
Highlights:

MODIS NDVI based wheat and maize yield forecasting method in Tisza river 

catchment.

At least six training years are recommended for RS data based yield prediction.

Yield can be estimated 6-8 weeks before harvest. 

Forecasting model performs the best in drought periods (at average and low yields).
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11 ABSTRACT

12

13 Stakeholders, policy makers, government planners and agricultural market participants in 

14 Central Eastern Europe require accurate and timely information about wheat and maize yield 

15 and production. The study site, the lowlands (altitude below 200m) of the Tisza river catchment 

16 is by far the most important wheat and corn producing region in the Carpathian basin, and even 

17 in Central Eastern Europe. The conventional sampling of on-field data and data processing for 

18 crop forecasting requires significant amounts of time before official reports can be released. 

19 Several studies have shown that wheat and maize yield can be effectively forecast using satellite 

20 remote sensing. In this study, a freely available MODIS NDVI satellite data based wheat and 

21 maize yield forecasting methodology was developed and evaluated for estimating yield losses 

22 effected by drought.  

23 Wheat and maize yield was derived by regressing reported yield values against time series of 

24 15 different peak-season MODIS-derived NDVI. The lowest RMSE values at the river basin 

25 level for both wheat and maize yield forecast versus reported yield were found when using at 

26 least six or more years of training data. Wheat forecast for the 2000 to 2015 growing seasons 
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27 were within 0.819 % and 19.08% of final reported yield values. Maize forecast at county level 

28 for the 2000 to 2015 growing seasons were within 0.299 % and 17.14% of final reported yield 

29 values. The Nash–Sutcliffe efficiency index (E1) is positive with E1 = 0.322 in the case of wheat 

30 forecast, and with E1=0.401 in the case of maize forecast, which means the developed and 

31 evaluated forecasting method performs acceptable forecast efficiency. Nevertheless the 

32 occurrence of extreme drought or extreme precipitation can alter the forecasting efficiency 

33 resulting over or underestimation. Overall statement, which based on MODIS NDVI, possible 

34 yield losses can easily be forecasted 6-8 weeks before harvesting and applying simple threshold 

35 levels, yield losses can be mapped simply.

36

37 Keywords: yield forecast, wheat, maize, MODIS, NDVI

38

39

40 1. Introduction

41

42 National and international agricultural agencies, insurance agencies, and international 

43 agricultural boards Commodity brokers and governmental agencies are interested in crop yields 

44 and acreage under crop production since global trading prices of agricultural commodities 

45 depend largely on their seasonal production levels. International humanitarian agencies rely on 

46 early and reliable information on crop production to organize emergency response and food aid 

47 interventions (Rembolt et al., 2013). In crop production drought is one of the most complex 

48 natural hazards because of its slow onset and impact on yield which can be monitored with 

49 remote sensing (Zambrano et al, 2016).

50 Remote sensing techniques are widely used in agriculture and agronomy Atzberger (2013). The 

51 agricultural application of satellite RS technology requires a quantitative processing of satellite 
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52 RS data with high accuracy and reliability. The reason for this first of all agricultural vegetation 

53 develops from sowing to harvest as a function of meteorological driving variables (e.g., 

54 temperature, sunlight, and precipitation). The production depends secondly on the physical 

55 landscape (e.g., soil type), as well as climatic driving variables and agricultural management 

56 practices. All variables are highly variable in space and time. Moreover, as productivity can 

57 change within short time periods, due to unfavourable growing conditions such as drought, 

58 agricultural monitoring systems need to be timely. 

59 As changes in crop vigour, density, health and productivity affect canopy optical properties, 

60 crop development and growth have been monitored by the use of satellite images since the early 

61 days of remote sensing; Already in the early 80s, it was shown by Tucker and co-workers that 

62 green vegetation can be monitored through its spectral reflectance properties (Tucker, 1979; 

63 Tucker et al., 1980) and 79% of the variation in total wheat dry-matter accumulation can be 

64 explained by integrating normalized difference vegetation index (NDVI) over the growing 

65 season (Tucker et al., 1981). Satellite observations can play a role in providing information 

66 about crop type, crop conditions and crop yield from the field level to extended geographic 

67 areas like countries or continents.  

