 pixels (1.84 

Mpx) for computational-time optimization purposes (see an example of an image acquired 
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with the vitisBerry application in Figure 2-(a)). Then, it is converted from the native RGB 

to the CIE 1976 L*a*b* colour space (Connoly and Flies 1997), as this colour scheme offers 

the illumination and colour information decoupled, what favours the approach followed in 

the algorithm. Finally, the ROI is extracted by using colour discrimination criteria (see 

results on Figure 2-(b)); note that colour is invariant to light conditions in the CIE 1976 

L*a*b* colour space). 

 Image analysis: this step addresses the extraction of berry candidates. The detection of 

candidates relies on the light reflection pattern that takes place on the convex surface of 

berries. It is characterised by a maximum light reflection point representing the centre of a 

circle, progressively decreasing the reflection intensity around the centre for describing a 

circular pattern; this effect follows the Lambert’s cosine law (Smith 2007). Hence, berry 

candidates are extracted, using the extended h-maxima transform (Soille 2004), by finding 

those connected components within the ROI being regional maxima in the lightness channel 

(L*) of the CIE 1976 L*a*b* colour space (check Figure 2-(c)). 

 Image post-processing: this processing is focused on analysing the set of connected 

components representing berry candidates previously obtained for discarding false 

positives. For every candidate, a set of berry descriptors is calculated and given as input to a 

neural network (NN) trained with supervised learning. The NN architecture is analogue to 

the original one described in Aquino et al. (2016), producing as result a real output in the 

interval [0,…,1], which is considered as the candidate’s probability of belonging to an 

actual berry. Once all candidates are analysed, a probability map is created by composing an 

image in which the candidates are represented with their computed probability (see Figure 

2-(d)). Finally, the image is binarized using the threshold automatically provided by the 

Otsu’s method (Nobuyuki 1979), thus discarding false positives (see Figure 2-(e) and (f) to 

check the final result). 

Two important contributions have been added to this stage with respect to the original 

version detailed in Aquino et al. (2016): a linear transformation for colour homogenization 

and eight new descriptors added to the original set composed of six. 
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Let L, A and B be the images from the L, a* and b* channels of an image in the CIE 1976 

L*a*b* colour space. First, a linear transformation in A and B is applied to every pixel 

within the ROI according to:  

 (1) 

Where  and  are the average values of the pixels within the ROI for the image A and B, 

respectively. Additionally, 108.78 and 167.82 are the average values measured from the a* 

and b* channels, respectively, in the 26 images used to train the NN, by considering only 

the pixels within the corresponding ROIs (the set of 26 images was the same used to train 

the original version of the NN described in Aquino et al. (2016)). Hence, this transformation 

homogenizes colour information in images ‘unknown’ for the NN, by moving pixel values 

around the average calculated in training images. 

With these definitions, the set of berry descriptors is formulated as: 

 Shape (one descriptor): it is applied as defined in Aquino et al. (2016), and evaluates the 

circularity of a connected component representing a berry candidate by calculating the 

quotient between its minor and major axis length: 

 Normality (one descriptor): this descriptor is computed on image L and strengthens the 

detection of berries by assuming that the light reflection produced on their surface 

describes a 2-dimensional Gaussian distribution. For a full description and study on this 

descriptor, consult Aquino et al. (2016). 

 Colour discrimination (four descriptors): the vitisVerry application was designed to 

analyse clusters at phenological stages before veraison, when berries are green 

independently from the grapevine variety. This colour feature was used to define four 

statistical descriptors calculated on A’ and B’ as defined in Aquino et al. (2016). Note 

that in this first algorithm’s version, these descriptors were calculated directly on the 

non-corrected images A and B. 
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 Hu moments (seven descriptors): the Hu moment invariants (Hu 1962) are a set of 

seven moments invariant under size, translation and rotation, and used for recognizing 

known patterns in images. Grape berries exhibit a circular shape in images, feature 

distinctive from other objects in the scene and exploited for discrimination by means of 

modelling using the mentioned set of seven moments. Concretely, the logarithm of 

every moment is calculated for all connected component representing a candidate on a 

gradient-magnitude subimage extracted around the centroid of the component. Thus, 

seven new descriptors were added to the classifier implemented in the previous version 

of the image analysis algorithm. 

