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Abstract 

The lack of quantitative methods independent of the conventional qualitative phenology, may be 

a vital limiting factor to evaluate the temporal trends in the crop growth cycle, particularly in the 

heterogeneous canopies of cultivar mixtures. A digital camera used to take ground-based nadir images 

during two years of a field experiment conducted at the College of Agriculture, Shiraz University, 

Iran; in 2014-15 and 2015-16. The experimental treatments consisted of 4 early- to middle-ripening 

wheat cultivars and their 10 mixtures, under post-anthesis well- and deficit-irrigation conditions, 

arranged in a randomized complete block design with 3 replicates. Then the images were processed 

and three image-derived indices including CC (canopy cover), GR [(G-R/G); RGB color system], and 

CCGR (CC×GR) were used as the quantifying criteria. The declining trends of these indices during 

ripening showed strong fits to binomial equations, based on which simple prediction models were 

suggested and validated. Furthermore, the split linear trends and their slopes were estimated to assess 

the short-term variations. Some agronomic aspects were also evidenced using the mixtures-

monoculture diversions, and the relationship between CC and GR. The frameworks evaluated appears 

to provide the reliable and simple solutions for quantifying the crop temporal trends parallel to the 

conventional phenology.            
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Introduction 

Monitoring or predicting the irreversible trend of successive events in crop growth and 

development (i.e. phenology), is a fundamental necessity on almost every field crop study or practice, 

even where it is not the main objective. Conventional methods in phenological studies -e.g. Feekes 

(Feekes, 1941; Large, 1954), Zadoks (Zadoks et al., 1974), and BBCH scales (Lancashire et al., 
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1991)- are mainly based on professional qualitative descriptions; even though they use numerical 

bases (Landes and Porter, 1989), and/or reporting the crop stages based on some quantitative aspects 

such as 50% flowering (which usually depends on the observer’s perception of the canopy status, 

instead of being the result of an exact counting of the plants). However, especially where the high 

degree of accuracy in estimations are needed, e.g. in developing or running crop models, an error of 

one or two day(s) in distinguishing the phenological events /or periods may lead to considerable 

miscalculations (e.g. in calculating the base temperature and growth degree days –GDD- using current 

formulae -Yang et al., 1995-, particularly when the data is limited to few plantings). Obviously, the 

difficulties and limitations in this context are associated with two main facts: (a) the continuous trend 

of growing and developmental processes in single plants, which are characterized in the form of 

discrete qualitative codes; and (b) the phenological differences between individual plants within a 

canopy, even in the most homogenous stands of monocultures consisted of the modern pure 

genotypes. 

Cultivar mixtures are investigated during the recent decades as the potential alternatives for 

conventional intense cropping systems (Kiær et al., 2009; Borg et al., 2017; Reiss and Drinkwater, 

2017), mainly due to the expected advantages of improving biodiversity, based on the ecological 

principles. If the cultivar mixtures are designed based on the phenological differences of the included 

components (i.e. cultivars), determination of the crop phenology in such a heterogeneous population 

-as a whole canopy- would even be a more challenging problem, so that the efficient determination 

of the crop stage by the conventional methods appears to be impossible. For instance, Haghshenas et 

al. (2013) and Fang et al. (2014) evaluated the wheat cultivar mixtures with different ripening patterns 

aiming to increase water use efficiency under water-limited conditions. In these situations, even after 

distinguishing the cultivars in the mixtures, the way of reporting the overall crop phenology will be 

problematic, in the absence of an appropriate estimation framework.  

Remote sensing approaches are currently the well-established tools for monitoring and predicting 

crop status in large- to farm-scales. Accordingly, there is a considerable number of studies in the 

literature reporting results of crop phenology recognition or modeling using remote sensing 

techniques, mostly based on the well-known spectral indices (e.g. NDVI, Normalized Difference 

Vegetation Index) and sensors (Sakamoto et al., 2010; Lopes and Reynolds, 2012; Lausch, et al., 

2015; Aubrecht et al., 2016; Magney et al., 2016; Zeng et al., 2016; Canisius et al., 2017; Gao et al., 

2017; Liu et al., 2017). Among the reliable, readily available, and low cost sensors, are common 

commercial digital cameras, which are increasingly attracting attentions in crop sciences by providing 

robust relationships between image-derived indices and bio-physiological criteria (Li et al., 2010; 

