
An operational workflow to assess rice nutritional 1 

status based on satellite remote sensing and smart 2 

apps 3 

Francesco Nutinia,⁎, Roberto Confalonierib, Alberto Cremaa, Ermes Movedib, Livia 4 

Palearib, Dimitris Stavrakoudisc, Mirco Boschettia,⁎ 5 

 6 

a IREA, National Research Council, Via Bassini 15, 20133 Milano, Italy 7 

b Cassandra Lab, DESP, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy 8 

c Laboratory of Forest Management and Remote Sensing, School of Forestry and Natural Environment, Aristotle 9 

University of Thessaloniki, Thessaloniki 54124, Greece 10 

 11 

⁎ Corresponding authors. 12 

E-mail addresses: nutini.f@irea.cnr.it (F. Nutini), boschetti.m@irea.cnr.it (M. Boschetti). 13 

Abstract 14 

Nitrogen fertilization plays a key role in rice productivity and environmental impact of rice-15 
based cropping systems, as well as on farmers’ income, representing one of the main cost items 16 
of rice farming. Average nitrogen use efficiency in rice paddies is often very low (about 30%), 17 
leading to groundwater contamination, greenhouse gases emission, and economic losses for 18 
farmers. The resulting pressure on many actors in the rice production chain has generated a need 19 
for operational tools and techniques able to increase nitrogen use efficiency. We present an 20 
operational workflow for producing nitrogen nutritional index (NNI) maps at sub-field scale 21 
based on the combined use of high-resolution satellite images and ground-based estimates of 22 
Leaf Area Index (LAI) and plant nitrogen concentration (PNC, %) data collected using smart 23 
apps. The workflow was tested in northern Italy. The analysis reveals that vegetation indices are 24 
satisfactorily correlated with LAI (r2 > 0.77, p < 0.01) and PNC (r2 > 0.55, p < 0.01); whereas most 25 
patterns of NNI maps are coherent with the available information on soil texture and performed 26 
agro-practices. Key features of the proposed approach are (i) the time and cost-effectiveness for 27 
producing NNI maps even in operational contexts and (ii) the full exploitation of smart scouting 28 
techniques to drive field data acquisitions using smartphones as sensors. The use of operational, 29 
free-of charge products from Sentinel-2 for real-time field monitoring to potentially support 30 
variable rate fertilizations is also discussed. 31 

1. Introduction 32 

Nitrogen (N) is a key element for plant growth, being a fundamental component of many 33 
cell structures such as proteins, chlorophylls and nucleic acids. Its concentration in plant tissues 34 
is the highest among those of the three main nutritional elements for plants (N, phosphorus [P] 35 
and potassium [K]). For instance, Sukristiyonubowo et al. (2012) measured N, P and K contents 36 
in rice (Oryza sativa L.) grains corresponding to 1.28%, 0.15% and 0.32% on dry matter basis, 37 



respectively. For these reasons, rice N demand is high and deficiencies rapidly decrease yields 38 
(Huang et al., 2015), because of reduced tillering, lower number of spikelets per panicle and 39 
decreased photosynthetic rate (Mae, 1997). However, rice yields are also threatened by N excess, 40 
because of the increased plant susceptibility to diseases (Long et al., 2000) and lodging (Shimono 41 
et al., 2007). The high impact of N availability on yields and the low efficiency in its use due to 42 
the special water management practices applied to rice paddies, make it crucial for paddy rice 43 
farmers to match plants needs with supply in terms of both timing and amounts. Concerning the 44 
low N use efficiency, most of the N supplied to paddies can be lost via denitrification because of 45 
the redox conditions of flooded soils, ammonia volatilization, and—especially in case of dry 46 
sowing and delayed flooding on non-puddled soils—nitrate leaching (Confalonieri et al., 2006; 47 
Ke et al., 2017). According to published data, N use efficiency in rice paddies range from about 48 
60% at best (Li et al., 2017) to 12% in the worst cases (Singh et al., 1999), with common values 49 
reported to be around 30% (e.g., Confalonieri et al., 2006). These low efficiencies lead to 50 
eutrophication, groundwater contamination, greenhouse gases emission and air pollution. In 51 
order to mitigate these impacts and to avoid excessive fertilization, the EC Nitrate Directive 52 
(91/676/EEC) focuses on encouraging a stricter and mindful application of nitrogen. Another 53 
crucial factor relevant to the low N use efficiencies often observed in paddy fields is related to 54 
the impact on farmers’ income, since fertilization is a major cost in rice farming. For example, in 55 
Italy, a major rice producer in Europe, the cost for fertilizers in a medium-size rice farm (150 ha) 56 

represents almost 40% (∼370 €/ha) of the total cost for input factors, with agrochemicals, seeds 57 

and water accounting only for 26%, 16%, and 20%, respectively (Camera di Commercio Vercelli, 58 
2013). This further underlines how fertilizers management is of fundamental importance for farm 59 
economic balance. In this context, operational solutions able to optimize the use of N fertilizers 60 
are increasingly needed to implement sustainable agro-practices and maximize farmers’ income, 61 
in other words, to increase the efficiency of rice-based cropping systems. A promising approach 62 
to face this challenge is precision farming, i.e., the exploitation of multi-source information in a 63 
decision support system to improve the efficiency of farm management (Blackmore, 1994). 64 

 65 
1.1. Precision farming and variable rate technologies for fertilization 66 

The use of variable rate (VR) fertilization maps rather than fertilizing homogeneously the 67 
whole field is considered a promising approach to face some of the criticalities involved with N 68 
use efficiency and represents the basis for the implementation of rationale top-dressing 69 
fertilization (Basso et al., 2016). Indeed, the capacity to assess, understand and manage the within-70 
field variability is a prerequisite to define sustainable agro-practices able to reduce farming cost 71 
and environmental impact (Stroppiana et al., 2009). Different methodologies were proposed in 72 
recent years, some of them being operationally adopted in real farming practices to create 73 
variability maps. These methodologies can be grouped in two categories: (i) based on the analysis 74 
of static information from data acquired during previous cropping season(s) and (ii) based on the 75 
near-real-time dynamic monitoring of crop conditions exploiting direct/indirect measurements. 76 
A common approach for supporting the creation of VR maps is to exploit different thematic layers 77 
as input to a clustering process, in order to generate a map of management unit zones (MUZ) 78 
where each zone represents an area with uniform condition of soil fertility to be appropriately 79 
managed (Fridgen et al., 2004). Spatially-distributed inputs for MUZ definition can refer to every 80 
kind of information related to plant growth and considered important for yield determination 81 
(Casa and Morari, 2016). For instance, MUZ can be identified through the analysis of soil 82 
properties either derived from (i) interpolation of geolocated ground data of “stable” soil 83 
parameters, like texture, organic matter content, available phosphorus, and exchangeable 84 
potassium (Casa and Castrignanò, 2008; Casa and Morari, 2016) and/or (ii) indirectly estimated 85 
from the analysis of remote sensing data (e.g., Agbu et al., 1990) or ground measurements (e.g., 86 
soil electrical conductivity; Grisso et al., 2009). Alternatively, yield maps produced in previous 87 
years (Stafford et al., 1999) or archives of remote sensing (RS) data can also be used to define 88 



