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A B S T R A C T

This study presents a hybrid Finite Volume – Finite Element (FV-FE) model that describes the coupled surface-
subsurface flow processes occurring during furrow irrigation and fertigation. The numerical approach combines
a one-dimensional description of water flow and solute transport in an open channel with a two-dimensional
description of water flow and solute transport in a subsurface soil domain, thus reducing the dimensionality of
the problem and the computational cost. The modeling framework includes the widely used hydrological model,
HYDRUS, which can simulate the movement of water and solutes, as well as root water and nutrient uptake in
variably-saturated soils. The robustness of the proposed model was examined and confirmed by mesh and time
step sensitivity analyses. The model was theoretically validated by comparison with simulations conducted with
the well-established model WinSRFR and experimentally validated by comparison with field-measured data from
a furrow fertigation experiment conducted in the US.

1. Introduction

Agriculture is among the most important human activities due to its
role in the food supply chain. According to one of the latest FAO reports
(FAO, 2017), agricultural production more than tripled between 1960
and 2015. This remarkable expansion has been accompanied with a
dramatic increase in the use of irrigation and fertilization, and an as-
sociated significant environmental footprint, thus posing important
sustainability issues. Irrigation for agricultural purposes accounts for
70% of all water withdrawn from aquifers, lakes, and streams (FAO,
2011a). Furthermore, the worldwide demand for fertilizers has grown
by 25% in the last decade, and this trend is expected to continue in
coming years (FAO, 2015), increasing the risk of nutrient pollution of
water bodies. Thus, the transition towards more efficient and sustain-
able irrigation and fertigation strategies is necessary.

Although slowly replaced by pressurized irrigation in developed
regions such as The United States, Europe, and Israel, surface irrigation
systems continue to be a preferred irrigation method in developing
countries. In 2011, surface systems accounted for 96.8% of irrigated
surfaces in Southern and Eastern Asia (FAO, 2011b). In particular, basin
and furrow irrigation were the most widespread techniques among
farmers. When correctly performed, furrow fertigation can increase the
efficiency of fertilizer use and crop fertilizer uptake, compared to

traditional techniques (Fahong et al., 2004; Horst et al., 2005; Siyal
et al., 2012; Šimůnek et al., 2016a). To be successful, furrow irrigation
and fertigation systems should be designed and managed so that the
application and distribution of water and fertilizer are efficient and
uniform, with minimal surface runoff at the lower end of the field and
with minimal deep drainage and leaching below the crop root zone
(Šimůnek et al., 2016a). To optimize the performance of furrow irri-
gation systems, numerical models may play an important role since
they represent powerful tools for assessing irrigation and fertigation
efficiency.

Furrow irrigation and fertigation are coupled surface-subsurface
processes. Water and solute are injected at the soil surface at one side of
an open channel, hence generating a sharp front that moves along a
furrow while water and nutrients infiltrate in the underlying soil.
Therefore, furrow irrigation and fertigation are (physically, mathema-
tically, and numerically) described as coupled three-dimensional flow
and transport processes in both surface and subsurface domains.
Nevertheless, solving a fully coupled system of 2D Shallow Water and
3D Richards equations would require significant computing resources
and would also likely pose substantial stability issues, mainly stemming
from the high nonlinearity of the governing equations. This presents a
problem in the modeling of flooding and drying processes over porous
beds.
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Therefore, several models have been proposed in the literature that
reduce the numerical complexity of a fully 3D model. Katopodes and
Strelkoff (1977) used a dimensionless formulation of the governing
equations to show that when the Froude number is small, which is ty-
pical under irrigation conditions, the inertial terms in the shallow water
equations are negligible. With this in mind, they developed the first
zero-inertia model for irrigation (Strelkoff and Katopodes, 1977). In the
early 80s, Walker and Humpherys (1983) proposed a furrow irrigation
model based on a 1D kinematic wave (KW) approximation of open
channel flow coupled with the modified Kostiakov equation describing
the infiltration process. While the model was assessed against experi-
mental data with satisfactory results, the adoption of the KW equation
limited its application to open-ended furrows. Furthermore, the model
did not include any description of the subsurface water dynamics. Later
on, Oweis and Walker (1990) replaced the KW approximation with the
one-dimensional (1D) zero-inertia (ZI) equation, which represents a
more realistic approximation of the Shallow Water equations. A more
detailed fertigation model was first proposed by Abbasi et al. (2003)
and later improved by Perea et al. (2010). In these two studies, water
flow and solute transport in an open channel were described using the
1D Zero-Inertia and advection-dispersion equations, respectively. The
modified Kostiakov equation was used to calculate infiltration at each
time step. Although the model was verified with good results against
experimental data from four experimental sites, subsurface flow pro-
cesses were again neglected.

To provide a better and more complete description of coupled water
flow and solute transport in the soil, several other models have been
proposed in the literature. For example, Zerihun et al. (2005) coupled
the 1D zero-inertia equation with the HYDRUS-1D model (Šimůnek
et al., 2016b), which numerically describes water flow and solute
transport as well as root water and nutrient uptake in 1D variably-sa-
turated porous media. The computational framework, which targeted
basin irrigation, was based on the iterative coupling between the sur-
face and subsurface models and was validated against measured data
with good results. Ebrahimian et al. (2013) extended this concept to
furrows by coupling a 1D furrow fertigation model with the two-di-
mensional HYDRUS-2D model (Šimůnek et al., 2016b). The coupled
model satisfactorily reproduced the overland transport as well as the
solute transport in the soil profile. However, the surface and subsurface
components were solved separately, leading to an uncoupled numerical
framework. As pointed out by Furman (2008), theoretically, the higher
the level of coupling, the higher the solution accuracy. This is mainly
due to the high nonlinearity of the involved processes, as well as to
their different time scales. For instance, overland flow is generally
faster than infiltration, thus requiring a different temporal resolution.
This temporal misalignment poses significant numerical issues since an
approximation is needed to couple surface and subsurface flow. The
accuracy of this approximation strongly influences the conservativeness
of the numerical scheme. Similarly, the overland solute transport needs
to be solved simultaneously with water flow in order to preserve the
monotonicity of the solution.

One of the most complete furrow irrigation models was developed
by Wöhling et al. (2004). The proposed computational framework
iteratively coupled a 1D analytical zero-inertia equation with HYDRUS-
2D, thus providing a complete description of surface-subsurface water
flow along the furrow. The model was further developed and extended
by Wöhling et al. (2006), Wöhling and Mailhol (2007), and Wöhling
and Schmitz (2007). A similar approach was used by Tabuada et al.
(1995), who coupled a model based on a complete hydrodynamic
equation of overland flow with a two-dimensional Richards equation.
While accurately simulating water flow, neither of the models discussed
above considered solute transport in surface and subsurface domains,
thus restricting their applicability to irrigation. Hence, further devel-
opment of similar approaches that would include a detailed description
of solute transport in the root zone is desirable for both scientists and
practitioners (Ebrahimian et al., 2014).