68 The success of the remote sensing based biomass monitoring stems from its close relation to 

69 the canopy Leaf Area Index (LAI) and fAPAR (fraction of Absorbed Photosynthetically Active 

70 Radiation) (Prince, 1991; Baret and Guyot 1991). Due to its almost linear relation with fAPAR, 

71 NDVI can be readily used as an indirect measure of primary productivity. The aforementioned 

72 relationship between vegetation indices and biomass/fAPAR enables the early estimation of 

73 crop yield, since yield of many crops is mainly determined by the photosynthetic activity of 

74 agricultural plants in certain periods prior to harvest (Beneditti and Rossini 1993; Baret and 

75 Guyot 1989). In Rembold et al. (2013), a comprehensive overview is provided regarding 

76 biomass and yield mapping approaches. Most of the experiments and research concentrated on 
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77 obtaining quantitative relation between satellite (or airborne) RS data and crop yields and used 

78 two main types of the possible general strategies (Ferencz et al., 2004). The  incorporates 

79 satellite RS data into (existing or advanced) agrometeorological or plant-physiological, crop 

80 growth models (see e.g. Badhwar and Henderson 1981, Brakke and Kanemasu 1981, Asrar et 

81 al. 1984, Wiegand and Richardson 1984, Maas 1992, Delécolle et al. 1992, Reynolds et al. 

82 2000, Senay et al. 2000, Patel et al. 2001,Richter et al., 2011, Voulo et al., 2013). The second 

83 type of general strategy is based on direct mathematical relationships between satellite RS data 

84 and crop yields. Some direct yield methods use meteorological and agronomical data in 

85 operation also; and in a few cases some models use only satellite RS data, with ground-truth 

86 reference (crop yield) data necessary only in the calibration phase (e.g. Idso et al. 1977, Aase 

87 and Siddoway 1981, Gallo and Daughtry 1981, Tucker et al. 1981, Hatfield 1983, Steven et al. 

88 1983, Rudorff and Batista 1991, Hamar et al. 1996, Maselli et al. 2000, Del Frate and Wang 

89 2001, Yun Shao et al. 2001, Balint et al., 2011, Dempewolf et al. 2014). These models assume 

90 basically that the vigour of the crop canopy, observed in the spectral RS data, is directly related 

91 to the yield of the given crop. 

92 The objective of this study is to develop and test remote sensing based technology for early 

93 season wheat and maize yield forecasting in the lowlands of the Tisza river catchment, Central 

94 Eastern Europe with using regression-based modelling combining (Moderate Resolution 

95 Imaging Spectroradiometer) MODIS time series data and annual reported crop statistics. The 

96 concept was based on our earlier experiences and results (Tamás et al., 2015). The aim is to 

97 provide first RS based approximations of wheat and maize yield before the final results using 

98 the conventional system become available to help improve timely decision-making. In the 

99 validation process, we are not only evaluating the absolute deviations of MODIS normalized 

100 difference vegetation index NDVI-derived wheat and maize yield data from reported values, 

101 but also the significant difference is being assessed between the predicted and observed yield 
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102 values within different yield ranges. Thus beside overall forecasting accuracy, those yield range 

103 can be identified in which the forecasting model performs the best or extremities (drought or 

104 too much precipitation) have significant effect on yield forecasting.

105

106

107 2. Materials and methods

108

109 2.1. Study site

110 The study site is the part of an international catchment, the lowlands (altitude below 200m) of 

111 the Tisza river catchment is by far the most important wheat and corn producing region in the 

112 Carpathian basin, and even in Central Eastern Europe (Figure 1.). As an example, based on the 

113 annual reports of the Hungarian central statistical offices, approximately of 55% of the arable 

114 lands covered by wheat and maize. The region suffering from water management problems 

115 floods, surplus water and drought phenomena occur regularly. Surplus water and drought often 

116 occur in the same year or even in the same vegetation period. For crop production, light or 

117 radiation, temperature and water relationships (soil moisture) are the three cardinal climatic 

118 factors affecting vegetative development and flowering of crop species. Plain sites of Tisza 

119 catchment has a substantial global radiation. The average energy input by radiation onto the 

120 surface is 4,430 MJ/m2/year, which is a vast resource for plant production. This relatively high 

121 radiation is due to the long photoperiod, which comprises 2,050 hours/year. In Hungary, the 

122 average annual daily temperature is 10-11  C, and for the growing season is 17.5 °C. 
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123

124 Figure 1. The study site: Tisza river catchment, situated in 5 countries in the Central Eastern 

125 Europe

126 The most variable climate element in the plain site is the precipitation. The average annual 

127 precipitation is around 600 mm, but differences between years and the seasonal distribution are 