Sakamoto et al., 2012; Wang et al., 2013; Lee and Lee, 2013; Hunt Jr et al., 2013; Easlon and Bloom, 

2014; Zou et al., 2014). Despite the novel multi- to hyperspectral sensors and criteria developed, 
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digital cameras seem to be capable to remain as a desirable choice for determining the crop status 

quantitatively and accurately, due to having high spatial and color resolutions, and considerable 

overlap between the spectral ranges of visible light and photosynthetically active radiation (PAR, 

McCree, 1972). However, despite the relatively more frequent reports for forest and rangeland species 

(Bradley et al., 2010; Ide and Oguma, 2010; Granados et al., 2013; Henneken et al., 2013; Alberton 

et al., 2014; Inoue et al., 2014; Alberton et al., 2017; Lang et al., 2017; Toda and Richardson, 2017), 

studies with the purpose of using digital color images for evaluating the crop phenology are rare 

(Sakamoto et al., 2011; Imukova et al., 2015; Bargiel, 2017).  

Furthermore, even in the remote sensing approaches, the quantitative outputs are usually reported 

based on the conventional qualitative phenological events, and there are few reports in the literature 

in which the amounts of a quantitative index were taken independently as the crop developmental 

“events”, themselves (Lopes and Reynolds, 2012). In the study of Lopez and Reynolds (2012), 

expression of stay-green was evaluated for a considerably diverse set of wheat populations, based on 

NDVI values at physiological maturity. They suggested the rate of senescence regressed on degree 

days, as an independent measurement of stay-green without the confounding effect of 

phenology. Such attempts may be considered as the evidences for the inevitable necessity of 

developing or generalizing novel approaches in order to fill the gap between the currently available 

qualitative scales, and the increasing need for determining the phenological events more precisely, 

efficiently, and quantitatively.  

Therefore, in an ideal horizon, the crop temporal dynamics caused by various phenomena with 

distinct biological bases e.g. tillering, flowering, or ripening would be alternatively represented using 

a unique mathematical terminology. For instance, if supported by robust evidences and shown by 

adequate studies, a researcher would report that a given wheat cultivar needs “n” GDDs to reach its 

maximum amount of the CC (the image-derived canopy cover index) under optimal conditions, 

without necessarily referring to its conventional qualitative phenology (e.g. reporting the growth stage 

was at the middle anthesis, or the Zadoks code 65). Obviously, achieving this goal requires that the 

remote sensing-based indices (i) reflect the crop variations over the time (or against thermal time/ or 

GDD) appropriately, and (ii) be predictable enough to be used in the crop models, as the alternatives 

to the conventional phenological events.  

The objectives of the present study were: (1) monitoring and quantifying the ripening trends in 

monocultures and mixtures of four winter wheat cultivars with different ripening patterns under well- 

and deficit-irrigation conditions, utilizing image-derived indices; and (2) evaluating the option of 

developing simple independent quantitative frameworks parallel to the conventional qualitative ones 

for identifying and modeling the crop trends over the season, employing uncomplicated image-based 

computable criteria.  
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Materials and methods 

In order to evaluate the ripening trends in various mono- and mixed cropping of 4 early to middle 

ripening winter wheat cultivars, series of digital images were taken during two growing seasons and 

processed.  

 

Field experiments 

A 2-year factorial field experiment was conducted during 2014-15 and 2015-16 growing seasons 

at the research field of College of Agriculture, Shiraz University, Iran (29°73´ N latitude and 52°59´ 

E longitude at an altitude of 1,810 masl). Treatment were included the 15 mixing ratios of four early 

to middle ripening wheat cultivars [Chamran (1), Sirvan (2), Pishtaz (3), and Shiraz (4), respectively] 

including the 4 monocultures and their every 10 possible mixtures, which were grown with 3 

replicates under two normal and post-anthesis deficit-irrigation conditions. The experimental design 

was RCBD (Randomized Complete Block Design) in which all the 90 (2×2 meter) plots were 

arranged in a lattice configuration with 1 meter distances. Plant density was set to 450 plants/m2 and 

seeds were mixed with equal ratios (1:1- 1:1:1- and 1:1:1:1, for the 2-, 3-, and 4-component blends, 

respectively) considering their 1000-grain weights and germination percentages. The planting dates 

in the first and second growing seasons were November 20 and November 5, respectively; and based 

on the soil test, only 150 kg nitrogen/ha (as urea) was applied in three equal splits i.e. at planting, 

early tillering, and anthesis. No pesticide was used and weeding was done by hand.  