Most of the existing furrow irrigation models adopt a Lagrangian
approach, which uses a computational grid that moves along with the
wet/dry interface. Although elegant and accurate, this type of approach
can lead to coupling issues between the surface and subsurface models,
mainly because the grid must be regenerated each time the wet/dry
interface moves, and the computational nodes often must be added
during flooding or removed during recession to reduce grid distortion
error. However, while surface processes are discontinuous (surface flow
and transport occur only during irrigation events), subsurface processes
are continuous (subsurface flow and transport continues between irri-
gation events). Therefore, a fix grid for the subsurface domain is usually
used, and values of interest (e.g., infiltration, soil moisture, pressure
head, etc.) need to be interpolated between surface nodes, thus leading
to a hybrid Lagrangian-Eulerian approach. Nevertheless, results have
proven to be fairly sensitive to the interpolation strategy (Wöhling
et al., 2006). Lazarovitch et al. (2009) applied the moment analysis
techniques to describe the spatial and temporal subsurface wetting
patterns resulting from furrow infiltration and redistribution. Further-
more, most of the existing models are based on the finite difference
method (e.g., Tabuada et al., 1995; Abbasi et al., 2003; Perea et al.,
2010), which can yield spurious oscillations at flow discontinuities
unless first-order accurate (upwind) schemes or artificial dissipation are
employed.

Godunov-type Finite Volume (FV) schemes have been successfully
applied to simulate overland flow over pervious and impervious lands
(Bradford and Katopodes, 2001; Bradford and Sanders, 2002; Brufau
et al., 2002; Burguete et al., 2009; Dong et al., 2013). The FV schemes
solve the integral form of the overland flow and solute transport
equations, thus being mass conservative both globally and locally.
Numerical fluxes are evaluated at the cell faces, thus guaranteeing a
straightforward and efficient treatment of the dry bed problem by al-
lowing for flooding and drying of fixed computational cells. Further-
more, numerical oscillations near discontinuities can be eliminated
using flux limiters (Bradford and Katopodes, 2001). However, their
application to furrow irrigation and fertigation has been rather limited
and has not involved a coupled mechanistic description of the subsur-
face domain.

Thus, the main goal of this study is to develop and validate a hybrid
Finite Volume-Finite Element (FV-FE) reduced-order model capable of
describing coupled surface-subsurface flow and transport processes in-
volved in furrow fertigation. The proposed numerical approach com-
bines a one-dimensional FV description of coupled water flow and so-
lute transport in the surface domain with a two-dimensional
mechanistic FE description of flow and transport in the variably-satu-
rated zone, thus reducing the dimensionality (3D) of the problem and
associated computational cost. The modeling framework includes the
widely-used FE model, HYDRUS-2D, whose numerical features sig-
nificantly increased the overall modeling flexibility. The proposed
model is the first attempt to include HYDRUS-2D in a coupled surface-
subsurface furrow fertigation model, thus representing a new con-
tribution to this field. The problem is addressed in the following way.
First, the hybrid FE-FV model is theoretically validated against the well-
established model WinSRFR (Bautista et al., 2009) using synthetic va-
lidation scenarios. Preliminary mesh and time step sensitivity analyses
are performed to evaluate the accuracy and the robustness of the pro-
posed numerical approach. Next, the model is validated against mea-
sured data from an experimental facility in California, US.

2. Materials and methods

2.1. Modeling approach

The proposed approach combines a one-dimensional description of
coupled water flow and solute transport in an open channel with a two-
dimensional description of variably-saturated water flow and solute
transport in soil. As in previous studies (e.g., Tabuada et al., 1995;
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Wöhling et al., 2004), a key assumption in the model is that the
transport processes in the soil domain occur only in the vertical plane,
as a function of conditions at a surface flow cross section, and in-
dependent of conditions upstream or downstream from that cross sec-
tion. However, the main novelty of the present study is the develop-
ment of a complete furrow fertigation model, as well as the inclusion of
a widely used hydrological model, HYDRUS, in the modeling frame-
work.

The furrow of length L is discretized into N elements, each one
characterized by a two-dimensional vertical cross-section (Fig. 1). The
open channel cross-section is assumed trapezoidal, although the nu-
merical approach can be easily adapted to other geometries as well. The
interface between the surface and subsurface domains acts as a common
boundary.

2.2. One-dimensional overland flow and solute transport

2.2.1. Governing equations
The one-dimensional overland system can be described in the con-

servative form (Burguete et al., 2009) using the cross-sectional water
and solute mass conservation, momentum balance, and infiltration as
follows:
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where U is the vector of the conserved variables, F is the flux vector, S is
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where A is the wetted area [L2], Q is the discharge [L3T−1], C is the
cross-sectional average solute concentration [ML−3], g is the gravita-
tional acceleration [LT−2], S0 is the bed slope [LL−1], Sf is the friction
slope [LL−1], i is the infiltration rate [L3T−1], Kx is the dispersion
coefficient [L2T−1], and I1 and I2 are pressure forces. It must be em-
phasized that the infiltration rate i is estimated using the HYDRUS-2D
model.

Since flow velocities in furrow irrigation are typically small, the
resulting Froude number is generally less than 0.3. Under such condi-
tions, the inertial terms are negligible and the shallow water equations
can be simplified to the well-established zero-inertia (ZI) approximation
(Strelkoff and Katopodes, 1977):

∂
∂

= −h
x

S Q Q m W
c A

| |
u

0
2 4 3

2 10 3 (3)

where h is the water depth [L], m is the Manning roughness coefficient
[TL−1/3], W is the wetted perimeter [L], and cu is a units coefficient
(=1.0 in SI units). The 1D unidirectional discharge Q can be obtained
from Eq. (3), and is expressed as:

Fig. 1. A schematic of the modeled transport
domain consisting of the trapezoidal open
channel and soil (Qinj is the solute injection rate
[L3/T], Cinj is the solute concentration [M/L3],
Qir is the irrigation inflow rate [L3/T], ET is
evapotranspiration, P is precipitation, h is the
water depth in the furrow, hmax is the maximum
allowed water depth in the furrow, bw is the
furrow bottom width, Tw is the top width, Rw is
the ridge width, FS is the furrow spacing, SS is
the side slope, L is the length of the furrow, and
dx is the discretization length). The two figures
at the bottom show boundary conditions for
water flow and solute transport.
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where J is the hydraulic head loss [LL−1], and k is the channel con-
veyance [L3T−1].

The solute advection-dispersion equation

∂
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t

QC
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was simplified as well by considering only the advective component
(Eq. (5), as suggested by Strelkoff et al. (2006). In that study, the results
of the pure advection equation were compared with the results of the
full ADE for different modeling scenarios. The results indicated that the
former formulation was able to provide a sufficiently accurate de-
scription of the solute distribution along the furrow, although the ef-
fects of the longitudinal dispersion were appreciable, especially for
blocked-end furrows. Neglecting the dispersion component simplifies
the computational scheme and the implementation of boundary con-
ditions.

Considering the above-described simplifications, Eq. (2) was re-
written as:
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2.2.2. Spatial discretization
Overland water and solute transport were solved numerically using

the Method of Lines (MOL). The MOL approach replaces the spatial
derivatives in the Partial Differential Equations (PDEs) with an alge-
braic approximation, which reduces the PDE to an Ordinary Differential
Equation (ODE). Central to the MOL is the numerical approximation of
spatial derivatives. In the present study, the Finite Volume Method
(FVM) was used to spatially discretize the surface domain. The FVM is a
well-established and widely used numerical solution method for a
variety of engineering problems involving PDEs, mainly because of its
conservativeness. It has been applied successfully in many studies fo-
cused on overland flow and solute transport (e.g., Lal, 1998; He et al.,
2008). The integral form of Eq. (6) was written as:
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Application of the divergence theorem to the second term in Eq. (7)
produces:
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The contour integral in Eq. (8) was approximated using numerical
fluxes F at the edge of each cell j, thus leading to:
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One of the main drawbacks of the FVM is the introduction of arti-
ficial diffusion in the solution when first-order numerical schemes are
adopted (e.g., upwind). Indeed, while preserving the monotonicity of
the solution (Godunov, 1954), first-order numerical schemes have
lower accuracy compared to the higher-order schemes (e.g., central
difference). However, the latter are prone to numerical oscillation (e.g.,
van Genuchten, 1976, 1978). Therefore, to increase the numerical ac-
curacy while preserving the stability of the numerical solution, a high-
resolution scheme was adopted in this study.