patterns of constant intra-field variability (Busetto et al., 2017; Casa et al., 2017). The definition of 89 
MUZ can be continuously updated to account for new information made available by new 90 
technologies (e.g., new satellites, drones, new sensors) or by more recent yield maps. Another 91 
approach for static VR fertilization is based on compiling a simplified nutrient balance (Grignani 92 
et al., 2003). This can be performed by analyzing yield maps from previous seasons to get spatially 93 
distributed estimates of the uptake of main nutrients (N, P, K), as well as inferring the other items 94 
of the balance, such as residuals from previous organic fertilizations, inputs from dry and wet 95 
depositions, losses from leaching and so on (Casa et al., 2011). The fertilization for the current 96 
season can be then modulated based on the expected crop needs (Casa et al., 2011). Compared to 97 
the approaches previously described, for which fertilizer amounts can be quantified only via 98 
expert knowledge, the nutrient balance approach allows mapping explicitly the quantity of 99 
fertilizers, although it requires more inputs. Dynamic monitoring for VR fertilization is instead 100 
based on the near-real-time collection of data able to provide information on crop development 101 
and nutrition status. For this approach, ground, proximal and remote sensing measurements are 102 
usually exploited to analyze the within-field variability in a qualitative or quantitative way. One 103 
of the main constraints in using optical sensors to map nutritional status is the fact that N content 104 
is not an optically discernible variable in green plants, because nitrogen absorption features are 105 
obscured by water (Chen, 2015). Therefore, it cannot be estimated directly from RS. However, it 106 
is possible to assess N concentration thanks to its direct relationship with chlorophyll content that 107 
has well-known spectral features in visible and Red-Edge bands. For this reason, chlorophyll 108 
related indicators can be used as proxies of crop nitrogen concentration (Guerif et al., 2007). A 109 
qualitative approach to support in-season VR fertilization can rely on the analysis of spatially 110 
distributed information (from the interpolation of field measurements or from proximal/remote 111 
sensing images) in order to identify field regions characterized by different crop vigor. In this 112 
sense, recent approaches are driven by sensors mounted directly on the operating tractor (e.g., 113 
GreenSeeker active canopy sensor; Trimble, Sunnyvale, CA, USA), or by the analysis of earth 114 
observation (EO) data acquired by sensors on drones, aircraft or satellites (Casa and Morari, 115 
2016). According to the within-field variability in crop vigor, N application can be modulated 116 
either (i) using cultivar specific empirical equations (Xue and Yang, 2008; Pahlmann et al., 2017) 117 
or (ii) adapting the average prescription (based on expert knowledge) in the different zones 118 
according to the relationship between local crop vigor and field average (Busetto et al., 2017). 119 
These approaches are already provided by operational services exploiting commercial devices 120 
such as those proposed by Oklahoma State University for GreenSeeker (Raun et al., 2005) or by 121 
Nebraska University for Crop Circle (Holland and Schepers, 2010). Other approaches for 122 
dynamic VR fertilization are more quantitative and provide a direct support to farmer by 123 
diagnosing the actual crop N nutritional status. A widely recognized approach is the one based 124 
on the estimation of N nutritional index (NNI) (Lemaire et al., 2008). NNI is the ratio between 125 
actual (PNC, %) and critical (Nc, %) plant N concentration, with the latter being the minimum N 126 
concentration below which crop growth is reduced and the former is the plant nitrogen 127 
concentration (Confalonieri et al., 2011). Nc is often estimated as a function of aboveground 128 
biomass (AGB) using the dilution curve approach (Salette and Lemaire, 1981; Ata-Ul-Karim et 129 
al., 2013), with its value decreasing during the crop cycle because of the reallocation of N-rich 130 
compounds from senescent tissues and of the relative decrease in N-rich organs during crop 131 
aging (less leaves, more stems) (Confalonieri et al., 2011). Other approaches derive Nc curves as 132 
a function of development stage indices (Williams et al., 1989; Hansen et al., 1991). In any case, 133 
the effectiveness of these methods for diagnostic purposes is partly limited by the procedures 134 
needed to determine their driving variables (AGB or development stage indices). To overcome 135 
this limitation, a recent approach was proposed to derive Nc curves as a function of Leaf Area 136 
Index (LAI) (Confalonieri et al., 2011), easily obtainable using indirect, non-destructive methods 137 
(e.g., LAI-2000; (Stroppiana et al., 2006)) without the need for defining sample size, 138 
sampling/drying/weighing plants (as for AGB determination), or performing calculations based 139 