Based on the local practices, irrigation interval was set at ten days, and the amount of irrigation 

water was estimated using Fao-56 Penman-Monteith model with local corrected coefficients 

(Razzaghi and Sepaskhah, 2012; Shahrokhnia and Sepaskhah, 2013) which was reduced to 50% of 

evapo-transpirational demand from the first irrigation after anthesis.  

 

Imaging 

The nadir images of plots were taken throughout the both growing seasons in the same way i.e. 

from 150 cm above the soil surface during the period between solar noon and 2 hours later. The 

imaging events were more frequent from flowering towards the end of season, due to more rapid 

changes in the canopy status. Images were taken by a common commercial digital camera (Canon 

PowerShot SX100 IS), setting to auto mode and the maximum imaging resolution of 8.0 megapixels. 

The overall imaging duration for each day was maximum 40 minutes.  
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Image processing and indices 

Image processing was carried out using an exclusive MATLAB code, by which the images were 

primarily segmented into two “green vegetation” and background parts based on the common 

thresholding formula of G-R>0 (Wang et al., 2016; G and R stand for green and red color values in 

RGB color system, respectively). Subsequently, the following image-derived indices were calculated 

for each image: 

 

CC =
Number of vegetation pixels

Total number of image pixels
    (1) 

 

GR =
𝐺−𝑅

𝐺
       (2) 

 

𝐶𝐶𝐺𝑅 = 𝐶𝐶 × 𝐺𝑅      (3) 

 

where CC is canopy cover (Guevara-Escobar et al., 2005; Wang et al., 2016), and “G” and “R” 

are mean green and red values of vegetation parts (pixels) in RGB color system, respectively, with 

the range of 0-255 (i.e. for zero to maximum possible reflection recorded for each color). It is notable 

that CC is a well-known criterion related to the quantitative development of the green canopy; while 

𝐺𝑅 is the normalized amount of G-R (Wang et al., 2013), a quantitative measure associated with 

quality of the canopy spectral behavior, regardless of its size. Indeed, the GR index shows the 

difference between the recorded red and green values in each vegetation image pixel, independent of 

the size of canopy coverage (i.e. the comparative quality of light per area unit of canopy cover). 

Therefore, the GR index may be taken as an indicator for quality of the photosynthesis apparatus; as 

is expected, the difference between red and green reflection from the canopy would be larger in more 

desirable and healthy conditions. Furthermore, the CCGR index may provide an overall integrative 

estimation of the quantity and quality of reflection from green surfaces with respect to the image area 

(i.e. per occupied ground surface). Obviously, each of the three mentioned indices have a theoretical 

range between 0 to 1. The trend of variations in indices were evaluated during the season (particularly 

from anthesis) using simple linear or various binomial equations.  

The diurnal temperatures for calculating accumulated thermal time (ATT) and growth degree days 

(GDD) were obtained from the weather station located about 500 meters from the experimental field. 

The Thermal time was calculated by summing the average diurnal temperatures (°C) in the certain 

period (in the most cases, from sowing to ripening i.e. CC=0); and the individual base temperature 

for each cultivar was estimated based on the “standard deviation in days, SD” equation (Yang et al., 

1995) using the data recorded for the two growing seasons (whose results were also exactly as the 
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same as the “coefficient variation, CV” and the “regression coefficient, RE” methods, due to using 

the data of two plantings in the equations). To the best of our knowledge, it is the first time that the 

base temperature is calculated on the basis of an image-derived date (event) i.e. when the CC of each 

cultivar was reached zero, as the results of binomial equations between the DAS (days after sowing) 

and CC values, where they were the independent and the dependent variables, respectively. 

Thereafter, GDD of each cultivar was calculated for the defined periods (sowing to ripening i.e. DAS0 

to DASCC=0), by the following equation (McMaster and Wilhelm, 1997): 

𝐺𝐷𝐷 = [
(𝑇𝑀𝑎𝑥+𝑇𝑀𝑖𝑛)

2
] − 𝑇𝐵𝑎𝑠𝑒    (4) 

where if [(𝑇𝑀𝑎𝑥 + 𝑇𝑀𝑖𝑛)/2] < 𝑇𝐵𝑎𝑠𝑒, then [(𝑇𝑀𝑎𝑥 + 𝑇𝑀𝑖𝑛)/2] = 𝑇𝐵𝑎𝑠𝑒 .  