In this study, the Monotone Upstream-Centered Scheme for
Conservation Laws (MUSCL) (van Leer, 1979) was used to spatially

discretize the coupled water-solute equations in the conservation form
(Eq. (1). The MUSCL methods switch from the first-order scheme in
regions with sharp fronts to the higher-order schemes in areas with a
relatively smooth solution, thus simultaneously increasing the overall
accuracy and avoiding non-physical oscillations. A flux limiter was used
to constrain the value of the spatial derivative around sharp dis-
continuities. In the present study, the van Leer (1974) flux limiter was
used in conjunction with the upwind and central differencing schemes.
The upwind and central fluxes for overland water flow were expressed
as:

⎜ ⎟
⎧

⎨

⎪
⎪

⎩

⎪
⎪

= ⎛
⎝

⎞
⎠

=
⎛

⎝
⎜

+

+

⎞

⎠
⎟

−
−

− −

−

−

− −

F
Q

Q C

F
Q Q

Q C Q C

( )

( )

j
upwind j

j j

j
central

j j

j j j j

1

1 1

1
2 1

1
2 1 1

1
2

1
2

(10)

where the 1D cell centered discharge Q was expressed as:
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It is worth noting that channel conveyance and bed slope were both
represented with the arithmetic mean of nodal values. Preliminary si-
mulations confirmed that this type of approximation combined with the
MUSCL scheme leads to more accurate results compared to a fully up-
wind discretization of k and S0, which introduces significant numerical
diffusion in the solution. The same discretization is used for the solute
transport. Hence, the numerical flux F obtained using the MUSCL
scheme can be written as:
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where ϕ is the van Leer flux limiter [LL−1], which was expressed as:
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where r is a function that monitors the gradients of the solution and that
can be written as:
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where u is a dependent variable, which in our case can be the wetted
area A for water flow or a cross-sectional average solute concentration
C for solute transport.

Based on Eq. (12), the first-order monotonicity preserving upwind
was adopted in regions characterized by steep gradients in the solution,
while the higher-order central differencing scheme was used in regions
with a relatively smooth solution, thus increasing the stability and ac-
curacy of the spatial scheme. To facilitate the handling of the down-
stream boundary condition, the upwind scheme was used to compute
the numerical flux in the last cell (i.e., j=N). An upwind discretization
was also used for the infiltration term.

2.2.3. Temporal discretization
Once the spatial discretization is defined, time t remains the only

independent variable. Since the infiltration component in Eq. (5) is
calculated externally using HYDRUS-2D at each time step, and HY-
DRUS-2D has its own time-stepping algorithm, the computational effi-
ciency of the numerical scheme is strictly related to the frequency of
data exchanges between the surface and subsurface models, which
dramatically increases when fully implicit time stepping schemes are
adopted. Nevertheless, it must be further emphasized that fully implicit
schemes, while generally increasing the stability of the computational
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framework, are only first-order accurate in time. Thus, due to afore-
mentioned considerations about accuracy and computational effi-
ciency, the fourth-order explicit Runge-Kutta Dormand-Prince (RKDP)
(Dormand and Prince, 1980) is adopted here to solve the coupled water-
solute transport in the trapezoidal channel. More specifically, an RKDP
algorithm with an adaptive time-stepping strategy based on the trun-
cation error control is used. This kind of temporal discretization auto-
matically adjusts the time step depending on the solution, thus pro-
viding a dense temporal output near discontinuities.

It is worth noting that the ZI equation for water flow can be solved
separately from the solute advection equation. However, the solute
advection equation depends on the wetted area and flow velocity,
leading to a one-way coupled system of ODEs. More specifically, the
temporal variability of the wetted area strongly influences the solute
advection. Thus, a high temporal resolution scheme for water flow is
needed to avoid overshooting as well as inaccuracies in the solution of
solute advection.

The basic method will be first described for the pure conservation
law, that is, without source terms. These terms will be incorporated
next and required modifications will be indicated as needed. Eq. (10)
can now be written as:
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where Δtint is the internal time step calculated by the adaptive RKDP
algorithm. To increase the overall computational efficiency of the
modeling framework, a specific numerical treatment of the infiltration
component is adopted here. As discussed above, the RKDP algorithm
uses a fine temporal discretization near discontinuities, implying that
the calculation of infiltration (i.e., HYDRUS executions) is carried out
with very small time steps, which consequently increases the compu-
tational cost. However, the infiltration vector I of Eq. (3) mathemati-
cally represents a source/sink term, which is characterized by a mod-
erately low stiffness. Thus, a first-order explicit approximation of
infiltration (Brufau et al., 2002) is used in our model, which reduces the
number of HYDRUS-2D executions while maintaining a good accuracy.
This leads to a mixed explicit time scheme, which uses a 4th order-
accurate RKDP time-stepping strategy for the coupled water-solute
transport and a first-order explicit scheme for the infiltration term.

Practically, this is accomplished by dividing the simulation duration
into equal time steps Δt. At the beginning of each time step, the values
of the water depth are passed to HYDRUS-2D, which calculates the
amount of infiltrated water during Δt. Next, the vector I is inserted in
Eq. (1), which is solved by the RKDP method by adapting an internal
time step Δtint depending on the solution. At time t=0, the surface
domain is solved assuming zero infiltration. Eq. (15) can now be re-
written by including the infiltration term:
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The temporal discretization is depicted in Fig. 2. The non-iterative
coupling with the external HYDRUS-2D model significantly decreases
the computational cost. However, it must be noted that an ad hoc
sensitivity analysis is recommended for the choice of Δt.

Since Eq. (16) is solved explicitly in time, the Courant-Friedrichs-
Lewy (CFL) stability condition must be respected. In particular, the

maximum allowable Δtint calculated by the RKDP algorithm must be:
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where Γ is the top width of the water flow [L]. Furthermore, the con-
servativeness of the scheme is checked by monitoring the Relative Mass
Balance Error (RMBE) for both water and solute at the end of each time
step, which is calculated as:
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where Vi
W and Vi

S are, respectively, the water volume and solute mass
per unit length in the soil profile at time i, with V0

W and V0
S the cor-

responding quantities at the beginning of the simulation. The last two
terms at the numerators of Eq. (18) indicate the water, qsoil, and solute,
qsoil c, fluxes across the bottom of the soil domain (e.g., deep percolation
and solute leaching).

2.2.4. Boundary conditions
The problem statement is completed by the definition of the

boundary conditions (BCs) at the two sides of the numerical domain. In
the present study, the ghost cells methodology is used (LeVeque, 2002).
The 1D ZI equation requires the definition of two BCs, namely inflow
and outflow. The specified inflow Q(0,t) determines the numerical flux
entering the domain on the left face of the first discretized volume. Two
types of BCs can be used for the outlet depending on the type of the
furrow end. Since the adopted spatial stencil spans two adjacent cells,
the value of the wetted area A in the right ghost cell has to be adjusted
at each time step to match the desired BC.