128 extreme. For example, (based on the data of the National Weather Service) looking at figures 

129 from Debrecen, middle of the lowland, the minimum and maximum annual precipitations 

130 between years 1901 and 2010 were 321 mm and 953 mm, respectively. It is seen that July 

131 rainfall may be close to zero or up to 150 mm. This provides an unpredictable water supply for 

132 the vegetation and makes crop and fruit production vulnerable. This vulnerability is also 

133 explained by the difference between annual precipitation and annual evapotranspiration. It is 

134 well known that in mid-season the potential evapotranspiration is high and the precipitation 

135 does not meet it, and so there is shortage of soil moisture for crops, furthermore the high clay 

136 content can be also a huge problem concerning readily available water content of soils. Climate 

137 change models predict that Tisza river basin will experience more serious drought events, and 

138 on the other hand more extreme precipitation events in the future. According to statistical data, 

139 drought occur in every 2nd, 3rd year in summer period, especially in July and August. Therefore 

140 maize is more affected by the drought, than wheat, since wheat is already harvested till the first 
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141 quarter of July, but maize has its flowering period just in the middle of the most drought risk 

142 affected period.

143

144 2.2. Crop statistical data

145 The final official reported yield values were published by the Hungarian Central Statistical 

146 Office for the corresponding NUT 3 regions and by Statistical Office of the European Union 

147 (EUROSTAT) for Romanian, Slovakian, Serbian NUT 2 regions and collected from 2000 to 

148 2015. 

149 Remarkable yield amounts were detected in 2001, 2004, 2005, 2008 and 2014 (>7 t/ha for maize 

150 >4 t/ha for winter wheat); and average in 2006 and 2011 (~6.7 t/ha for maize ~4 t/ha for winter 

151 wheat). On the other hand due to drought phenomena severe wheat and maize yield losses were 

152 detected in 2000, 2002, 2003, 2007, and 2012 (-3 t/ha loss for maize -1-1.5 t/ha loss for wheat). 

153 (Figure 2.). 

154

155 Figure 2. Average yield changes of maize and wheat, 2000–2015 based on KSH (Hungarian 

156 Central Statistical Office) and EUROSTAT

157
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158 These data are strongly related to the SPI and meteorological data, except for year 2010, when 

159 an extreme amount of precipitation (900–1,300 mm/year) was observed on the plain sites of the 

160 Tisza river basin, and, due to the surplus drainage water cover on the fields for a long period 

161 and plant diseases, the quantity of the yields remained average (Tamás et al., 2015).

162

163 2.3. MODIS NDVI data

164 In the case of low resolution satellite images, thanks to their large swath width, low resolution 

165 systems have a much better synoptic view and temporal revisit frequency compared to high 

166 resolution sensors (Rembolt et al., 2013). On the other hand the spatial resolution seriously 

167 complicates the accuracy of yield detection, the interpretation (and validation) of the signal, as 

168 well as the reliability of the derived information products. Although Labus et al. (2002) 

169 calculated NDVI from an AVHRR time series for the U.S. state of Montana and found strong 

170 correlations between wheat yield and integrated NDVI, as well as late-season NDVI parameters 

171 and Reeves et al. (2005) used successfully 1 km Moderate Resolution Imaging 

172 Spectroradiometer (MODIS) data to estimate wheat yields in North Dakota and Montana, but 

173 an average farm size is smaller in Hungary (which is about 14-15 ha) (Biro et al, 2011) and in 

174 Central East European (CEE) region than in the USA. Therefore the monitoring of yield is not 

175 appropriate in CEE region with datasets, such as Fraction of Absorbed Photosynthetically 

176 Active, Radiation (fAPAR) or AVHRR data, having low spatial resolution (>1 km) (Gobron 

177 and Verstraete, 2009), because one pixel exceeds the average crop farm size in CEE region. 