Model validations were performed by testing the data of the second year as the independent inputs 

of the equations obtained from the first year, and consequently comparing the RMSE (root-mean-

square error).  

The mathematical analyses (equation fitness) were carried out using Origin Pro 8 software 

(OriginLab, Northampton, MA) and XLSTAT Version 2016.02.28451 (Addinsoft). Statistical 

analyses were carried out using IBM SPSS Statistics for Windows, Version 19.0 (Armonk, NY: IBM 

Corp.) and mean comparisons were performed using LSD and Tukey’s tests. Finally, all charts and 

figures were made and edited by Microsoft Excel 2016 and Adobe Photoshop CC 2017. 

 

Results  

The comparative differences in the ripening trends of the four monocultures under the well-

irrigation conditions of the 1st year are shown in Fig. 1, using the original images, numerical 

quantities, and also in a novel kind of diagram. As the values of CC, GR, and CCGR indicate, these 

criteria have declined towards the end of the season; the trends whose rates also decrease from the 

monoculture of the early-ripened cultivar to the middle-ripening one. The effects of irrigation and 

mixture treatments on the three image-derived criteria were also significant in most of the imaging 

dates in both years, particularly from middle to late season (Table S1). In general, post-anthesis 

deficit-irrigation reduced the CC, GR, and CCGR values. Differences among the mixtures were 

smaller under deficit-irrigation, compared with the well-irrigation conditions (Table S2 & S3). The 

theoretical range of either criterion is between 0 to 1 (M&M); however, the actual records were as 

below: the highest amounts of CC recorded in the 1st and 2nd years were 0.858 (175 DAS) and 0.933 

(194 DAS), respectively; similar records for GR were 0.259 (155 DAS) and 0.237 (174 & 191 DAS); 

and were equal to 0.218 (155 DAS) and 0.221 (191 DAS) for CCGR. Therefore, the actual (observed) 

ranges of GR and CCGR were between 0 to the maximum amount of 0.3. 
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Figure 1. The ripening trends in the 4 monocultures of early to middle ripening wheat 

cultivars during the 1st season, quantified using the CC, GR, and CCGR image-derived 

criteria. (A) The table represents the labels and the quantities of the image-derived criteria 

late in the season. The time of imaging events are shown on the basis of DAS (days after 

sowing) and thermal time, at the left side of the table. The configuration of the images and 

objects in other parts of the figure also follow this table. (B) The visualized concepts of CC 

and GR criteria. The equal-sized black circles in the background represent the unit of area (in 

the image and/or on the ground); the comparative size and color ratios of 

𝑖𝑛𝑛𝑒𝑟 𝑐𝑖𝑟𝑐𝑙𝑒
𝑏𝑙𝑎𝑐𝑘 𝑐𝑖𝑟𝑐𝑙𝑒⁄  indicate the CC and GR concepts, respectively, which are drawn 

based on the real ratios; so the inner circles with higher degrees of greenness (i.e. also look 

brighter) represents the images with higher GRs. The RGB color for drawing inner circles are 

determined as: Red=0, Blue=0, Green= GR × a constant value (i.e. 850; ≅255×3.333; for 

strengthening and making the color more visible); thus, the actual ratios are kept constant. (C) 

The visualized concept of CCGR, which implies distributing the overall green content of each 

inner circle across the black circle in the part B (or diluting the normalized greenness of the 

vegetation parts based on the ratio of canopy cover). Furthermore, the CCGR seems to be 

recognizable in the part B, as the overall perception of brightness vs. darkness of the circle 

pairs. (D) The reduced-size original images of the experimental plots whose calculated 

criteria are represented in the table part A, and simulated in the parts B and C.  
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The binomial declining trends during ripening 

Evaluating the declining trend of each criterion based on thermal time during ripening, revealed 

that the simple form of binomial models had strong fits to the data (Fig. 2). Among the image-derived 

indices, the GR trend had a relatively more gradual declining slope compared with CC and CCGR, 

irrespective the irrigation condition and season; so that based on the binomial equation estimations, 

the terminal GR values became zero (GR0) later than CC, i.e. it needed more accumulated thermal 

time (Fig. 2 and Fig. S1). In other words, the term “GR0” remains as a theoretical concept, because 