If the furrow downstream end is blocked, no outflow is allowed until
the water level reaches the maximum furrow depth. If h > hmax

(Fig. 1), the model automatically switches to a free overfall BC. Thus,
the ghost cell value has to be set so that the numerical flux in the last
cell (i.e., j=N) is zero. Considering that the upwind scheme is used for
the rightmost numerical flux, Eq. (12) mathematically reduces to Eq.
(19):
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This nonlinear equation was solved for hghost using the Brent algo-
rithm (Brent, 1974) at each time step.

The open end boundary condition was implemented by allowing
water to flow over a brink at the end of the furrow. The procedure,
which is followed in this study, is similar to the one reported in Soroush
et al. (2013). Soroush et al. (2013) showed that, independently from
flow conditions, the upstream flow passed over the brink with a depth
hb lower than the critical depth hc. This phenomenon was previously
investigated by Beirami et al. (2006), who indicated that for trapezoidal
channels hb ≈ 0.75hc. Hence, in the present study, hghost is determined
at each time step by interpolation so that hb=0.75hc (Fig. 3).

Both the blocked and open end BCs are applied only when the value
of h in the last cell is greater than 0.001m. To avoid convergence issues,
if h < 0.001m, the water depth in the ghost cell, hghost, is set equal to
hj=N.

The solute advection equation requires the implementation of the
boundary condition only on the inflow side of the domain. In the
conservation form, this was accomplished by matching the numerical
flux with the solute injection rate Qinj∙Cinj (Fig. 1).Fig. 2. A schematic of the temporal discretization.
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2.3. Two-dimensional subsurface flow and solute transport

2.3.1. Governing equations
The HYDRUS (2D/3D) (Šimůnek et al., 2016b) software simulates

water flow and solute transport in variably-saturated porous media. The
software describes water flow using the Richards equation for multi-
dimensional unsaturated flow (Eq. (7):
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where θ is the volumetric water content [L3L−3], t is time [T], z is the
vertical coordinate [L], yi are the spatial coordinate [L], ψ is the soil
pressure head [L], K is the hydraulic conductivity [LT−1], and Kij are
components of the hydraulic conductivity anisotropy tensor. Since we
assumed isotropic porous media with y1= y and y2= z being the
transverse (horizontal) and vertical coordinates, respectively, the con-
ductivity tensor is diagonal with the Kyy and Kzz entries equal to one.

Solute transport is described using the advection dispersion equa-
tion:
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where c is the solute concentration [ML−3], qi is the water velocity
[LT−1], and Dij are components of the dispersion tensor (L2T−1). Eq.
(10) is valid for non-reactive transport, thus adsorption and precipita-
tion/dissolution of the solutes are currently ignored. Note that although
HYDRUS-2D considers multiple chemical reactions (e.g., sorption and
degradation), this study is limited to non-reactive solutes.

HYDRUS advances the solution in time using a fully implicit, tem-
poral discretization scheme for the Richards equation and the Crank-
Nicholson scheme for the advection-dispersion equation. The program
also uses an adaptive time-stepping strategy to increase the overall
computational efficiency.

2.3.2. Soil hydraulic properties
The van Genuchten–Mualem (VGM) model (van Genuchten, 1980)

was used to describe the soil hydraulic properties in this study:
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where Θ is the effective saturation [L3L−3], α is a shape parameter
related to the inverse of the air-entry pressure head [L−1], θs and θr are
the saturated and residual water contents, respectively [L3L−3], n is a
pore-size distribution index [–], Ks is the saturated hydraulic con-
ductivity [LT−1], and l is the tortuosity and pore-connectivity para-
meter [–].

2.3.3. Numerical domain and boundary conditions
The soil computational domain was discretized using triangular 2D

finite elements. In the example simulations discussed below, no mesh
stretching was used, and the finite element (FE) mesh was assumed
isotropic. The quality of the FE mesh was assessed at each time step by
monitoring mass balance errors, which were always below 1% during
numerical simulations, indicating a good spatial discretization.

The boundary conditions used to simulate solute and water in-
filtration are reported in Fig. 1. The ‘Atmospheric’ boundary condition,
which is assigned to the furrow ridge (green1 lines in Fig. 1), can exist in
three different states: (a) precipitation and/or potential evaporation
fluxes, (b) a zero pressure head (full saturation) during ponding when
both infiltration and surface runoff occur, and (c) an equilibrium be-
tween the soil surface pressure head and the atmospheric water vapor
pressure head when atmospheric evaporative demand cannot be met by
water fluxes towards the soil surface. Due to symmetry, the nodes re-
presenting the left and right boundary of the subsurface domain are set
as ‘no flux’ boundaries (grey lines in Fig. 1) because no flow or solute
transport occurred across these boundaries.

A hybrid Dirichlet/Neumann (variable pressure/zero flux) BC was
assigned to the border of the trapezoidal channel (orange lines in Fig. 1)
to simulate variations of the water depth in the furrow. The specified
value of the pressure head (i.e., the water level) was assigned to the
channel bed and the pressure heads in other channel nodes are de-
termined by the software based on their elevation relative to the
channel bed. A Dirichlet BC was used at nodes with positive pressure
heads and an atmospheric BC was assigned to nodes with negative
pressure heads (i.e., above the water table). A ‘Third Type’ Cauchy BC
was set on top and bottom of the numerical domain to simulate the
concentration flux along the boundaries (red lines in Fig. 1).

Fig. 3. A schematic showing the linear interpolation of the water depth in the ghost cell when the free overfall BC is used.

1 For interpretation of color in Fig. 1, the reader is referred to the web version of this
article.
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2.4. Models coupling strategy

2.4.1. Wet/Dry boundary tracking
In all numerical simulations, the water front is not considered as a

moving boundary, and calculations are carried out in both wet and dry
cells. The numerical treatment of wet/dry cells is similar to Bradford
and Sanders (2002), Bradford and Katopodes (2001) and Brufau et al.
(2002). In order to avoid numerical problems associated with extremely
low values of the water depth at the advancing front, a threshold value
ε is used to identify wet cells. In the present study, water levels above
0.0001m indicate wet cells (Bradford and Katopodes, 2001). If hj > ε,
the water depth value is passed to HYDRUS, which calculates infiltra-
tion that is then used to solve surface flow. Two computational proce-
dures can be followed when the cell is dry:

1. Subsurface in steady-state conditions: HYDRUS is completely by-
passed and infiltration is set to 0. For example, during the advance,
the last part of the furrow is not simulated, since it is flagged as
“dry” and the subsurface flow is negligible. It is worth noting that
this option, while increasing the computational efficiency of the
numerical scheme, can be considered only when the initial condi-
tion is in hydrostatic equilibrium and boundary fluxes are negli-
gible.

2. Subsurface in dynamic conditions: These computations apply during
recession. Although no more water infiltrates, HYDRUS can con-
tinue to simulate variably-saturated water flow and solute transport
in the soil. In such circumstances, a negative pressure head is as-
signed to the top BC in HYDRUS, which automatically switches to
“Atmospheric BC.” HYDRUS is then executed, and the final soil
condition is stored and used in the next step.