178 Meroni et al. (2013) examined the performance of spectral parameters derived from SPOT-

179 VEGETATION data for wheat yield forecasting in Tunisia and, for NDVI, achieved an r-

180 squared value of 0.75 between modelled and observed yield. Although Landsat (or similar 

181 sensors such as SPOT) are also the main source of data with sufficient spatial resolution in most 

182 agricultural areas, but with a 16-day gap between successive images, and frequent cloud cover 
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183 in most cropping regions (with the exception of dry, irrigated areas), it can be difficult to obtain 

184 more than one or two clear images within a growing season (Lobell, 2013). Sentinel data can 

185 be a possible alternative, but in yield prediction the necessary number of training years is at 

186 least four years, and the inter-calibration issues among different datasets still must be solved 

187 (Yin et al., 2013). On the other hand, Wardlow et al. (2007) and Mkhabela et al. (2011)  in the 

188 USA, and Ferencz et al. (2004) in Hungary, concluded that MODIS time-series at 250 m ground 

189 resolution had sufficient temporal and radiometric resolution to discriminate major crop types 

190 and crop-related land use practices. Thus MODIS NDVI data with 250 m spatial resolution was 

191 chosen in this study for farm and regional scale yield assessment. One should still note, that the 

192 250-m MODIS pixels could contain less than 100% wheat and maize sites and are partially 

193 covered by other land cover types, which introduces an inherent uncertainty into the 

194 measurements (Dempewolf et al., 2014).

195 The MODIS has been a key environment remote sensing tool for more than 18 years; it has 

196 been used in countless studies of different disciplines all over the world. The MODIS 

197 instrument was developed to improve heritage sensors in terms of its spectral, spatial, and 

198 temporal resolutions, as well as more stringent calibration requirements. (Xiong et al., 2009).

199 The usefulness of MODIS NDVI for evaluating vegetation response is well known (Huete et 

200 al., 2012). In the present case, the vegetation indices (VI) were obtained from the MODIS 

201 ‘Vegetation Indices 16-Day L3 Global 250 m’ short name ‘MOD13Q1’ product (Didan 2015). 

202 A complete 16-year time series (2000–2015) was downloaded through the online Data Pool at 

203 the NASA. In this study, we used MODIS data for two purposes, for mapping the presence of 

204 wheat and maize and for yield forecasting.

205

206 2.4. Data quality issues - smoothing
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207 Several studies pointed out that probably any filtering is better than no filtering (Rembolt et al., 

208 2013; Atzberger and Eilers, 2011; Hird and McDermid, 2009; Meroni et al., 2012). A 

209 smoothing process was required to reduce noise in the NDVI time series. Multiple techniques 

210 are available in the literature to do this (Hird, J.N. and McDermid, 2009; Julien, Y.and Sobrino 

211 2010; Klisch and Atzberger 2016; Atkinson et al 2012). In a recent comparative study by 

212 Atkinson et al., (2012) involving a number of commonly used filters, it was shown that the 

213 ‘Whittaker smoother’ (based on penalized splines) provides robust results for different noise 

214 levels and different cropping patterns (e.g., single vs. double cropping).  Therefore in present 

215 case, modified Whittaker smoother was used for MODIS NDVI data smoothing (Figure 3.).

216

217 Figure 3. Illustration of the effect of whittaker smoother on the NDVI profile of maize and 

218 wheat based on the data from 2005 in HajdúBihar county (part of the examined area)

219

220 2.5. Cropland mask

221 Beside smoothing another obstacle to successful modelling and prediction of crop yields using 

222 remotely sensed imagery is the identification of image masks (Kastens et al., 2005). Where the 

223 crop area is not known, the NDVI/yield relationship does not provide information on final crop 
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224 production, which is what many users of crop monitoring information are ultimately interested 

225 in (Rembolt et al., 2013). Cropland masking, where all sufficiently cropped pixels are included 

226 in the mask regardless of crop type, has been shown to generally improve crop yield forecasting 

227 ability (Doraiswamy and Cook, 1995; Lee et al., 2000; Maselli and Rembolt, 2001). Cropland 

228 masks usually are derived from existing land use/land cover maps. However, when masking is 

229 applied to multiple years of imagery, several difficulties are encountered (Becker-Reshef et al., 

230 2010). A major problem relates to the widespread practice of crop rotation, when a single 

231 cropland mask would not be appropriate. For these reasons in general, a direct 

232 NDVI/production regression makes only sense under specific conditions, such as a stable crop 

233 area over the observed period using cropland mask (Rembolt et al., 2013) or using crop specific 

234 masking (i.e., one mask per crop type and year) or yield correlation masking due to changes in 

235 crop area as a result of crop rotation (Maselli et al., 2000; Kastens et al., 2005). This would 

236 allow one to consider only NDVI information pertaining to the crop of interest. 