 Entropy (one descriptor): a value of entropy calculated from an image is a statistical 

measure of the randomness present in the distribution of pixel values or, in other words, 

it can be seen as a measure of ‘coherence’ of the distribution of pixel values. Applied to 

this work, a berry candidate represented by a connected component will show a more 

meaningful distribution of pixel values in its surroundings when it truly represents a 

berry, compared to when it comes from other artefacts in the image, such as for instance 

the rachis (see Figure 3 to graphically visualise this concept). This is why a descriptor 

based on the entropy measured in images was developed and added to the original 

classifier (the basis and calculation of entropy in images can be consulted in Gonzalez 

and Woods (Gonzalez and Woods 2003). 

vitisBerry’s technical overview 

vitisBerry integrates the image capture, analysis and results storage processes to provide a 

comprehensive tool for the early manual assessment of berries per cluster. It was conceived as a 

‘twin’ application of vitisFlower (Aquino et al. 2015), so it was developed for smartphones 

powered with 2.3 Android versions and above. Furthermore, the aim was to provide the 

vitisFlower’s users with a complementary application with an analogue behaviour, so as to 

make them feel familiar with it from the beginning. With this in mind, vitisFlower was designed 

following a model-view-controller approach (Larman 2004). This made possible to develop 
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vitisBerry from the basis of vitisFlower, re-implementing the business logic but keeping the 

application’s controller, hence also keeping the usability unchanged, and only slightly 

modifying the user’s interface for showing the appropriated information. 

For the reasons outlined above, the vitisBerry’s architecture followed the same design principles 

applied for vitisFlower. Its key characteristics can be summarized as follows (a detailed 

description can be found in Aquino et al. (2015)): 

 The image analysis algorithm described in Section 2.1 was implemented using the C/C++ 

OpenCV library for proving higher versatility than its Java version, OpenCV4Android. 

 The application’s controller and graphical interface were implemented in Java. 

 The communication between the ‘Java side’ and the ‘C++ size’ carried out by the controller 

was made through Java Native Interface (JNI). This way, the controller in the ‘Java side’ 

invokes the analysis of an image to the ‘C++ side’ through JNI, which is really in charge of 

executing the appropriate methods and returning results.  

vitisBerry’s performance description 

Figure 4 illustrates the performance of the vitisBerry application by means of an illustrated 

flow-chart diagram, which is outlined here as follows: 

1. Home: it shows basic information about vitisBerry. 

2. Instructions for image capture: it provides the user with some basic notions for appropriate 

image capture. 

3. Image capture: the camera application available in the device (parametrized according to the 

user’s settings) is invoked, thus allowing image capture. 

4. Image analysis: this state is transparent to the user, and executes the image analysis 

algorithm for detecting and counting berries in the image previously taken.  

5. Results display: the analysed image, highlighting the detected berries with red crosses, is 

displayed along with a brief text indicating the number of detected berries. 
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6. Image storage: upon user request, the processed image is saved in a folder called 

‘VitisBerryImages’ located in the root folder of the device’s internal storage. The image is 

saved with a name formatted as [name]_[date]_[detected number of berries].jpg, with the 

following meaning: 

 [name]: the name introduced by the user through the dialog box, or ‘image’ by default. 

 [date]: the capture date as day-month-year_hour.minutes.seconds.miliseconds.  

 [detected number of berries]: the berry number detected in the image.  

vitisBerry’s testing and validation 

Evaluation of the image analysis algorithm’s improvement 

The image analysis algorithm presented here was firstly evaluated on the database used for 

assessing the original version developed in Aquino et al. (2016). By this way, a rigorous 

comparison between both versions could be carried out. 

The dataset consisted on 152 cluster images of the grapevine varieties Tempranillo, Semillon, 

Merlot, Grenache, Cabernet Sauvignon, Chenin Blanc and Sauvignon Blanc. The images were 

taken in a grapevine variety collection within the experimental vineyards of the ‘Institut des 

Sciences de la Vigne et du Vin’ (ISVV, Villenave d’Ornon, Bordeaux, France). Clusters were 

sampled at a phenological stage previous to veraison, concretely varying depending on the 

variety between stages K and L according to the scale proposed by Baggiolini (1952); the 

images were taken under field conditions. The smartphone used for image acquisition was the 

BQ Aquaris E5 (Mundo Reader S.L., Madrid, Spain) detailed in Table 1. The camera was set in 

automatic mode, the flash was used depending on the illumination conditions, and the distance 

between the camera and the cluster was kept around 20 to 40 cm. 