on heat units (as for development stage indices). As for LAI, instruments are available for non-140 
destructive PNC estimates (through related index and dedicated calibration curves (Varinderpal 141 
et al., 2011)). Examples range from inexpensive plastic strips with different green shades (leaf 142 
color charts; (Alam et al., 2005)) to optical instruments able to estimate plant chlorophyll content 143 
alone (e.g., SPAD 502, Konica Minolta Inc., Tokyo, Japan; (Peng et al., 1996)) or in addition to 144 
other variables related to the relationship between primary and secondary metabolism 145 
(flavonoids content) to derive a N balance index (Dualex 4, Force-A, Orsay, France; (Cerovic et 146 
al., 2012)). Other approaches were proposed based on the exploitation of hyperspectral proximal 147 
sensing measurements (Stroppiana et al., 2009). Recently, new approaches were proposed to 148 
estimate both LAI (Confalonieri et al., 2013) and PNC (Confalonieri et al., 2015) using sensors 149 
available on smartphones. These approaches—implemented through two dedicated Android 150 
smart apps (i.e., PocketLAI and PocketN)—represent indeed a promising source of quick, 151 
inexpensive, and accurate ground data for monitoring N nutritional status, increasing the 152 
feasibility of in-field crop status assessment. The use of field data and the Nc curve for near-real-153 
time assessment of N nutritional status can be boosted by exploiting satellite images from space-154 
mounted sensors (Munoz-Huerta et al., 2013), since they incorporate spectral bands useful for the 155 
retrieval and estimation of LAI and chlorophyll content (Navarro-Cerrillo et al., 2014). 156 
Approaches based on EO data can overcome the limitations imposed by field data collection, 157 
such as the high cost involved and representativeness of the data collected. Indeed, NNI 158 
estimated in field can be directly spatialized using RS images via empirical relationships between 159 
NNI and a simple vegetation index (VI) (Cao et al., 2013) or complex VI combinations (Fitzgerald 160 
et al., 2010). Alternatively, it is possible to indirectly estimate NNI (Huang et al., 2015) using PNC 161 
and Nc values—the latter derived either using AGB (Chen et al., 2010; Cilia et al., 2014) or LAI 162 
(Ata-Ul-Karim et al., 2014)—at pixel level from satellite data and relationships with VIs, and then 163 
use spatially-distributed PNC and Nc values to derive NNI. These two approaches have been 164 
compared by Huang et al. (2015) and Chen (2015), resulting in a slightly better accuracy of NNI 165 
estimation with indirect approach. This approach is in fact operatively exploited by the Farmstar 166 
service to produce prescription maps for winter cereals (Triticum aestivum L., Hordeum vulgare 167 
L.), soybean (Glycine max L. Merr.), and rapeseed (Brassica napus L.) in France (Blondlot et al., 168 
2005). The general goal of this study was to setup and test an operational workflow able to 169 
spatialize indirect field estimates of LAI and PNC using satellite data to retrieve NNI maps for 170 
rice. In particular, the study aims to (i) demonstrate the efficiency of EO-based smart scouting to 171 
optimize and drive field measurements, (ii) exploit smart apps to collect relevant field data (LAI, 172 
PNC), and (iii) test the potential of commercial and Sentinel-2 data for NNI estimates in 173 
operational precision farming contexts. 174 

 175 

2. Materials and methods 176 

2.1 Study area 177 

The study was carried out in 2016 in an area sited in the middle of the main Italian rice 178 
district, in turn located in the Northern part of the Country and covering about 240000 ha of 179 
paddies producing about 90% of Italian rice (almost 50% of total European production; Fig. 1). In 180 
this area, rice is sown between April and May and harvested between September and October, 181 
depending on rice varieties, weed control (false sowing), and seasonality (Boschetti et al., 2017, 182 
2009; Busetto et al., 2017). About half of the district is sown with long-grain Japonica varieties for 183 
internal consumption, with the remaining part destined to long-grain Tropical Japonica (26%) 184 
and short-grain Japonica varieties (23%) that are mainly exported in EU-27 (NOMISMA, 2013). 185 
Agriculture is highly mechanized and usually rice is grown in monoculture, not being part of 186 
rotations with other species. 187 



The amount of N yearly supplied to rice paddies is 150 kg ha-1, usually split in two (pre-188 
sowing and panicle initiation (BBCH 31)) or three events (an additional event at the beginning of 189 
tillering (BBCH21)). How the total amount of nitrogen is split between the three events and the 190 
type of fertilized used vary a lot according to farmers’ experience, variety, and agronomical 191 
planning. 192 

 193 

 194 

Figure 1. Italian rice district (green areas in left panel) and location of the monitored fields in 195 
Rosasco (a) and Zeme (b) municipalities. Numbers refer to field IDs. A RapidEye image in true 196 

colors is used as background. 197 

The fields of interest (FOI; red polygons in Fig. 1) are located in Pavia province (PV), where 198 
rice covers 70% of the agricultural surface, other common crops being soybean and corn. The 199 
monitored fields belong to two farmers involved in the ERMES project (an Earth obseRvation 200 
Model based ricE information Service, www.ermes-fp7space.eu) as end-users. The project aimed 201 
at developing downstream services dedicated to the rice sector to support authorities and farmers 202 
(Busetto et al., 2017). The monitored fields (about 20 ha) were sown in May with Selenio (a short-203 
grain Japonica variety quite popular in Italy). Two different sowing techniques were used: 204 
scatter-sowing under flooded conditions and row-sowing with delayed flooding at the fifth-leaf 205 
stage (Campos-Taberner et al., 2016; Ranghetti et al., 2016) (Table 1). 206 

 207 
Table 1. Monitored fields. 208 

Field 

Id 

Extension 

[ha] 

Municipality Coordinates [Lon. E, Lat. N] Sowing day 

of the year 

Sowing technique 

#1 4.4 Rosasco 8.564, 45.266  127 Row/dry 

#2 3.2 Rosasco 8.561, 45.248 145 Row/dry 

#3 5.9 Zeme 8.682, 45.191 138 Row/dry 

#4 6.8 Zeme 8.688, 45.192 138 Scatter/flooded 

2.2 Overall methodolody 209 

The experimental activity was articulated in three main steps (Figure 2): i) acquisition of field 210 
data according to a smart scouting procedure, ii) satellite data processing and correlation analysis 211 
with crop biophysical variables and iii) map generation and assessment of NNI. 212 

Zeme (PV)

Rice district Monitored fieldsMonitored Farms

Rosasco(PV)

a
b

a b
#321

#384

#68

#61

http://www.ermes-fp7space.eu/


  213 

Figure 2: Flowchart of the methodology adopted. From left to right: Satellite-aid smart scouting 214 
activities to collect few representative field data (leaf area index [LAI] and plant nitrogen 215 

content [PNC]), analysis of satellite data for empirical model development and computation of 216 
nitrogen nutritional index (NNI) maps. 217 

Satellite imagery acquired by the RapidEye sensor were used in all the three steps, i.e., from 218 
driving the field campaign (smart scouting) to the production of maps of biophysical variables 219 
via regression models, whereas Sentinel-2 data were tested only for the last two steps (empirical 220 
model and maps development). Details on data acquisition and on the three methodological steps 221 
are provided in the following sections. 222 

2.3 Scheduling of activities, smart scouting and field measurements 223 

Farmers participating to the study provided information on field boundaries, soil analyses, 224 
sown varieties, and crop management (Table 2). This information was used i) to identified four 225 
fields with similar size (larger than 3 ha) and sowing date (time-span of maximum 20 days), and 226 
where the same variety was grown (Selenio), as well as ii) to plan field measurements and satellite 227 
image acquisition. Farmers’ knowledge was also fundamental to discuss results and NNI spatial 228 
patterns identified for the different fields. 229 

Table 2. Timetable of satellite image acquisitions and relationships with relevant management 230 
events in the four monitored fields. 231 