237 In this study crop specific masks were produced for wheat and maize and every year. Masking 

238 was a robust process. In the data processing we used standardized geographical, landuse and 

239 terrain data and information. As a first step the plain area with arable land was clipped out of 

240 the NDVI time series data every year. United States Geological Service (USGS) Shuttle Radar 

241 Topography Mission (SRTM) model was used to select plain areas, altitude below 200 m 

242 (source USGS, http://srtm.usgs.gov/index.php). Thereafter CORINE (COoRdinate 

243 INformation on the Environment) Landcover datasets (CLC 2000, CLC 2006 and CLC 2012) 

244 were used as a cropland to select arable lands out of plain areas, in order to reduce the possible 

245 area for crop specific masking. 

246 For the per pixel characterization of wheat and maize presence in the arable plain land on Tisza 

247 river catchment we used the already produced MODIS NDVI cropland site data of July and 

248 April for each year for vegetation coverage. Based on the classification of images, vegetation 
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249 cover Boolean masks were created (two images/year). These images were classified into 

250 Boolean masks each indicating vegetation cover and barren site circumstances in the vegetation 

251 periods. These masks were used to select vegetation covered and covered places in April and 

252 in July to identify wheat, and maize covered sites. With this technique in the case of wheat, all 

253 the area covered by alfalfa, maize and industrial crops can be eliminated. Though the final 

254 wheat specific masks (based on the crop cover data of) was still contained less than 5% 

255 uncertainty mainly due to barely and triticale cover. The uncertainty was defined by the official 

256 crop coverage KSH and EUROSTAT statistical data. In the case of maize, though all other 

257 cereals, alfalfa, rape were possible to exclude from the investigated area, but there was still a 

258 need to overcome the effect of industrial crops, dominantly sunflower cover (95% out of all 

259 industrial plants). Taking the advantage of the effect of flowering on NDVI, sunflower masks 

260 (1 mask/year) was created using the MODIS data in July, and applied resulting a final maize 

261 specific masks for each year. Final wheat and maize masks were then applied on NDVI images.

262 At the end the mean NDVI values of NUT 2 and NUT 3 regions (i.e. counties in Hungary and 

263 regions in Romania, Slovakia and Serbia) were extracted as an input for yield regression. 

264

265 2.6. Yield forecast

266 The predictive yield models were constructed using simple linear regression analysis of peak-

267 season MODIS-derived NDVI indices against reported crop yields from the years preceding 

268 the forecast year. The necessary number of training years was evaluated by calculating forecasts 

269 using between two and sixteen training years. The timing of the forecasts within the growing 

270 season was evaluated previously in Tamás et al., (2005) study, in which. useful statistical 

271 relationships reported using NDVI values at the peak of the growing season (duration 

272 approximately four –six weeks before harvest) and final crop yield in correspondence with other 

273 studies (Rembolt et al, 2013; Delecolle et al, 1992; Becker-Reshef et al., 2010; Boken et al., 
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274 2002, Basnyat et al., 2004.). Therefore, in this study MODIS NDVI data from May and June 

275 were used in the case of wheat, and MODIS NDVI data from July and August were used in the 

276 case of maize for analysing regression based yield forecasting. An adjustment to the yield 

277 forecasts was made by regressing the estimated yield values of the training years against the 

278 reported yields and applying the adjustment regression equation to the estimated yield of the 

279 forecast year. Due to crop specific masking the result of this study NDVI/yield regression can 

280 be an appropriate solution for crop forecasting Rembolt et al. (2013). 

281 The minimum numbers of the years for forecasting and the performance of forecast and the 

282 identification of was assessed using the accuracy metrics coefficient of determination (R2), root 

283 means square error (RMSE) and normalized RMSE (NRMSE):

284
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286 where y1 and yi
' are the measured and predicted yield values for sample i,  is the mean yield 

287 and n is the number of samples used for validation. RMSE provides an absolute measure of 
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288 prediction errors and NRMSE is useful for comparisons between seasons in case of variable 

289 yield ranges (Darvishzadeh et al., 2008). Nash-Sutcliffe efficiency ‘E1’ was also calculated. The 

290 efficiency E1 proposed by Nash and Sutcliffe (1970) was defined as one minus the sum of the 

291 absolute squared differences between the predicted an observed values normalized by the 

292 variance of the observed values during the period under investigation. It is calculated as:

293
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294 In the validation process to assess overall forecasting accuracy, we are evaluating the absolute 

295 deviations of MODIS normalized difference vegetation index NDVI-derived wheat and maize 

296 yield data from reported values. In order to highlight those yield range in which the forecasting 

297 model performs the best or extremities (drought or too much precipitation) have significant 

298 effect on yield forecasting, significant difference was assessed between the predicted and 

299 observed yield values within different yield ranges.