For evaluating the results, Recall and Precision were calculated per image as: 

 (2) 
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where RC stands for Recall (percentage of actual berries detected), and PC denotes Precision 

(percentage of berry misclassification). A gold standard set was created by manually labelling 

berries on each image for allowing the application of these metrics. Then, true positives (TP), 

false positives (FP) and false negatives (FN) were calculated per image following the 

definitions: 

 TP: berries automatically detected corresponding to actual berries labelled in the gold 

standard. 

 FP: berries automatically detected not corresponding to actual berries in the gold standard. 

Redundant TPs were also considered as FP. 

 FN: actual berries labelled in the gold standard not found by the segmentation algorithm.  

In Addition, one-way analysis of variance was used to compare the performance of both 

versions of the algorithm in terms of the defined metrics and among grapevine varieties for each 

version. Mean comparison was attempted using the Tukey’s test (Tukey 1949) at p < 0.05. 

vitisBerry’s performance evaluation 

The vitisBerry’s testing was designed pursuing a double aim. On the one hand, its ability to 

accurately detect berries when using it directly in the vineyard running on a smartphone was 

assessed. On the other hand, its dependency in terms of robustness upon cameras of different 

qualities was also evaluated.  

To achieve these goals, an experiment was performed at a grapevine variety collection located 

in the experimental vineyards of the ‘Instituto de Ciencias de la Vid y el Vino’ (Logroño, 

Spain). The experiment consisted on capturing and analysing using vitisBerry, running on two 

different devices, 144 clusters at phenological stages between K and L (Baggiolini 1952). 

Concretely, 12 clusters of the following 12 different grapevine varieties were studied: Airen, 

Chardonay, Cabernet Sauvignon, Grenache Blanc, Grenache, Merlot, Malvasía, Pinot Meunier, 

Pinot Noir, Tempranillo, Syrah and Viognier. The two devices employed for the experiment 

were those detailed in Table 1. The Sony Xperia Z5 (Sony Corp., Tokyo, Japan) is a high-end 
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smartphone mounting a camera widely considered as one of the finest available in the market, 

whereas the BQ Aquaris E5 is a low-end smartphone equipped with a more modest camera 

(camera considerations are formulated according to the DxOMark ranking1). Finally, the results 

on the 144 studied clusters produced with both smartphones were assessed in terms of Recall 

and Precision following the methodology described to this effect in the previous section. One-

way analysis of variance using the Tukey’s test (Tukey 1949) at p < 0.05 was used to compare 

the algorithm’s performance running on both devices and among grapevine varieties for each 

devise. 

vitisBerry’s computational efficiency study 

The vitisBerry application was also evaluated in terms of overall usability by analysing its 

efficiency. This efficiency is mainly conditioned by the computation time the image analysis 

algorithm takes to process an image. It was also interesting to assess how different devices with 

different hardware configurations affected the computation time.  

To evaluate these features, an experiment consisting on studying the computation time 

consumed by four smartphones equipped with different hardware and software configurations 

for analysing the same set of images was developed. The devices used for this study were those 

detailed in Table 2, and were selected to cover a wide range of the market’s spectrum in terms 

of price and performance, were used. 

To obtain meaningful results, the four devices analysed the same dataset composed of the 144 

images captured with the Sony Xperia Z5 described in the previous section. This analysis was 

performed with a simplified version of vitisBerry including only a home page with a single 

button for running the test. Prior to test starting, the following protocol was applied with all 

devices for the seek of avoiding the interference in the results of other applications and services: 

1. Closing recent applications. 

2. Selecting the flight mode. 

                                                           
1 https://www.dxomark.com/Mobiles 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



13 
 

3. Re-starting the device. 

4. Waiting for 20 sec. for the operating system to completely loaded. 

5. Starting the benchmarking version of vitisBerry. 

6. Running the test. 

The set of images, stored in the smartphone’s internal storage, was analysed five times upon test 

starting, registering the time taken for each image in each of the five analysis. Thus, for a given 

image, the definitive computation time for its analysis was finally calculated as the average time 

taken for its analysis during the five performed iterations.  

RESULTS AND DISCUSSION 

Evaluation results of the improvement of the image analysis algorithm 

Table 3 summarizes the results obtained by the original version of the image analysis algorithm 

for detecting berries on cluster images (Aquino et al.2016), and those given by the improved 

version developed in this paper. Results were calculated in terms of average Recall ( ) and 

Precision ( ), measured per variety and also considering all images together.  