Date 7th-25th 

May 

18th-22nd June 1st July 4th July 5th July  10th-14th  July 

Event Sowing 1st top dressing 

fertilization 

Sentinel-2 

acquisition 

RapidEye 

acquisition 

Smart Scouting 

and field 

campaign 

2nd top 

dressing 

fertilization 

2.3.1 Selection and acquisition of satellinte images 232 

RapidEye (RE) and Sentinel-2A (S2; free-of-charge) satellite image acquisitions were 233 
programmed and performed at the first week of July in order to match the phenological phase of 234 
panicle initiation (BBCH 31). This stage is of key importance for top-dressing fertilization given 235 
its marked effect on final yield (Onoyama et al., 2010). 236 

The RE image exploited in this study was made available in the framework of the ERMES 237 
project thanks to the ESA-Copernicus Data Ware House program (DWH), which provides EO 238 
data for European Copernicus research projects (Jutz and Milagro-Pérez, 2017). The image was 239 
acquired on 4 July over an extent of 330 km2 (about 15 km × 22 km) and covered the whole study 240 
area. Thanks to the 5 m spatial resolution and five multispectral bands with both Red-Edge (690-241 
730 nm) and NIR (760-850 nm) bands, this sensor is well-suited for crop monitoring purpose 242 
(Kuenzer and Knauer, 2013). The RE image was delivered as orthorectified tiles in GeoTIFF 243 
format (in WGS84/UTM32N projection), with radiometric, geometric, and terrain corrections 244 
having been applied (Level 3A). The image was subsequently atmospherically corrected and 245 



converted into ground reflectance values, by means of the ATCOR algorithm (Richter and 246 
Schlaepfer, 2016). 247 

The S2 image has a lower spatial resolution (no band higher than 10×10 m) than RE but it is 248 
operationally available free-of-charge every 10 days (from 2017 every 5 days thanks to the second 249 
satellite S2B), whereas RE images are acquired from a five satellites constellation (revisit time 250 
nominally daily off-nadir and 5.5 days at nadir) on demand only subject to payment of a fee. The 251 
S2 cloud-free image closest to the RE overpass was the one acquired on July 1, 2016 on tile 32TMR 252 
(orbit R065). A Level 1C product (top-of-atmosphere reflectance values in cartographic geometry) 253 
was downloaded via the Sentinel Open Hub (scihub.copernicus.eu) and top of canopy reflectance 254 
values were obtained after atmospheric correction using the sen2cor (Sentinel-2 atmospheric 255 
Correction) algorithm incorporated within the Sentinel-2 Toolbox. More details on S2 processing 256 
can be found in Campos-Taberner et al. (2017). 257 

2.3.2 Fast processing of satellite data and Smart Scouting  258 

RE image was processed right after the acquisition in order to calculate a proxy of vegetation 259 
vigor and biomass to highlight within field spatial patterns exploiting automatic processing chain 260 
developed during the ERMES project (Busetto et al., 2017). The workflow includes three 261 
consecutive steps to calculate: i) vegetation index map (VI), ii) relative variability map (∆) and 262 
thematic maps (clusters). 263 

The Modified soil-adjusted vegetation index (MSAVI) is calculated from the RE reflectance 264 
bands. The index was selected as the more useful in identifying biomass after literature review 265 
and thanks to previous test conducted in the framework of ERMES project exploiting 2014 and 266 
2015 data. MSAVI map provides an absolute measure of the parcel’s current status, that is 267 
dependent on sowing day, rice variety sowed, and so on. In order to transform this information 268 
into a relative measure (∆), for each field of interest (FOI) the deviation of every image pixel (x) 269 
from the parcel’s average (m) was calculated, through: 270 

D(x) = x − m m⁄  (1) 

A relative variability map (Δ) that confines the values within the range [−1,1] is subsequently 271 
calculated, by applying a hyperbolic tangent (tanh) function: 272 

∆(x) = tanh𝐷(𝑥) = tanh⁡(𝑥 − 𝑚 𝑚)⁄  (2) 

This process was necessary in order to normalize D values in a closed range and reduce the 273 
influence of extreme outlier values that can significantly affect the identification of significant 274 
field variability. The last step of processing chain produces a thematic map, by assigning each 275 
FOI’s pixel to one out of three possible categories: a) above (parcel’s) average biomass/vigour 276 
(cluster-a), b) average biomass/vigour (cluster-b) and c) below average biomass/vigour (clustrer-277 
c). The process was applied independently in each FOI (Figure 3). The 𝛥 intra-parcel variability 278 
values are first clustered using the fuzzy C-means (FCM) clustering algorithm (Bezdek et al. 279 
1984). FCM clusters the data based on their distance from their closest centre (prototype), which 280 
is placed by its learning algorithm near locations with high density points (i.e., the modes of the 281 
distribution). A statistical procedure is employed to determine whether one (homogeneous field), 282 
two or three clusters will be produced, which are then appropriately assigned to one of the three 283 
categories. It is the latter discretized version of the variability map that is most appropriate for 284 
applying VR fertilization with most of the available commercial machinery. 285 

A complete description of the methodology will be the subject of a dedicated future 286 
publication. 287 
 288 



 289 

Figure 3. Clusters obtained from MSAVI map on the four analysed fields. Dark squares indicate 290 
the ESU, where measurements were conducted. For context, a RapidEye image in true colors is 291 

displayed in the background.  292 

According to the generated cluster maps two location were identified in each cluster class 293 
and for each field producing a total of 24 (6 fields x 3 classes x 2 location) elementary sampling 294 
units (ESU). The ESUs were placed, if possible, away from field borders (at least two RE pixels 295 
from borders, i.e. 10 meters) and around the central part of MSAVI cluster. This approach is the 296 
base to conduct a “smart scouting” to collect field data, since it allowed us to place the ESUs in 297 
areas of greatest variability of rice biomass and status, avoiding time consuming and laborious 298 
random samplings. 299 

Field campaigns were conducted two days after RE acquisition; data were acquired in 300 
correspondence of the identified ESUs thanks to a GPS rover unit (Trimble GEII Explorer) and 301 
following the sampling scheme described in the following section. 302 