2.4.2. Model implementation
The one-dimensional horizontal domain representing the furrow

and the two-dimensional cross-sectional domains representing the
subsurface (Fig. 1) were coupled using a Python script. The script si-
multaneously solves overland flow and solute transport in the furrow,
interacts with HYDRUS-2D, and exchanges data between two models. A
series of user-defined functions were developed to write and read the
input/output files generated by HYDRUS-2D, which was directly exe-
cuted from Python, bypassing the HYDRUS (2D/3D) graphical user
interface. The coupling strategy is summarized below:

1. The geometric characteristics of the furrow, soil hydraulic proper-
ties, initial conditions and other input data are defined in both
Python and HYDRUS-2D. The HYDRUS model is then initialized.

2. The horizontal domain is discretized into N homogenous Finite
Volumes. There is a HYDRUS-2D cross section for each FV. Pressure
head, water content, and solute concentration distributions in the
soil are stored in three matrices, which are overwritten at each time
step. Water content is stored only for visualization purposes and not
used directly in the coupling procedure. Similarly, vectors con-
taining wetted areas, water depths, and solute concentrations in the
surface domain are updated at each time step in three additional
matrices, in addition to two columns to handle ghost cells.

3. As described above, the MOL is used to reduce the PDEs to a set of
ODEs using the FVM. Boundary conditions are applied using ghost
cells and the time step dt is set.

4. A for loop is used to iterate through time. At each time step, vectors
h and C containing previously calculated values of water levels and
solute concentrations in the furrow, respectively, are passed to
HYDRUS-2D to setup its boundary conditions. Soil pressure head
and solute concentration distributions calculated at the previous
time step are used as initial conditions in HYDRUS for the current
time step.

5. Another for loop is used to iterate through space and calculate the
infiltration vector. Calculated soil pressure heads and solute

concentrations are stored for the next time step. The coupled ODEs
are solved simultaneously using the RKDP algorithm, and new
wetted area, water level, and solute concentration vectors are up-
dated in their respective matrices.

2.5. Theoretical validation

2.5.1. Mesh sensitivity analysis
Schlesinger et al. (1979) defined model validation as a “substantia-

tion that a computerized model within its domain of applicability possesses a
satisfactory range of accuracy consistent with the intended application of the
model.” There exists a variety of validation techniques that can be used
to assess the model accuracy and robustness (Sargent, 1998). Even so, a
sensitivity analysis on internal model parameters (e.g., mesh size, time
step) represents the first step in a validation framework, sometimes
referred to as model verification, that is usually accomplished before
using the model itself.

The computational mesh size is an important component of Eulerian
modeling frameworks, especially when the FVM is adopted, since it is
directly related to false numerical diffusion and accuracy. In regions of
the computational domain where the dependent variables exhibit sharp
gradients, a fine mesh is needed to avoid smearing the solution.
However, as the mesh resolution increases, so does the computational
cost. The mesh resolution should, thus, be properly designed to si-
multaneously minimize the execution time and maximize the numerical
accuracy. To this end, a mesh sensitivity analysis represents an im-
portant prognostic tool.

The influence of the spatial discretization N on both the computa-
tional cost and the accuracy of the proposed hybrid FE-FV furrow fer-
tigation model is investigated first. The effect of three different mesh
sizes (i.e., dx=2, 5, 10m) on the simulated water and solute flow in a
100m long blocked-end furrow (a blocked end scenario in Table 1) is
examined. For each numerical simulation, the execution time provides
the measure of the computational effort. A time step dt=20 s was as-
sumed.

2.5.2. Time step sensitivity analysis
A core assumption of the proposed modeling framework is the ex-

plicit linearization of the infiltration vector in Eq. (7). As mentioned
above, this assumption eliminates the need for an iterative execution of
HYDRUS-2D, thus reducing the overall computational cost. However,
the accuracy of the forward Euler approximation of the infiltration
component is supposed to deteriorate when the time step dt increases.
The loss of accuracy is directly related to the stiffness of the infiltration
term, which depends on the scenario analyzed.

Therefore, the influence of the temporal discretization dt was in-
vestigated using three different time steps (dt=10, 20, 30 s). The
blocked-end furrow described in Table 1 was used as a test case. For
each numerical simulation, typical hydraulic information was calcu-
lated (i.e., front advance, profiles, etc.) and the execution time was
analyzed. A mesh size dx=5m was assumed. It must be emphasized
that, in the developed computational framework, the time step dt in-
fluences not only the computation of infiltration, but also the exchange
of information between the surface and subsurface models. On the other
hand, the time step does not influence the numerical solution of the
zero-inertia and advection equations, which are solved using the RKDP
with an adaptive time stepping strategy.

2.5.3. Description of validation scenarios
Preliminary sensitivity analyses help identify the most efficient

spatial and temporal discretization. The next step is to properly validate
the model theoretically and experimentally, which involves the as-
sessment of the model structure and its capacity to accurately describe
the investigated system (Sargent, 1998). The former is usually accom-
plished by comparing the results of the proposed model with the results
of a well-established, previously validated model using different
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synthetic scenarios, thus avoiding the interference of different sources
of uncertainty typical of experimental data.

In this study, the proposed hybrid FE-FV coupled water and solute
transport model was theoretically validated against the solute transport
component of the WinSRFR software package (Bautista et al., 2009).
This software will be released to the general public with WinSRFR,
Version 5.1. The open-channel flow simulator in WinSRFR (Bautista
et al., 2009), SRFR, utilizes a 1D zero-inertia approximation of the
hydrodynamic wave model, which is coupled with the solution of the
1D advection-dispersion equation for solute transport (Perea et al.,
2010). In the present study, the dispersion component was neglected
and only advection was simulated using WinSRFR. The explicit in-
filtration function of Warrick et al. (2007), modified by Bautista et al.
(2014) and Bautista et al. (2016) was used to calculate the flow-depth
dependent furrow infiltration. This function has been shown to ap-
proximate the solution to the two-dimensional Richards equation rea-
sonably well. The pressure head at the wetting front ψf [L] is calculated
using the unsaturated hydraulic conductivity function and can be ex-
pressed as:

∫=ψ
K ψ

K
dψ

( )
f ψ s

0

0 (24)

Two synthetic scenarios were developed to validate the hybrid FV-

FE model under different conditions. The first scenario consists of a
blocked-end furrow, with a small slope and equal water and solute
cutoff times. The second scenario considers an open-end furrow, char-
acterized by a moderate slope and different water and solute cutoff
times. In both cases, the soil is assumed to be a sandy loam. The VGM
parameters used in HYDRUS-2D are taken from Carsel and Parrish
(1988). The subsurface vertical domain is discretized into 2043 trian-
gular elements and 1076 nodes. The effect of groundwater is not si-
mulated in this study and thus a ‘Free Drainage’ BC is assigned to the
bottom nodes (z=−80 cm) (blue line in Fig. 1). The geometric char-
acteristics, soil hydraulic properties, and other input parameters are
reported in Table 1.

2.6. Experimental validation

Theoretical validation provides a first assessment of the model ac-
curacy and robustness. However, the main objective of a numerical
model is to accurately reproduce the behavior of the system under in-
vestigation. In this view, experimental validation, which compares
model results and measured data, plays a fundamental role.

Table 1
Geometric characteristics, soil hydraulic properties, and other input parameters
used in theoretical validation.