300

301

302 3. Results

303

304 In this study wheat and maize yield was derived by regressing reported yield values against 

305 time series of 16 different peak-season MODIS-derived NDVI. The use of 250-m MODIS-

306 derived NDVI was analysed and tested for wheat and maize yield production assessment and 

307 forecasting for Tisza river catchment area. We assessed the wheat and maize yield forecasting 
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308 accuracy under a mask derived from MODIS NDVI data, analysed the optimal number of 

309 training years for accurate forecast. 

310 The optimal number of training years was determined for wheat yield forecasting by calculating 

311 R2, RMSE and NRMSE for the sixteen peak seasons from 2000 to 2015 using the NDVI index 

312 and between two and 16 training years. The values were averaged over the most sensitive 

313 (blooming and ripening) period of wheat (the end of May and June).  The deterministic 

314 coefficients were the highest (R2>0.7) in using 5-7 training years, with the maximum at five 

315 training years with R2=0.732. On the other hand the NRMSE reaches its minimum values at six 

316 training years (NRMSE = 13.9%). The NRMSE did not changed significantly with increasing 

317 training years (NRMSEs were between 13.9-14%) (Figure 4.). Since NRMSE performs much 

318 better at 6 years than 5 years (16.7%) training data, the minimum data requirements for wheat 

319 yield forecasting was identified and we therefore used six training years in the subsequent 

320 analysis.

321

322

323 Figure 4. NRMSE and determination coefficient of forecast versus reported wheat yield at the 

324 catchment level for an increasing number of training years.

325
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326 In the case of maize the R2, RMSE and NRMSE values were averaged over the most sensitive 

327 (blooming and ripening) period of maize (July and August) from 2001 to 2015. The 

328 deterministic coefficients were the highest (R2>0.8) in using 5-6 training years, with the 

329 maximum at six training years with R2=0.815. The NRMSE reaches its minimum values at six 

330 training years (NRMSE = 15.1%) (Figure 5.). Using twelve training years results in an only 

331 slightly lower value (RMSE = 14.9%) compared to six years. Thus in the case of maize six 

332 training years were used in further analysis. An increase in NRMSE was measured in the 7th 

333 and 8th years, which probably due to higher uncertainty in the relation between NDVI and yield.

334

335

336 Figure 5. NRMSE and determination coefficient of forecast versus reported maize yield at the 

337 catchment level for an increasing number of training years.

338

339 The performance of NDVI for wheat and maize yield forecasting was calculated at the county 

340 level using six years of training data. The results were compared to official reported yield values 

341 every year. At the county level, we calculated the RMSE and the relative deviation (difference 

342 in percent) of forecast versus reported yield (Figure 6.). At county level, absolute deviation of 

343 NDVI-derived wheat yield from reported values ranged from 0.819 % in the 2004 season to 
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344 19.08% in the 2010 season. Absolute deviation of NDVI-derived maize yield from reported 

345 values ranged from 0.299% in the 2012 season to 17.14% in the 2014 season. 

346

347

348 Figure 6. RMSE and deviation of predicted values compared to official reported wheat and 

349 maize yield values

350

351 The deterministic coefficients for wheat and maize were more than 70% and 80% during the 

352 phenlogical peak period using six training years. Although the average absolute deviations 

353 between estimated and officially reported county yield data was about 7% for wheat and 8% 

354 for maize (Figure 7.). These values were a bit higher than the 5% threshold, which is generally 

355 accepted as good (Ferencz et al., 2004). Therefore, yield forecasting results were compared to 

356 simply using the three-year or six-year moving averages of the years preceding the forecasting 

357 year (Figure 7.). The results show that the forecast yields had, on average, lower deviation from 

358 reported values than the moving averages, and thus, the forecast performs better. We also tested 

359 the performance of the wheat yield forecast using the Nash–Sutcliffe efficiency index, (E1), 

360 which is a global measure of model efficiency. The Nash–Sutcliffe efficiency index is positive 

361 with E1 = 0.3 in the case of wheat forecast, and E1=0.401 in the case of maize forecast. 
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362

363 Figure 7. Deviation of forecast from reported wheat (A) and maize (B) yields at catchment 

364 level (blue bars) and the overall average (solid horizontal line) for the seasons 2005 to 2015 in 

365 comparison to the deviation of the three-year moving average (green bars and dashed line) 

366 and the six-year moving average (yellow bars and dotted line) yields.