The results obtained with both versions, measured on the same set of images, indicated clear 

improved performance in terms of both metrics, giving Recall and Precision increasing of 

1.63% and 7.57%, respectively. Furthermore, the analysis of variance of both metrics also 

showed more robust behaviour for the improved version attending to results per variety and also 

considering all images as a whole. This improvement can be explained by the two main 

contributions added to the original version of the algorithm. On the one hand, the green tone of 

the berries greatly varies among varieties, development stage and many other factors related to 

in-the-field image capture. To this respect, the addition of the linear transformation for 

homogenizing colour in images ‘unknown’ for the classifier improved the behaviour of the 

descriptors based on colour assessing. On the other hand, two sets of new descriptors, the one 

based on the seven Hu’s moment invariant and the one based on entropy, were also added. The 

obtained results argue for the inclusion of the new descriptors increased the descriptive skills of 
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the algorithm, thus making it able to effectively detect more berries, but also producing less 

false positives at the same time. 

Figure 5 includes two examples of images analysed with the two versions of the image analysis 

algorithm. The berries detected are represented by a blue connected component representing the 

validated bright spot on the berry’s surface. Images (a) and (c) were produced by the original 

version of the algorithm, whereas (b) and (d) were results given by the improved version. From 

a visual inspection of image (a) vs. (c), it can be identified how the improved version increased 

the number of correctly detected berries (the additional berries found can be identified in purple 

colour in image (c)). By checking image (b) vs. (d), it can be assessed how the new version 

outstandingly reduced the number of false positives without penalising the number of real 

berries detected (the discarded berries can be identified in red colour in image (d)).  

Results of the vitisBerry’s performance evaluation 

The in-the-field results obtained with vitisBerry running of the two selected devices are given in 

Table 4 and expanded in Figure 6. Better results were produced by the Sony Xperia Z5, in terms 

of absolute values of  and , and also attending to the analysis of variance per variety. In 

this last case, the analysis indicated more robust behaviour among varieties for this device. 

However, when considering all images as a unique set for each smartphone, the analysis of 

variance showed no significant differences between both. This result argues for an analogue 

performance of vitisFlower running of both devices in spite of belonging to opposite market 

ranges and, therefore, despite offering technological solutions of very differentiated qualities.  

Notwithstanding the above, better experience was achieved with the Xperia device than with the 

Aquaris E5 when working with the application in the vineyard. This last device incorporates a 

camera that showed inconsistent behaviour in terms of light exposure, white balance, auto-focus 

and other aspects. This fact sometimes provoked retaking some captures, which happened quite 

less frequently with the Xperia. Going deeper in the application usability, generally speaking, 

the experience of the application in the field and the visual analysis of the acquired images led 
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to define the image acquisition settings producing the best application behaviour. These 

included: 

 Analysing inflorescences facing the Sun. The opposite orientation leads to light reflection 

and refraction patterns that can negatively affect the results. 

 Casting a shadow on the cluster to create a homogeneous illumination. If it is poor due to 

low natural-light conditions, the use of the camera flash is recommended. 

Additionally, especially the results obtained with this device were comparable to those 

discussed in the previous experiment. This takes special relevance when considering that the 

images used to train the NN were taken during the same working session and with the same 

device (the BQ Aquaris E5) than the ones used for validating results in the previous section. 

This meant that both set of images inevitably shared certain characteristics like illumination, 

colour temperature, etc., fact that did not happen with the images validated here from the Xperia 

Z5. Indeed, this particular emphasizes confidence in the flexibility and descriptive potential of 

the algorithm. 

Results of the study of vitisBerry’s computational efficiency 

Figure 7 illustrates the measured results for evaluating the computational efficiency of the 

vitisBerry application running on the four devices listed in Table 2. The Xiaomi Redmi Note 3 

Pro (Xiaomi Inc., Beijing, China) offered the best computation time distribution, with an 

average and standard deviation of 3.14 sec. and 0.92 sec., respectively. Attending to price and 

specs this result was surprising at a first view, since the Xperia Z5 was expected to be the most 

efficient for equipping the most powerful CPU (it gave 4.47 sec. and 1.43 sec. of average time 

and standard deviation). However, taking into account that vitisBerry was not parallelized and, 

therefore, runs exclusively on the main CPU’s core, the result was coherent as the main core of 

the CPU of the Redmi Note 3 Pro (Cortex A72) is a more recent and powerful design than the 

one in the CPU of the Xperia (Cortex A57). The measures for the Xiaomi Mi4 were 5.87 sec. 