2.3.3 Smart app measurements and field data collection 303 

The estimation of biophysical variables from satellite products via empirical modelling 304 
requires RS data to be compared with ground measurements for the corresponding variables. A 305 
bottom up approach is typically used for the validation/calibration strategy following 306 
international recognised protocol and guidelines as proposed by the CEOS LPV group (Morisette 307 
et al., 2006), the VALERI project (http://w3.avignon.inra.fr/valeri/), and ESA campaigns (Baret 308 
and Fernandes, 2012). The approach starts from the scale of the individual measurements that are 309 
aggregated over an Elementary Sampling Unit (ESU) with a support area consistent with that of 310 
the decametric product to be validated/calibrated (10-30 m). Several ESUs are sampled over a site, 311 
typically following a stratified sampling strategy (Cohen & Justice, 1999). This allows developing 312 
calibrated transfer functions between the radiometric signal, or bands combination, of a 313 
decametric sensor and crop variables. 314 

 315 

 316 

Figure 4: Sampling schemes of PocketN (#25 dots) and PocketLAI (#18 diamonds) data for an 317 
ESU. 318 
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For each ESU, 25 and 18 measurements were taken with the smart apps PocketN and 319 
PocketLAI, respectively (Figure 4). PocketLAI (Confalonieri et al., 2013) is based on the automatic 320 
segmentation of images acquired at 57.5° below the canopy while the used is rotating the device 321 
along its main axes, thanks to an inclinometer derived from the device accelerometer. At that 322 
zenith angle, the estimated gap fraction can be used to derive LAI using a light transmittance 323 
model that do not need either multi-angle measurements (like for LAI-2000) or parameters 324 
describing canopy structure (like for ceptometers) (Baret et al., 2010). PocketN (Confalonieri et 325 
al., 2015) is based on the estimation of the dark green colour index (DGCI, 0 to 1) according to 326 
Karcher and Richardson (2003) from leaf images acquired using a dedicated background panel 327 
that returns a flat reflectance across the visible spectrum to the device exposure meter, regardless 328 
of the illumination conditions during image acquisition. This allows normalizing the analysis of 329 
green shades during image processing. DGCI values from PocketN were converted into PNC 330 
values [mg/g]) using a calibration curve specifically developed for cv. Selenio (Confalonieri et al., 331 
2015): 332 

PNC = (𝐷𝐺𝐶𝐼 − a)/b (3)  

with a and b being 0.3475 and 0.0776, respectively. 333 
PocketLAI and PocketN demonstrated a comparable accuracy compared with commercial 334 

instruments, despite the advantages related with their cost and with the high portability 335 
(Confalonieri et al., 2013;2015). Further details on the functioning of both the apps are available 336 
in the seminal literature and, for PocketLAI, in the video tutorial at 337 
https://www.youtube.com/watch?v=qQPfzAxsGSs&t=13s. For each measuring point (Fig. 4), one 338 
PocketLAI estimate was taken below the canopy, and one PocketN reading was performed in the 339 
second third of the last completely emitted leaf blade of a random selected plant. 340 

The dataset (432 and 600 values for PocketLAI and PocketN, respectively) was screened to 341 
detect errors or anomalous values, and then mean LAI and PNC values were calculated for each 342 
of the 24 ESU. When DGCI values were outside (lower) the range used to derive Eq. 3, they were 343 
set to the minimum values observed in the experimental condition. 344 

2.4 Vegetation indices and correlation analsysis  345 

RE and S2 images were used to calculate more than 20 VIs proposed for LAI and PNC 346 
estimates. Table 3 reports the indices considered, grouped according to the wavelengths they use. 347 
Details on indices formulation, original references, and sensors from which they can be calculated 348 
can be found in Index DataBase (indexdatabase.de, last access September 2017), whereas a short 349 
summary of this information is provided in Appendix. Indices based on bands in the shortwave 350 
infrared (SWIR) and Red-Edge(REdg) regions were calculated only for the S2 image. VI values 351 
were extracted from the pixels corresponding to each sampled ESUs and average values for each 352 
ESU were then computed. A buffer of 2×2 pixels from the ESU centroid for both RE (10m×10 m) 353 
and S2 (20m×20 m) images was considered while extracting VI data. After the elimination of two 354 
ESUs characterized by anomalous reflectance or PocketN data values, a total of 22 records were 355 
used to derive the relationships between field data (PNC and LAI) and VIs (from RE and S2 356 
images). The best indices were selected based on the values of adjusted r2 obtained from the 357 
regression analysis. The four linear models selected (two biophysical variables for each one of the 358 
two sensors) were then used to produce the respective LAI and PNC maps. 359 
  360 
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Table 3. VI used in the study as computed from RE and/or S2 images. VI are grouped on the 361 
basis of the wavelengths used. Vis=visible ([400–700 nm]; RE bands: 1,2,3; S2 bands: 2,3,4); 362 

REdg=red edge ([700–750 nm]; RE band: 4; S2 bands: 5,6,7); NIR=near infrared ([800–900 nm]; 363 
RE band: 5; S2 band: 8); SWIR: Short wave infrared ([1500–2500 nm]; S2 bands: 12, 13); Multiple 364 

Vis Ratio=VIs ratio. 365 

 

Category* Formula type Index Sensor 

Vis Normalized difference GLI Both 

Single band Blue Both 

Single band Green Both 

Single band Red Both 

Vis-REdg Simple ratio PSSR S2 only 

Addition/ subtraction MCARI Both 

Addition/ subtraction TCARI Both 

Normalized difference NDVI2 S2 only 

Normalized difference NDI45 S2 only 

Normalized difference MTCI S2 only 

Normalized difference S2REP S2 only 

Normalized difference IRECI S2 only 

Triangular TCI Both 

Vis-REdg-NIR Multiple ratio DCNI Both 

Vis-REdg-SWIR Addition/ subtraction MCARISWIR S2 only 

Addition/ subtraction TCARISWIR S2 only 

Vis-NIR Simple ratio SR Both 

Simple ratio CI-G Both 

Simple ratio CVI Both 

Addition/ subtraction MSAVI Both 

Normalized difference NDVI Both 

Normalized difference SAVI Both 

Normalized difference EVI Both 

Normalized difference gNDVI Both 

Normalized difference OSAVI Both 

Other MTVI2 Both 

Vis-SWIR Normalized difference NRI S2 only 

Normalized difference NDFI S2 only 

NIR-SWIR Normalized difference OSAVISWIR S2 only 

REdg-NIR Simple ratio CI-RE Both 

Normalized difference NDRE Both 

REdg Single band REd Both 

NIR Single band NIR Both 

Multiple Vis 

Ratio 

VIs Ratio MCARI/MTVI2 Both 

VIs Ratio NDRE/NDVI Both 

VIs Ratio TCARI/SAVI Both 

VIs Ratio TCARI/OSAVI Both 

VIs Ratio TCARI/MSAVI Both 

VIs Ratio TCARI/OSAVISWIR S2 only 

 366 



2.5 Map generation and NNI estimation 367 

After LAI and PNC layers were generated, Nc values – needed to calculate NNI – were 368 
derived from LAI data using Eq. 4: 369 