Blocked end Open end

Furrow length, L (m) 100
Bottom width, bw (cm) 16
Side slope, SS (–) 1.2
Maximum depth, hmax (cm) 15
Bed slope, S0 (–) 0.0005 0.001
Manning’s coefficient, m (s/m1/3) 0.04
Residual water content, θr (m3/m3) 0.065
Saturated water content, θs (m3/m3) 0.41
Retention function shape parameter, α (1/cm) 0.075
Retention function shape parameter, n (–) 1.89
Saturated hydraulic conductivity, Ks (cm/min) 0.074
Tortuosity, l (–) 0.5
Initial water content, θ0 (m3/m3) 0.085
Wetting front pressure head, ψf (cm) (Warrick et al.,

2007)
−5.4

Inflow rate, Qir (l/s) 2
Solute injection rate, Qinj (l/s) 0.014
Inflow concentration, Cinj (g/l) 40
Longitudinal dispersivity (cm), DL 0.5
Transverse dispersivity (cm), DT 0.1
Irrigation cutoff time, tw (min) 30
Solute cutoff time, ts (min) 30 20

Fig. 4. Geometric characteristics of the furrow located in Holtville (CA) that were used for experimental validation.

Table 2
Geometric characteristics, soil hydraulic properties, and other input parameters
used in experimental validation.

Holtville

Furrow length, L (m) 182.88
Bottom width, bw (cm) 16
Top width, Tw (cm) 52
Ridge width, Rw (cm) 55
Furrow spacing, FS (cm) 107
Side slope, SS (–) 1.2
Maximum depth, hmax (cm) 15
Bed slope, S0 (–) −0.0007 to 0.0007 (Variable)
Manning’s coefficient, m (s/m1/3) 0.04
Initial water content, θ0 (–) 0.35
Inflow rate, Qir (l/s) 3.2
Solute injection rate, Qinj (l/s) 0.014
Inflow concentration, Cinj (g/l) 40
Longitudinal dispersivity (cm), DL 0.5
Transverse dispersivity (cm), DT 0.1
Irrigation cutoff time, tw (min) 44
Solute cutoff time, ts (min) 37.5

Table 3
The VGM hydraulic parameters used in experimental validation.

θr (cm3/cm3) θs (cm3/cm3) α (1/cm) n (–) Ks (cm/min) l (–)

0.1 0.5 0.017 1.26 0.017 0.5
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In the present study, the proposed hybrid FV-FE fertigation model is
further experimentally validated against field data measured in 2001 at
the Yuma Valley Agricultural Center, Yuma AZ, USA (C. Sanchez, 2018,
personal communication).

2.6.1. Site description
A key difficulty with this part of the analysis was determining ap-

propriate soil hydraulic parameters. These parameters are difficult to
measure both in the laboratory and in the field. Previous studies have
shown that soil hydraulic parameters under surface irrigation condi-
tions exhibit poor correlation with soil texture and that pedotransfer
functions have wide margins of errors when estimating these para-
meters (Selle et al., 2011; Zapata and Playán, 2000). Therefore, Zapata
and Playán (2000) recommended fitting irrigation models to irrigation
data as a mechanism for determining these parameters.

The experimental data were collected with the purpose of con-
ducting fertigation simulation studies, but were not intended to be used
in combination with physically based infiltration models. As a result,
the data set includes only pre-irrigation gravimetric water contents and
an average soil texture (33% sand, 32% silt, and 35% clay). The soil
particle size distribution is consistent with one of the soils found in the
area, Kofa clay loam (Clayey over sandy, smectitic over mixed,

calcareous, hyperthermic Typic Torrifluvents, [Hendricks, 1985]) as
described by the USDA-NRCS Web Soil Survey. This particle size dis-
tribution was provided to the Rosetta pedotransfer module (Schaap
et al., 2001) of HYDRUS-2D to estimate a set of soil hydraulic para-
meters. However, these parameters produced less than satisfactory ir-
rigation simulation results. A better set of parameters was found using a
different soil found in the area, Holtville clay (clayey over loamy,
smectitic over mixed, superactive, calcareous, hyperthermic Typic
Torrifluvents [Hendricks, 1985]). For this soil (sand=12%,
silt = 32%, clay=56%), Rosetta estimated a higher value of the sa-
turated water content, which was more consistent with the measured
pre-irrigation water contents, and also a higher value of the saturated
hydraulic conductivity, consistent with the value reported by the Web
Soil Survey. These parameters are shown in Table 3. The residual water
content, α, and n computed for the Kofa clay were not very different
from those shown in the table.

The 182.88m long furrow had a blocked downstream end and on
average zero slope, which increases the numerical complexity com-
pared to a constant slope scenario. In particular, the slope varies be-
tween −0.0007 and 0.0007 (–) (Fig. 4). This is one of the reasons why
this particular data set was chosen for the experimental model valida-
tion.

Fig. 5. Simulation results for different mesh sizes dx: Water depth profiles at time t=0.17 h (top left); surface solute profiles at time t=0.17 h (bottom left);
execution time (top right), and advance time with distance (bottom right).
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A constant inflow rate of about 3.2 l/s for 44min was used to irri-
gate the furrow, which was simultaneously fertigated with a bromide
tracer. The solute was diluted in a separate tank, resulting in a con-
centration of approximately 40 g/l, and injected in the furrow with a
constant flow rate of approximately 0.014 l/s. The solute tank emptied
in about 37.5min. Five measuring stations (grey dots in Fig. 4) were
used to monitor the water level and solute distribution along the furrow
length. Water levels and concentrations were measured with an ac-
quisition frequency of about 5min. Soil water contents were measured
gravimetrically before the irrigation at five measuring stations. The
average volumetric water content was 0.35 cm3/cm3. A Manning’s
coefficient of 0.04 s/m1/3 was used as suggested by USDA-NRCS (2012).
Subsequent comparisons of measured with simulated flow depth hy-
drographs show that this is a reasonable roughness value. The geo-
metric characteristics, soil hydraulic properties, and other input para-
meters are summarized in Table 2.

2.6.2. Numerical domain and boundary conditions
Based on the findings of theoretical validation, the horizontal do-

main was discretized into 40 Finite Volumes (i.e., dx=4.57m) and the
time step dt was set to 20 s. These settings guarantee a good balance
between numerical accuracy and computational cost.

The subsurface vertical domain was discretized into 2043 triangular
elements and 1076 nodes. The effect of groundwater was not simulated
in this study, and thus a ‘Free Drainage’ BC was again assigned to the
bottom nodes (z=−80 cm) (blue line in Fig. 1). The initial volumetric
water content was assumed to be constant in the entire domain and set
equal to 0.30 cm3/cm3. Vertical domains were assumed solute free at
the beginning of the numerical simulation.