and 1.76 sec. of average and standard deviation, whereas the BQ Aquaris E5 produced the worst 
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result with 8.40 sec. of average time and 2.53 sec. of standard deviation. These results confirm 

that vitisBerry is an efficient tool, providing good usage experience in terms of efficiency even 

when working with modest devices in terms of price and specs. Note that, attending to the box 

and whisker plot in Figure 7-(b), the lowest device (BQ Aquaris E5) analysed the 75% of 

images in less than 11 sec. in average. 

Significance of the vitisBerry application for the wine industry 

The presented smartphone application, allows to anyone going into the vineyard to acquire 

objective knowledge on two valuable agronomic parameters. On the one hand, the viticulturist 

may select a representative number of vines (this can be variable upon the degree of variability 

within a vineyard plot) and 2-3 clusters per vine for estimating fruit-set (number of flowers that 

become berries). It can be carried out by using vitisBerry together with vitisFlower9 to monitor 

the selected clusters from preflowering to veraison. On the other hand, since the number of 

berries in a cluster image is strongly correlated to the actual number in the real cluster (Aquino 

et al. 2016), vitisBerry can be used to obtain information about future yield by sampling the 

selected representative set of clusters in the plot.  

CONCLUSIONS 

This paper presents a smartphone application for Android devices, called vitisBerry, which 

allows assessing grapevine clusters by means of image analysis. This application incorporates 

an improved version of a previous image analysis algorithm for detecting berries in cluster 

images. The evolved algorithm is also described here and compared to the original version, 

providing clear improvement in terms of both Recall and Precision. According to the results of 

the experiments developed in this paper, vitisBerry is a practical and efficient tool for the 

viticulturists to analyse phenotypic information in their vineyards.  

Future improvements of vitisBerry will include the creation of a wider and more variated 

training set of images composed of images taken with different devices, at different sunlight 

expositions and many other variated situations. This is expected to improve the application’s 
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usability by reducing the frequency of needing to retake images, as well as to homogenize even 

more its performance with devices with different cameras. 
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TABLES 

Table 1. Main relevant features of the two smartphones used for evaluating performance of the 

vitisBerry application. 

           Feature 

Device 

Price/Release 

date 

Sensor 

model 
Resolution Lens Size Aperture ISO 

Sony Xperia Z5 479.0 €/2015 
Sony 

IMX300 
23 Mpx 1/2.3’’ f/2.0 50-12800 

BQ Aquaris E5 185.99 €/2014 
Sony 

IMX214 
13 Mpx 1/3.2’’ f/2.2 100-1600 
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Table 2. Main relevant features of the four devices used for evaluating computational efficiency 

of the vitisBerry application. 

            Feature 

Device 

Price/Release 

date 
Chipset CPU GPU RAM 

Android 

version 

Sony Xperia Z5 479.0 €/2015 

Qualcomm 

MSM8994 

Snapdragon 810 

Octa-core 2.0 GHz; 

4xARM Cortex A57, 

4xARM Cortex A53  

Adreno 

430 
3 GB 6.0.1 

BQ Aquaris E5 185.99 €/2014 

Qualcomm 

MSM8916 

Snapdragon 410 

Quad-core 1.2 GHz 

ARM Cortex-A53 

Adreno 

306 
1 GB 5.1.1 

Xiaomi Mi4 180.75 €/2014 

Qualcomm 

MSM8974AC 

Snapdragon 801 

Quad-core 2.5 GHz 

4xKrait 400 

Adreno 

330 
3 GB 6.0.1 

Xiaomi Redmi 

Note 3 Pro 
198.83 €/2016 

Qualcomm 

MSM8956 

Snapdragon 650 

Hexa-core 1.8 GHz; 

2xARM Cortex A72, 

4xARM Cortex A53 

Adreno 

510 
3 GB 5.1 
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Table 3. Comparison of the original and improved version of the image analysis algorithm for 

berry counting on cluster images. Results were measured on the same set of 126 images used in 

Aquino et al., (2016) for evaluating the original version of the algorithm. Figures are given 

detailed per grapevine variety. 