PNC =
𝑁𝑚𝑎𝑡

1 − 𝑒−𝑘∙𝐿𝐴𝐼
 (4)  

with k (0.5 in this study) and Nmat (1%) being the extinction coefficient for solar radiation and Nc 370 
at maturity, respectively (Confalonieri et al., 2011). 371 
NNI maps derived from RE and S2 images were then compared to quantify the coherence of the 372 
two sensors and to evaluate the suitability of Sentinel-2 for assessing N nutritional status under 373 
operational conditions. Finally, NNI values extracted and averaged for each ESU were validated 374 
by comparing them with the NNI values directly calculated from field smart apps measurements. 375 

3 Results and discussion 376 

3.1 Analysis of smart app data 377 

Boxplots of the field data collected with PocketLAI and PocketN over the ESUs are shown 378 
in Fig. 5a and b. Boxes’ colors indicate the cluster from which the data were acquired (following 379 
the same color scheme with that of Fig. 3). LAI data ranged between 2.13 and 5.14, indirectly 380 
demonstrating the wide range of growing conditions explored thanks to the smart scouting. Data 381 
are coherent with the expected LAI values for rice at panicle initiation (Stroppiana et al., 2006; 382 
Xue and Yang, 2008; Huang et al., 2015). In particular, LAI from ESUs belonging to Cluster-a 383 
(blue) and Cluster-c (red) was the highest and the lowest respectively (Fig. 5a), which is coherent 384 
with the purpose of the clustering procedure and the semantics of the identified ESU classes. The 385 
same was observed for PNC (Fig. 5b), suggesting that the clustering procedure allowed 386 
identifying field points with different plant size and nutritional status. Compared to other studies 387 
carried out on real farming condition (e.g., Huang et al., 2015; Wang et al., 2017), field estimates 388 
were performed on a markedly lower number of points; still, the obtained range of LAI and PNC 389 
values is comparable. Indeed, the smart scouting approach allowed a less intense field campaign, 390 
since it allowed the use of satellite images to drive field activity, ensuring at the same time that 391 
the within-field variability is appropriately represented in the set of field measurements. Fig. 5c 392 
shows the relationship between mean LAI and PNC values (calculated on the data shown in the 393 
boxplots in Fig. 5a and b) and the LAI-derived Nc curves for cv. Selenio (solid line). Dashed lines 394 
indicate areas close to the Nc curve (NNI=1 ± 0.1), where nutritional status is assumed to be 395 
optimal (i.e., neither stress nor surplus) (Cilia et al., 2014). The colors of dots in Fig. 5c show how 396 
all the ESUs from Clusterc (red dots) were under limiting conditions (i.e., below the optimal 397 
condition area), whereas most of the Cluster-a ESUs (blue dots) belonged to non-limiting 398 
conditions areas (i.e., close to or above the Nc curve). ESUs sampled in Cluster-b (green dots) 399 
presented a more variable behavior, with severely stressed plants and others experiencing N 400 
luxury consumption. Overall, 10 ESUs out of 22 belonged to non-limiting conditions areas, 401 
whereas 12 to areas characterized by insufficient N availability. This analysis shows that field 402 
data taken with smart scouting approach and mobile devices reliably assessed the full range of 403 
values, confirming the effectiveness of both approaches. 404 
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 408 

Figure 5. Boxplots of LAI (a) and PNC (b) values collected using the PocketLAI and PocketN smart apps for each 409 
ESU. Relative position of the 22 field data for the available ESUs is also shown with respect to the critical N curve 410 
(solid line). Dashed lines highlight area of “optimal status” around the dilution curve (i.e., NNI = 1±0.1) (c). Colours 411 
correspond to those used in Fig. 3 for ESU clustering. 412 

3.2 Selection of regression models 413 

ESUs and VIs from satellite images led to the regression coefficients shown in Table 4. In 414 
general, higher correlations were obtained for LAI data compared to PNC values. Many VIs 415 
showed correlation coefficients with LAI close to or above 0.7 with both sensors, whereas the best 416 
correlation with PNC barely reached values around 0.5. This was largely expected, since 417 
reflectance data are more influenced by plant tissue scattering (e.g., LAI and total biomass) rather 418 
than by leaf pigments. Moreover, it is well-known that chlorophylls and AGB are correlated for 419 
crops grown under non-artificially stressed conditions (Stroppiana et al., 2009). This is also the 420 
reason why—for radiative transfer approaches—the independent retrieval of LAI and 421 
chlorophyll content is an ill-posed problem, since different combinations of LAI and chlorophyll 422 
amount can cause the same spectral response (Combal et al., 2003). Fitzgerald et al. (2010), indeed, 423 
proposed to calculate a canopy chlorophyll content index (CCCI), which is considered a more 424 
robust variable. In any case, the regression coefficients reported here are comparable to those 425 
obtained in other similar studies by other authors (Chen et al., 2013; Huang et al., 2015; Zhao et 426 
al., 2015). Table 4 also shows that the accuracies obtained from RE images were slightly better 427 
than those achieved using the S2 sensor. Indeed, the LAI regression models achieved r2 higher 428 
than 0.7 for 11 VIs calculated from the RE image, but only for two VIs calculated from S2 data. 429 
The. difference between the two sensors was less pronounced for VI-PNC correlations, for 430 
which—despite the fact that the strongest correlation was achieved for an RE-based index 431 
(gNDVI, r2=0.56)—S2 data allowed deriving correlation coefficients consistent with RE ones for 432 
many VIs. The moderately better correlations obtained for RE VIs is likely due to the higher 433 
spatial resolution of this sensor (5 m, compared to 10m for S2) hence smaller area considered 434 
while extracting VI data. Moreover, some of the S2 bands used for VIs calculation, such as those 435 