3. Results and discussion

3.1. Theoretical validation

3.1.1. Mesh sensitivity analysis
Fig. 5 shows water (top left plot) and solute (bottom left plot)

profiles in the furrow at time t=0.17 h (about 10min) simulated with
different mesh sizes dx. The advance curves (bottom right plot) and
associated computational time (top right plot) are also shown in Fig. 5.
At the first inspection, it is evident that the mesh size dx does not
dramatically affect the numerical accuracy of the proposed model,
which exhibits no overshooting and only limited numerical diffusion
even for a coarse spatial discretization (i.e., dx=10m). Water and
solute profiles for different dx are relatively close to each other. This is

Fig. 6. Simulation results for different time steps dt: Water depth profiles at time t=0.17 h (top left); surface solute profiles at time t=0.17 h (bottom left);
execution time (top right); advance time with distance (bottom right).
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also true for the simulated advance curves, which deviate only at early
times. However, as expected, false numerical diffusion increases with
the mesh size. For dx=10m, the water profile was slightly smeared,
and a faster waterfront advance was predicted for the first 60m of the
furrow length, as indicated by the red line in the bottom right plot of
Fig. 5. This effect is more pronounced for the simulated solute profile,
which clearly shows how the waterfront is ahead compared to what is
calculated with dx=2 or 5m. This behavior is typical of FV models
when the spatial discretization is coarse. False numerical diffusion
tends to vanish when the mesh is refined, as demonstrated by the water
and solute profiles as well as the advance curves for dx=2 and 5m,
which almost overlap. This indicates that further mesh refinement will
not increase the overall accuracy of the numerical solution, only the
computational effort. Interestingly, the computational time increases
almost linearly with dx. In particular, the execution time for dx=2m
was 5.5 times greater than for dx=10m, while a mesh size dx=5m
reduced the execution time by almost one third in comparison
dx=2m. As a result of this analysis, a number of conclusions can be
drawn:

- The proposed hybrid FV-FE model maintains a good accuracy even
when a coarse mesh is adopted, which demonstrates an overall ro-
bustness of the model. This is of practical importance since it in-
dicates that a model with coarse spatial discretization can be con-
fidently used for preliminary design purposes or intensive numerical
analyses, which require running the model multiple times. A classic
example would be the application of a model with coarse dis-
cretization as a lower fidelity surrogate model in the Bayesian opti-
mization framework (Razavi et al., 2012).

- The effect of false numerical diffusion, although limited, tends to
vanish when the mesh is refined. Therefore, when the analysis re-
quires a higher accuracy, a reasonable mesh refinement will in-
crease the overall accuracy of the model.

- A mesh size dx=5m offers a good trade-off between numerical
accuracy and computational cost. Further mesh refinements (i.e.,
dx=2m) lead to minimal accuracy gains and a significant increase

in the model execution time.

3.1.2. Time step sensitivity analysis
The results of the time step sensitivity analysis are shown in Fig. 6.

The graph shows the simulated water (top left plot) and solute (bottom
left plot) profiles at time t=0.17 h (about 10min) for different time
steps dt. The advance curves (bottom right plot) and associated com-
putational cost (top right plot) are also shown in Fig. 6.

It is evident that, compared to the results obtained for different
mesh sizes, the model exhibits a lower sensitivity to the time step dt.
Very similar water and solute profiles were computed for all tested time
steps (Fig. 6). Likewise, the computed advance curves were in closer
agreement, especially at later times. Furthermore, the execution time
increased linearly with the time step. It is worth noting that the time
step dt mainly influences the computation of the infiltration vector I,
which is temporally discretized using the forward Euler approximation.
More specifically, it is assumed that the nodal infiltration rate is con-
stant during dt, which is an approximation wherein the accuracy de-
pends on the variability of the infiltration rate during a particular time
step. In this regard, the Horton’s infiltration theory (Horton, 1933)
states that the infiltration rate into an initially dry soil typically de-
creases with time until reaching a steady-state value. Thus, when the
soil is dry and the water level is small (i.e., the beginning of furrow
irrigation), the infiltration rate declines rapidly and a fine time step is
needed to accurately track infiltration. Thus, the stiffness of the in-
filtration term is appreciable at the beginning of the simulation when
the furrow is dry, and the water level is relatively low. Under such
circumstances, the vector I makes Eq. (1) moderately stiff. However,
this effect is limited only to the first part of the simulation and tends to
vanish when the water level rises and the soil saturates, as shown in
Fig. 6. This analysis makes clear that the explicit approximation of the
infiltration term is acceptable, provided that the time step dt is suffi-
ciently small. Rather than using a constant time step, an adaptive time
stepping discretization of the infiltration vector would likely increase
the computational efficiency of the model while maintaining a good
accuracy.

Fig. 7. Simulated water (left) and solute (middle) hydrographs, and advance curves (right) calculated using WinSRFR (dashed lines) and hybrid FV-FE (solid lines)
models for the open end (top plots) and blocked end (bottom plots) scenarios.
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The time step sensitivity analysis reveals that the computational
cost is more influenced by the mesh size dx than by the time step dt.
Indeed, the execution time only triples when dt=30 s compared to
when dt=10 s. Overall, a time step dt=20 s provides a good balance
between the accuracy and computational cost. As a result of this ana-
lysis, a number of conclusions can be drawn:

- The time step dt has a small influence on the proposed hybrid FV-FE
model in the analyzed range of time steps, reflecting a good ro-
bustness of the model. However, a time step sensitivity analysis is
recommended to investigate the stiffness of the infiltration term,
which increases for dry conditions and highly permeable soils.

- An adaptive temporal discretization of the infiltration term in Eq.

(1) would simultaneously increase the numerical accuracy and
computational efficiency. This strategy should consist of small time
steps in regions characterized by high infiltration gradients (i.e., dry
soils) and larger time steps at later times when infiltration stabilizes
(i.e., wet soils). Alternatively, future developments could also in-
clude the use of a correction factor that initially adjusts the in-
filtration rate and vanishes with time. This could be practically
implemented in the present modeling framework using a scaling
factor for the saturated hydraulic conductivity on the border of the
furrow channel.

- A time step dt=20 s represents a good trade-off between the nu-
merical accuracy and computational cost.

Fig. 8. Modeled (red lines) and measured (grey dots) hydrographs (plots in the third column) and concentration breakthrough curves (plots in fourth column), and
against each other (plots in the first and second column) at different furrow locations (rows from top down for x=4.57, 45.72, 91.44, 137.16, and 180.74 m) for the
Holtville validation scenario. The dashed black lines indicate the regression lines. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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3.1.3. Validation scenarios
Based on the results of the sensitivity analyses, the mesh size dx and

the time step dt are set to 5m and 20 s, respectively. Results of the
theoretical validation are reported in Fig. 7. In particular, Fig. 7 shows a
comparison between simulated advance curves, and water and solute
profiles calculated by WinSRFR (dashed lines) and by the hybrid FV-FE
model (solid lines) for the open end (top plots) and blocked end (bottom
plots) scenarios. At the first inspection, it is evident that the results
calculated by the proposed model matched very closely those computed
with WinSRFR for both scenarios. More specifically, the advance curves
nearly overlapped (right plots in Fig. 7) as did the rising branches of the
water profiles (left plots in Fig. 7). However, the hydrographs deviated
slightly from each other during the storage and recession phase. This
effect is more evident for the blocked-end scenario, for which WinSRFR
predicts a faster recession compared to the hybrid FE-FV model. This
behavior is likely explained by the adoption of the explicit infiltration
function of Warrick et al. (2007) in WinSRFR. When Warrick et al.
(2007) first presented their explicit formulation, they compared the
calculated cumulative infiltration for a rectangular channel against
HYDRUS-2D. In particular, two soils were analyzed in that study: loam
and sandy loam. In both cases, the explicit function showed a slight
overestimation of cumulative infiltration, which is the same behavior
encountered in the present study. Furthermore, Warrick et al. (2007)
demonstrated that the edge effect increases with the water level and
that it is more pronounced for parabolic and triangular channels than
for rectangular channels. Thus, the overestimation of infiltration is
expected to be substantial for trapezoidal channels, like the one ana-
lyzed in the present theoretical validation.