367

368 After assessing the overall yield prediction accuracy, the uncertainties and forecasting precision 

369 for different yield ranges was evaluated in order to highlight those yield range in which the 

370 forecasting model performs the best. Tukey’s B variance analyses were used to assess 

371 significant difference between the related observed and predicted yield values within four wheat 

372 and six maize yield ranges. As a result, the distribution of the predicted yields was possible to 

373 compare to the real, observed data distributions (Figure 8.). 
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374

375 Figure 8. Differences between observed and predicted yield within wheat and maize yield 

376 ranges

377

378 In the case of wheat higher yield values were significantly underestimated. The difference 

379 between predicted and observed yield is 0.56 t/ha (in average). Maize forecast performs similar 

380 characteristics, since significant differences is detected in the case of high yield values, the 

381 overestimation is between 0.5-0.9 t/ha in the case of yields above 6 t/ha.

382

383

384 4. Discussion

385

386 The purpose of this study was to develop a satellite-based system for wheat and maize yield 

387 forecasting and to determine the uncertainties of the prediction for different yield amounts for 

388 a solution applicable to lowlands of the Tisza river catchment, but also transferable to CEE 

389 region. 

390 The results of this study provides specific recommendations for the necessary number of 

391 training years. Six years of historical data are the minimum number of training years 
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392 recommended for forecasting wheat and maize yield. This statement is in accordance with the 

393 results of Dempewolf et al. (2014) in the case of wheat forecasting. Fewer years did not seem 

394 to provide enough data points for deriving meaningful regression equations. 

395 Previous studies have shown the validity of using satellite-derived vegetation indices for wheat 

396 and maize yield forecasting. In accordance with the other studies our results achieved good 

397 agreement (7%) between wheat yield derived from MODIS-derived NDVI and reported yield: 

398 the forecast of yield for the majority of cases was within 10% of final reported values in Pakistan 

399 (Dempewolf et al., 2013). Ren et al. used 10-day MODIS NDVI composites to forecast the 

400 yield of wheat for a sub-region of Shandong Province in China, and the results were within 5% 

401 of official statistics. Sakamoto et al. (2013) was estimated maize yield accurately; yield 

402 deviation was below 10%, which is in accordance with our findings. Furthermore, our results 

403 performs better than another study using the same 16-day composite in Serbia. In the mentioned 

404 study the smallest difference between predicted and actual yield was 1.67% and the largest 

405 difference was 44.12% (Govedarica et al., 2016), whilst our result is within 0.299 % and 

406 17.14%.

407 The satellite-based yield forecasts were much less accurate for the 2010 season than for other 

408 seasons in the case of maize. This might be due to unusual weather patterns in 2010, when an 

409 extreme amount of precipitation (900–1,300 mm/year), with cooler spring and summer was 

410 observed on the plain sites of the Tisza river basin. This circumstances covered the whole 

411 vegetation period of both examined crop. Besides, the surplus water cover on the fields was 

412 common in spring (Tamás et al., 2015). Thus agricultural works were significantly delayed in 

413 spring time, and due to the rainy weather and the hardly accumulating active heat, the normal 

414 development of the crops were delayed prolonging the growing season and causing the delay 

415 of harvest period. However, due to more favourable conditions in July and August, the wheat 

416 and maize caught up subsequently, and the final impact on yield was only small, remained 
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417 average (Ragán et al. 2014.). This unusual pattern of delayed crop development during the 

418 normal seasonal peak time of wheat in spring and early summer in combination with a quick 

419 subsequent recovery might explain the lower performance of the forecasting system.

420 Applying six training years, yield forecasting performs better compared to simpler methods of 

421 obtaining yield data, such as using the previous year’s value or the three-year or six-year 

422 moving average. Nash–Sutcliffe efficiency of higher than zero also indicates that the tested 

423 prediction method is a better predictor than the mean value of the observed time series the 

424 developed forecasting method is applicable for wheat and maize prediction. Furthermore in the 

425 case of wheat our results is better than a study in Pakistan, where the E1 was only 0.112 

426 (Dempewolf et al., 2014.). 