corresponding to SWIR and REdg wavelengths, have even a coarser resolution (20 m) and the 436 
field campaign was conducted closer to RE’s overpass date (see Table 2). It is interesting to notice 437 
that, for both sensors, the best correlations with LAI were obtained for VIs belonging to Vis-REdg 438 
(highest r2 MTVI2=0.77 for RE) and Vis-NIR (highest r2 MCARI=0.70 for S2) categories. Good 439 
correlations were also obtained with the single band of NIR from both sensors and with Vis-SWIR 440 
category from S2 images (not available for RE). Regarding PNC, satisfying results were usually 441 
obtained for Vis belonging to the Vis-NIR and Ratio category, with the best correlated VIs being 442 
gNDVI (r2=0.56) for RE and TCARI/OSAVI (r2=0.46) for S2. This is consistent with Haboudane et 443 
al. (2002), who observed that VIs in the Ratio category are more effective to estimate leaf 444 
biochemical features (like chlorophylls content) by minimizing the effect of plant structure. Good 445 
correlations were also achieved for both sensors using only the Red band; this region of the 446 
spectrum is indeed the one for which chlorophylls show the maximum absorption. Also Vis-447 
REdg (NDVI2 and NDI45) and Vis-SWIR categories led to good results, although in this case only 448 
S2 images can be used, since the bands required for calculating those indices are not available in 449 
the RE sensor. In general, the analysis of regression coefficients for different VI categories 450 
revealed a good coherence among variables and sensors. Indeed, Vis that were well correlated to 451 
one of the field variables using one of the two sensors were also ranked first for the other. The 452 
VIs with the highest regression correlation (adjusted r2 value) were selected to define the 453 
empirical models for deriving LAI and PNC maps. In particular, MTVI2 and gNDVI were 454 
selected to spatialize LAI and PNC, respectively, for RE, whereas the corresponding S2 VIs were 455 
MCARI and TCARI/OSAVI. The regression models used to spatialize LAI and PNC data are 456 
showed in Fig. 6. It is important to underline that the selected VIs have an opposite behavior 457 
when correlated with the two field variables. In particular, MTVI2 and MCARI (selected for LAI) 458 
have a low correlation with PNC (maximum r2=0.27) and vice-versa for gNDVI and 459 
TCARI/OSAVI (maximum r2=0.58). This indirectly demonstrates their low autocorrelation. 460 
Despite the fact that other crops or EO products would most likely lead to other VIs being selected 461 
for estimating LAI and PNC, in many cases the best VIs would belong to the same category of 462 
those we selected. For instance, Cilia et al. (2014) identified MCARI/MTVI2 (Ratio category) as 463 
the most correlated with corn PNC on corn, and Xie et al. (2014) selected a Vis-NIR index to 464 
estimate LAI for winter wheat. Nevertheless, in other cases exactly the same VIs were selected to 465 
estimate LAI: Cilia et al. (2014) used MTVI2 whereas Huang et al. (2015) used MCARI. The same 466 
can be discussed for PNC: Quemada et al. (2014) used TCARI/OSAVI and Padilla et al. (2014) 467 
gNDVI. In general, also regression parameters retrieved by these authors are close to those 468 
showed in Fig. 6. 469 
  470 



Table 4. Regression analyses between vegetation indices and field LAI and PNC data. 471 
Coefficient of determination (r2) is reported. In bold, r2 values higher than 0.60 for LAI and 0.40 472 

for PNC are shown. 473 

  LAI [m2/m2] %PNC [mg/g] 

Category Vegetation index RapidEye S2 RapidEye S2 

Vis 

GLI 0.46 0.54 0.00 0.32 

Blue 0.25 0.24 0.35 0.28 

Green 0.01 0.05 0.31 0.22 

Red 0.47 0.47 0.46 0.44 

Vis-RE 

PSSR / 0.56 / 0.24 

MCARI 0.70 0.72 0.12 0.22 

TCARI 0.65 0.32 0.29 0.34 

NDVI2 / 0.62 / 0.44 

NDI45 / 0.66 / 0.41 

MTCI / 0.51 / 0.28 

S2REP / 0.53 / 0.35 

IRECI / 0.61 / 0.21 

TCI 0.71 0.64 0.29 0.36 

Vis-RE-NIR DCNI 0.01 0.41 0.15 0.35 

Vis-RE-SWIR 
MCARISWIR / 0.68 / 0.33 

TCARISWIR / 0.67 / 0.29 

Vis-NIR 

SR 0.69 0.57 0.26 0.25 

CI-G 0.54 0.53 0.50 0.35 

CVI 0.06 0.07 0.45 0.20 

MSAVI 0.77 0.65 0.22 0.25 

NDVI 0.63 0.63 0.39 0.45 

SAVI 0.75 0.64 0.23 0.27 

EVI 0.73 0.65 0.20 0.26 

gNDVI 0.58 0.56 0.56 0.41 

OSAVI 0.73 0.65 0.27 0.32 

MTVI2 0.77 0.66 0.23 0.27 

Vis-SWIR 
NRI / 0.65 / 0.43 

NDFI / 0.66 / 0.43 

NIR-SWIR OSAVISWIR / 0.41 / 0.22 

REd-NIR 
CI-RE 0.61 0.54 0.37 0.30 

NDRE 0.62 0.58 0.43 0.38 

REd Red 0.11 0.02 0.03 0.15 

NIR NIR 0.76 0.61 0.18 0.20 

Multiple Vis 

Ratio 

MCARI/MTVI2 0.24 0.03 0.00 0.10 

NDRE/NDVI 0.57 0.55 0.43 0.36 

TCARI/SAVI 0.71 0.60 0.38 0.46 

TCARI/OSAVI 0.70 0.56 0.36 0.46 

TCARI/MSAVI 0.71 0.61 0.41 0.45 

TCARI/OSAVISWIR / 0.53 / 0.23 

 474 



 475 

 476 

Figure 6. Selected linear regressions between field LAI and PNC data and selected VIs from 477 
RapidEye (RE) and Sentinel-2 (S2) sensors (left and right panels respectively). 478 

3.3 Generation of NNI maps 479 

Regression models (Fig. 6) allowed generating the NNI map shown in Fig. 7. Yellowish and 480 
greenish colors refer to areas in good nutritional status (NNI around 1) and luxury consumption 481 
(NNI > 1.1), respectively, whereas reddish indicates N deficiency (NNI < 0.9). NNI thresholds are 482 
based on Cilia et al. (2014). RE- and S2-based maps show the same spatial patterns of NNI in all 483 
fields. Indeed, the spatial correlation analysis performed between the two NNI maps showed a 484 