Overall, the theoretical validation suggests that the proposed hybrid
FE-FV model accurately describes the advance, storage, and depletion
phase, as well as the solute transport during furrow irrigation and
fertigation. Furthermore, the analysis reveals that the model is oscil-
lation-free in the analyzed cases and stable for a variety of boundary
conditions, thus it can be confidently used for analyzing real systems.
Nevertheless, it must be emphasized that the analyzed scenarios are not
exhaustive of all practical modeling situations, therefore we plan to

make the model open source and available to users in order to receive
continuous feedback and validation.

3.2. Experimental validation

Figs. 8 and 9 compare modeling results (solid lines) with experi-
mental results (circles). The first figure (Fig. 8) depicts hydrographs
(left graphs) and concentration breakthrough curves (right graphs),
while Fig. 9 displays water depth profiles (upper graphs) and advance
curves (bottom graphs). All field measurements were reasonably well
predicted by the model. Differences between water levels at x=4.57m
(Fig. 8) can be attributed to furrow survey errors. Nevertheless, the
general trend highlights good model performances. This is confirmed by
the model’s ability to accurately reproduce measured concentration
breakthrough curves. Although the solute concentration data are noisy,
both the time arrival of the solute plume and the peak concentrations
are predicted accurately. The solute dilution at x=4.57 and 45.72m
induced by solute cutoff is well simulated by the model, thus indicating
a good reliability of the proposed numerical approach.

The advance curve (Fig. 9) is generally reproduced with high ac-
curacy, except at x=137.16m where the model predicts a delay in the
advance of the waterfront (Fig. 9). This is confirmed by a slight un-
derestimation (i.e., ≈1 cm) of the water depth at x=137.16m (top
plot in Fig. 9), which, however, tends to disappear with time. In our
opinion, these small deviations are mainly due to slope uncertainties
and the spatial variability of soil hydraulic properties. Water profiles
(top plot in Fig. 9) are very well approximated, except for a small un-
derestimation in the first part of the furrow. Interestingly, this behavior
is not systematic but limited to particular simulation times (i.e.,
t=42–82min), likely reflecting small measurement errors.

It must be emphasized that soil hydraulic parameters used in the
simulation were generated using the ROSETTA pedotransfer model,
predictions of which for the saturated values can be affected by high
uncertainties (Rubio et al., 2008). The bias associated with the esti-
mation of Ks can, therefore, partially explain the model deviations.
Better estimations of soil hydraulic parameters could be obtained by

Fig. 9. Modeled (solid lines) and measured (dots) water profiles (top plot) and advance curves (bottom plot) for the Holtville validation scenario.
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comparing simulated and measured subsurface quantities (e.g., water
contents or pressure heads). Thus, a complete dataset, which includes
information about both surface and subsurface domains, is re-
commended for a comprehensive model calibration and an assessment
of its uncertainty. Further plausible sources of uncertainties are related
to the assumption of constant initial conditions and to the adopted
value of the Manning’s coefficient. Indeed, the bias in the simulated
water level at x=137.16m could be potentially explained by the un-
derestimation of the near-surface water content at the beginning of the
infiltration. Similarly, the delay in the simulated advance curve could
be attributed to the assumption of the roughness homogeneity along the
furrow.

One of the key advantages of the proposed hybrid FE-FV model is its
ability to provide a mechanistic description of the transport processes in
the subsurface domain. Fig. 10 shows the simulated post-irrigation
(t=7.7 h) distribution of water contents (left plots) and solute con-
centrations (right plots) in the soil at different measuring stations.
Differences in the water content are mostly explained by slight varia-
tions in field elevations – high points in the field infiltrated less water
than low points. Note that the wetting bulbs of neighboring furrows did
not merge and that a considerable amount of water was stored below
the furrow bed. Conventional furrow irrigation models ignore the non-

uniform distribution of water in a furrow cross section and instead
assume a uniform water distribution. Clearly, this distribution needs to
be accounted for in order to properly evaluate the irrigation perfor-
mance (e.g., distribution uniformity, application efficiency, require-
ment efficiency). On the other hand, the moisture distribution along the
furrow was homogeneous. Such a uniform longitudinal distribution can
be expected with zero-slope irrigation systems, as differences in op-
portunity time along the field are small.

On the other hand, a very different situation occurs for fertigation.
The solute distribution differs from the water distribution. Solute
mostly accumulates between x=91.44m and x= 137.16m, while it is
unevenly distributed in remaining parts of the furrow. This behavior is
particularly exacerbated for x < 91.44m, where recession times occur
earlier than in the remainder of the furrow. In such circumstances,
plants located in the first part of the furrow will receive less fertilizer,
leading to an unbalanced crop production. The analysis reveals that the
unevenness of the furrow bottom slope negatively affects the uniformity
of solute distribution. However, it must be emphasized that the avail-
able dataset did not include measurements of water contents and solute
concentrations in the soil profile and thus it was not possible to validate
simulated soil water contents and solute concentrations in the soil.

Results demonstrate the usefulness of the proposed modeling ap-
proach and its ability to account for the solute and moisture distribu-
tions along the entire furrow. In the future, these results could be in-
terestingly used as initial conditions for daily or weekly numerical
simulations with HYDRUS-2D to identify crop stresses and to optimize
the irrigation schedule.

4. Conclusions and summary

The main objective of this study was to develop a numerical model
able to provide an accurate mechanistic description of the coupled
surface-subsurface processes happening during furrow irrigation and
fertigation. The proposed modeling framework combines a one-di-
mensional description of water flow and solute transport in the surface
domain, based on the Zero-Inertia approximation of the hydrodynamic
wave and the advection equation for solute transport, respectively, with
a two-dimensional description of water flow and solute transport in the
subsurface domain, based on the Richards and advection-dispersion
equations, respectively. One of the main novelties of this study is the
implementation in the coupled model of the widely used Finite Element
model, HYDRUS, which can describe the simultaneous movement of
water, heat, and solutes in porous media and which can provide a basis
for analyzing many different scenarios and conditions.

The surface domain is solved using the Method of Lines in con-
junction with a high-order MUSCL Finite Volume scheme combined
with the well-established Dormand-Prince (RKDP) temporal dis-
cretization method, thus leading to a hybrid FV-FE furrow irrigation
and fertigation model. The mesh sensitivity analysis is used to examine
the effects of the coarse spatial discretization on the results of the
model. The analysis reveals that the model guarantees a sufficient ac-
curacy even for larger mesh sizes, thus suggesting its application as a
lower fidelity surrogate in computationally intensive statistical analyses
(e.g., Brunetti et al., 2017a, 2017b).

To increase the computational efficiency of the proposed numerical
framework, the infiltration component is explicitly linearized in time,
thus avoiding the iterative execution of HYDRUS at each time step. The
validity of this assumption is confirmed by a preliminary time sensi-
tivity analysis, which confirms the robustness of the developed model
and clarifies how the stiffness of the infiltration term decreases with
time. In this light, future work should investigate the use of adaptive
time stepping strategies for the evaluation of infiltration.

Theoretical and experimental validations demonstrate the accuracy
of the proposed hybrid FV-FV furrow irrigation and fertigation model,
which is able to provide a mechanistic description of the water and
solute distribution in the soil along the furrow. Hence, future

Fig. 10. Simulated distributions of soil water contents (left plots) and solute
concentrations (right plots) in the vertical 2D domains at different measuring
stations.
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applications and developments should focus on the use and testing of
the proposed model for the numerical investigation of the root solute
and water uptake of typical crops in long-term simulation scenarios.
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