427 Investigating the forecast in different yield ranges, yield prediction in the case of high yield 

428 values have the highest uncertainties, partly due to extreme weather circumstances in 2010 

429 resulting delay of phenological phases resulting smaller NDVI which did not reflect the 

430 recovery of the plants in the final stage. As a result in higher yield ranges extremity with cooler 

431 weather or too much precipitation has significant effect on yield forecasting. Another possible 

432 reason for the uncertainties might be that NDVI is known to saturate at high LAI values (Sellers 

433 1985, Goswami 2015), resulting the decrease in NDVI sensitivity for higher yields. This 

434 phenomenon can be explain that the satellite-based yield forecasts were the second less accurate 

435 for the 2014 season, whilst there were record yields for maize (7.82 t/ha) and wheat (5.18 t/ha) 

436 at the examined site. The forecasting model performs the best from average to the lowest wheat 

437 and maize yields, resulting that the prediction can be a very useful tool for detecting yield or 

438 yield losses caused by drought phenomena, thus can be a viable option in crop specific drought 

439 monitoring as well.

440 A common problem in crop monitoring and yield forecasting in many countries of the world is 

441 the difficulty in extending locally calibrated forecasting methods to other areas or to other scales 
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442 since most of the studies are linked to the environmental characteristics of specific geographic 

443 areas (Rembolt et al., 2013). In this study the results had validated based on yield data from 

444 international catchment area, thus valid for the agricultural land in the Tisza river basin, though 

445 hadn’t validated on yield and NDVI data in wider range of Europe. Based on EUROSTAT data 

446 there are few differences in average weather circumstances, in the optimal amount of maize and 

447 wheat yields (t/ha) and in the level of agricultural practice in the Carpathian basin and in the 

448 CEE region, thus our finding is possible to extend for CEE region. Certainly, there could be 

449 small differences in the intensity of crop production, wheat species and especially in maize 

450 hybrids between countries, which differences could influence the amount of yield.

451 The developed model is based on NDVI, (MODIS NDVI). Until recent years, at high revisit 

452 frequency, the Earth’s land surface could only be covered by coarse/medium resolution sensors, 

453 such as MODIS. Nowadays with the Sentinel’s 2 and 3 and Proba-V sensors a new era of Earth 

454 observation is entered (Rembolt et al. 2013). With new sensors, data availability at 

455 coarse/medium resolution increased at high revisit frequency, but still more efforts should be 

456 taken in further studies to ensure a suitable sensor inter-calibration, especially because there is 

457 not yet enough time series datasets for accurate yield forecasting. Although even with a better 

458 sensor inter-calibration, it is not certain that derived products (such as NDVI or fAPAR) are 

459 comparable across sensors or even data providers (Meroni et al. 2012).

460

461

462 5. Conclusion

463

464 Recent advances in operational space technology have improved our ability to address many 

465 issues of early detection of yields. In this way yield forecast support to fill the gap of knowledge 
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466 between remote sensing data and decision-making, in order to develop yield forecast related 

467 decision parameters and application in practice from raw spectral datasets.

468 The wheat and maize forecasting method estimates the expected yield based on remote sensing 

469 data with 250*250 m spatial resolution. Our study was based on multi-spectral remote sensing 

470 data (MODIS NDVI) and reported yield data, forecasting method was formulated with 

471 calibrating of remote sensing data with the important crops (wheat, maize) which are 

472 representative in the Tisza river catchment and in the CEE. The developed wheat and maize 

473 yield forecasting provides timely information on crop production, status and yield in a 

474 standardized and regular manner at the (sub)regional (county) to the international catchment 

475 level. With help from the forecasting method developed based on six training years, the yield 

476 can be predicted 6-8 weeks earlier than harvesting. Understanding the applicability and 

477 accuracy of yield prediction is also an essential component of forecasting because the ultimate 

478 goal is to reduce forecast uncertainties for a particular location and for a specific group of people 

479 or agricultural or economic sector. With the forecasting method moderately good estimates are 

480 provided as early as possible during the growing season and can be updated periodically through 

481 the season until harvest. This information can reduce impacts of possible yield losses if 

482 delivered to farmers or decision makers in a timely and appropriate format and if mitigation 

483 measures and preparedness plans are in place. Based on the information provided, stakeholders 

484 are enabled to take early decisions and identify geographically the areas with large variation in 

485 production and productivity which is one of the most vital need for food security and trade. The 

486 forecasting needs further development with new sensors with high revisit frequency and good 

487 spatial resolution (10-30 m). However, sensor inter-calibration is still an important issue to 

488 provide homogeneous and interchangeable data sets with statistically valid precision and 

489 accuracy.

490
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