correlation coefficient of 0.72 (intercept=0.02, slope=0.97). Field #3 presented non-limiting 485 
conditions for N, whereas fields #1 and #2—despite the presence of some localized spots—were 486 
mainly characterized by insufficient N availability. Rice plants in field #4, instead, presented 487 
heterogeneous N nutritional status, with deficiencies shown in the top-corner and, to a lesser 488 
extent, in the right one. Observed spatial patterns have a clear agronomic interpretation. The 489 
luxury consumption in many areas of field #3 are explained by the use of the cover crop Trifolium 490 
pretense as green manure. The low NNI values calculated for a wide area in the top-right part of 491 
field #2 are due to sandy soil with low organic matter, which explain low-fertility soil regions 492 
within the field. Similar considerations can be done for the upper left corner of field #4, the soil 493 
presenting organic matter content lower than the rest of the paddy. Fig. 8 shows the NNI data as 494 
compared to the optimal value (NNI=1; black vertical line) and to the overall NNI mean 495 
(calculated on the pixels from all fields, NNI=0.78; red dotted vertical line). The high frequency 496 
of NNI values lower than 1 for fields #1 and #2 is even more clear, as well as the good nutritional 497 
status estimated for field #3. 498 
  499 
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Figure 7. Nitrogen nutrition index (NNI) maps obtained from remotely sensed data of RapidEye (RE) and Sentinel-2 502 
(S2). Optimal NNI value corresponds to 1. Grey squares indicate sampled elementary sampling units. 503 
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 505 
Figure 8. Values of nitrogen nutritional status (NNI) for all fields (top panel) and for each field separately (bottom 506 
panels) estimated using RapidEye (RE) and Sentinel-2 (S2) (left and right, panels respectively). Vertical black line 507 
and red dotted lines indicate NNI = 1 (optimum value) and general NNI mean, respectively. 508 

3.4 Validation of NNI maps 509 

Fig. 9 compares the values of NNI extracted from satellite-derived maps in correspondence 510 
of the ESUs with those calculated directly from field data (smart app measurements). The 511 
agreement between NNI values from satellite and ground measurements was slightly better 512 
when RE data were used (r2=0.54 vs. 0.47 for S2). Regression coefficients for both sensors are in 513 
line with what achieved by Chen et al. (2013) and Huang et al. (2015), who also worked on real 514 
farm conditions, with fields operationally managed by farmers rather than on plots with 515 
variability induced by experimental factors. Satellite-based NNI underestimated some of those 516 
derived from field data for NNI values above 1, and presented a slight overestimation for values 517 
close to zero, as already showed by Huang et al. (2015). These results can be considered as fully 518 
satisfactory, being in line with other studies although inexpensive and fast techniques were used 519 
to acquire field data (smart apps) and despite few ESUs were sampled in a single date. From the 520 
agronomic point of view, the worst case among those presented in Fig. 9 refers to the top-left 521 
area, since it represents an N stress not detected from satellite. On the other hand, the bottom-left 522 
area includes false positives, with luxury consumption detected from field data and stress 523 
conditions estimated from the satellite imagery. In any case, these two areas have the lowest 524 
density of points (Fig. 9). Indeed, N deficiencies were correctly identified in 18 out of 22 ESUs 525 
using RE data, and in 17 out of 22 cases using the S2 sensor. This kind of information on rice 526 
nutritional status, if timely supplied, could support farmers and agronomist in the tactical 527 
management of top-dressing fertilization. For instance, NNI maps can be used to drive further 528 
field scouting on more stressed areas, in order to allow farmers to thoroughly check the 529 
troublesome situations and, if needed, prioritize interventions. Additionally, NNI maps—530 
together with expert based knowledge—can be used to develop prescription maps to perform 531 
top-dressing fertilizations by reducing the amount of N supplied in luxury consumption areas 532 
(NNI > 1.1) and increasing it in N-limited zones (NNI < 0.9) (Busetto et al., 2017). Alternatively, 533 
estimated NNI can be used in more quantitative ways, like in the operational services developed 534 
by Blondlot et al. (2005) and Chambenoit et al. (2004), or in the approaches tested under 535 
experimental conditions by Cilia et al. (2014) and Yang et al. (2014). 536 
  537 
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Figure 9. Relationship between values of nitrogen nutritional index (NNI) derived from satellites and estimated with 539 
ground measurements. Green and red boxes refer to good or poor coherence between the two series of NNI. The 540 
buffer of [0.9-1.1] represents the optimal nutritional condition. Grey dotted line indicates perfect agreement. 541 

4 Conclusions 542 

The need for increasing N use efficiency in rice-based cropping systems is justified by both 543 
its economic and environmental impact, since the amount of N not used by the plants does not 544 
enhance yield and unused nitrogen is at risk to have negative impact on water and air quality. 545 
This study demonstrated the feasibility—under real farming conditions—of a workflow for the 546 
production of NNI maps right after satellite image acquisition, using smart scouting techniques 547 
and smartphones as in-field sensors. The use of inexpensive and user friendly tools (like the 548 
PocketLAI and PocketN smart apps used here) for field activities have positive implications in 549 
terms of economic sustainability of the proposed methodology. Indeed, they extend the 550 
possibility to collect reliable data also to non-expert technicians. Moreover, smart scouting 551 
proved its time-effectiveness by prioritizing field data acquisition on few areas where the 552 
heterogeneity was maximum. NNI maps generated with the above-described method can be used 553 
to effectively monitor crops in near-real-time, and to highlight fields (or areas within a field) with 554 
severe N deficiency, hence prioritizing the fertilization activities and supporting the 555 
determination of applicable N amounts according to actual plant nutritional status. The spatial 556 
resolution of the maps developed in this study is suitable to perform variable rate fertilization, a 557 
key practice to increase N use efficiency. Moreover, our analysis demonstrated the feasibility of 558 
using satellite S2 products (operational and free-of-charge) to map rice nutritional status. Despite 559 
its lower resolution (ranging from 10m to 20 m) compared to that of the RE sensor (5 m), the 560 
resulting maps highlighted equivalent spatial patterns. The short revisit time of S2 (5 days when 561 
both A and B satellites of the constellation will be operational) fits farmer needs also in production 562 
districts where many varieties with different cycle lengths are sown in a 2-month time window 563 
and managed following different strategies in terms of number of events and N amount per 564 
event. These conditions determine a very heterogeneous spatial mosaic of crop conditions and 565 
actions to be performed to guarantee the sustainability of cropping systems. For these reasons, 566 
S2 (A and B) data seems to be the more suitable source of information for workflows like the one 567 
proposed in this paper. Furthermore, S2's spatial resolution (10 m) is consistent with the smallest 568 
area manageable with most VR machinery in areas like the Italian one, where double-disc 569 
spreaders are used, which are able to differentiate N amounts with a resolution of about 25 m. In 570 
practice, our analysis demonstrated the suitability of S2-like data in terms of both spatial and 571 
temporal resolution for monitoring N nutritional status and potentially for driving VR N 572 
distribution. 573 
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