 
Original Version 

(Aquino et al., 2016) 

Improved Version 

(this work) 

Variety     

Tempranillo 0.9511abc 0.9101a 0.9663a 0.9556a 

Semillon 0.9664ab 0.8349bc 0.9680a 0.9488a 

Sauvignon Blanc 0.9928a 0.8169c 0.9734a 0.9658a 

Merlot 0.9296bc 0.8999ab 0.9767a 0.9351a 

Grenache 0.9105c 0.8715abc 0.9664a 0.8974b 

Cabernet Sauvignon 0.9668ab 0.8708abc 0.9803a 0.9506a 

Chenin Blanc 0.9832a 0.8852ab 0.9821a 0.9696a 

Overall 0.9572A 0.8705A 0.9735B 0.9462B 

*Dissimilar low-case letters within rows represent statistically different means among varieties, while dissimilar 

capital letters indicate statistically different means between the two versions of the algorithm; the Tukey (1949) test 

was used at . 
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Table 4. Results of the vitisBerry application measured on 144 images using two different 

smartphones. Results are given detailed per grapevine variety. 

 Sony Xperia Z5 BQ Aquaris E5 

Variety     

Airen 0.8865a 0.9475ab 0.8291a 0.9524ab 

Chardonay 0.9043a 0.9391ab 0.8658abc 0.9308ab 

Cabernet Sauvignon 0.9078a 0.9499ab 0.8660abc 0.9424ab 

Grenache Blanc 0.9169a 0.9506ab 0.8741abc 0.9159ab 

Grenache 0.8837a 0.9121a 0.8538ab 0.9342ab 

Merlot 0.8870a 0.9632b 0.8303ab 0.9727b 

Malvasía 0.9202a 0.9388ab 0.8994abc 0.9060a 

Pinot Meunier 0.9113a 0.9698b 0.9313c 0.9273ab 

Pinot Noir 0.9207a 0.9501ab 0.9071bc 0.9481ab 

Tempranillo 0.9003a 0.9627b 0.8697abc 0.9575ab 

Syrah 0.9387a 0.9689b 0.8820abc 0.9427ab 

Viognier 0.9209a 0.9575b 0.9059abc 0.9407ab 

Overall 0.9082A 0.9508A 0.8762A 0.9392A 

*Dissimilar low-case letters within rows represent statistically different means among varieties, while dissimilar 

capital letters indicate statistically different means of the algorithm’s performance running on each device; the Tukey 

(1949) test was used at . 
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FIGURES

 

Figure 1. (a) Capturing box hand-made with a Din A3 black cardboard. (b) Example of image 

capture. 
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Figure 2. Illustration of the algorithm for berry segmentation on cluster images included in the 

vitisBerry application: (a) original image; (b) extracted ROI; (c) set of berry candidates 

represented in blue colour on the original image (a); (d) image in which each candidate is 

represented according to its computed probability of being berry (the brighter, the higher 

probability); (e) binary image illustrating the candidates confirmed as berry after thresholding 

(d); (f) final result showing the found berries. 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



28 
 

 

Figure 3. Application of the principle of entropy to berry detection. From (a) to (d), subimages 

extracted, centred in the centroid of a berry candidate, from the L channel of the original image 

are shown. (a) and (b) correspond to real berries, showing consistent distribution of pixel values. 

(c) and (d) come from false positives located in the rachis of the cluster, showing a more 

randomly distribution of pixel values. The entropy values calculated in subimages (a) to (d) 

were 3.7363, 4.0292, 5.3078 and 5.6714, respectively. Note that higher entropy values indicate 

more randomly distributed values. 
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Figure 4. vitisBerry’s flow-chart diagram illustrated with application’s screenshots. 
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Figure 5. Comparison of results obtained with the original image analysis algorithm presented 

in Aquino et al. (2016) and the improved version described here. (a) and (c) are results from the 

original version, in which the found berries are represented in blue colour. (b) and (d) are results 

from the improved version in which purple candidates were rejected by the original algorithm 

but validated by the improved version, red candidates were validated by the original algorithm 

but rejected by the improved version and blue candidates were validated by both versions.  
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Figure 6. Box and whisker plots comparing the performance of the vitisBerry application 

running on two different devices in terms of Recall (a) and Precision (b). 

 

Figure 7. VitisBerry’s computational efficiency study consisting on analysing 144 images with 

four different devices: (a) measured average and standard deviation computation time for the 

four devices used for the experiment; (b) box and whisker plots for the for the same experiment 

shown in (a). 
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