CC has become zero formerly and there are not green points (pixels) in the canopy any longer, whose 

spectral quality might be evaluated using GR. Accordingly, in this study, CC0 (CC=0) was selected 

as the ripening date or terminal point, based on the objectives (CCGR0 also may be alternatively 

chosen as the canopy terminal date, where the objectives require). Although CCGR has comparatively 

smaller values than the corresponding CC and GR (because is the product of them, both of which 

have values less than 1), its zero values (CCGR0) at the late season estimated by the binomial trends 

generally need ATTs around or more than that is required for CC0, with comparatively less differences 

between cultivars (Fig. 2).  

The predicted thermal times of ripening for the 4 cultivars (CC0) estimated based on the binomial 

equations showed comparatively broader ranges under well-irrigation condition in both years, while 

they seem to be more similar (had a narrower range), under the deficit-irrigation conditions (Fig. 2). 

Such trend is recognizable in Fig. 3 which represents the comparative declining trends of CC for 

every 15 mixture treatments, under different irrigation conditions over the two years. As a general 

rule –irrespective of season or condition-, the most early- and late-ripening cultivars (i.e. the 1st and 

4th cultivars) had the fastest and slowest binomial declining trends during ripening, respectively, and 

thus eventually had the minimum and maximum ATT extrema at ripening (CC0); the range in which 

the other monocultures and mixtures were placed. Again, the effect of post-anthesis deficit-irrigation 

is obvious in the form of decreasing diversities among the ripening events (i.e. the smallest range) of 

the mixture treatments (Fig. 3).  Moreover, the deficit-irrigation significantly accelerated the ripening 

rate, and consequently reduced the ATTs needed for the CC0 event (Fig. 3, Tables S4 to S6). The 

effects of mixtures and irrigation treatments on the ripening trends, ATTs required for reaching the 

maximum CC, and for CC0 were significant (Table S4); such that the differences between ripening 

of the early- to middle-ripening cultivars -and also among the mixtures- were significant. 

Furthermore, the R2 and RMSE values of the binomial trends were affected significantly by the 

irrigation treatment, that generally reduced the regression fit under deficit-irrigation conditions.  

In order to evaluate the option of using the simple binomial models for predicting the amounts of 

the image-derived indices based on thermal time, and particularly estimating the time of the terminal 
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CC0, GR0, and CCGR0 events, the equations of the first year were used for predicting the 2nd year’s 

dataset. Tables 1 to 3, along with the Fig. S2 to S7 represent the results of the model validations based 

on accumulated thermal time, and the Fig. S8 show the outcomes of the estimations based on cultivar 

growing degree days. Among the three indices, CC had the best model fitness (R2 and RMSE), and 

the least deviation in prediction of the date or ATT of the terminal zero point (among CC0, GR0, and 

CCGR0); however, the deviation of its regression line from the 1:1 line was more than GR (see the 

intercepts and slopes in the Tables 1 to 3, and also compare the corresponding trends in Fig. S2 to 

S7). Moreover, it appeared that almost all the regression parameters were influenced by the deficit-

irrigation negatively, irrespective the type of the image-derived index. For instance, the average 

deviations in the predicted CC0, GR0, and CCGR0 events showed a gradual raise from 5.2 to 6.2, 9.3 

to 10.2, and 6.5 to 6.9 days, respectively, due to the post-anthesis deficit-irrigation.  

Figure S8 represents the results of the model validation for the binomial models in which the 

image-derived indices are regressed against GDD, instead of ATT. As mentioned before, the base 

temperatures and GDDs were calculated based on the sowing-to-CC0 periods in both seasons. The 

calculated growth degree days for the well-irrigated monocultures were 3001.8, 3107.3, 3249, 3733.3 

for the 1st, 2nd, 3rd, and the 4th cultivars, using the base temperatures equal to -4.6, -4.8, -5.1, and -

7.1°C, respectively (calculations are not shown). 

Obviously, in this method the diversions from the 1:1 line are reduced compared with utilizing 

ATT (see the slopes and intercepts in the Fig. S8). However, since the calculations of the base 

temperatures were limited to the two plantings of the present study, the results should be interpreted 

and generalized with caution.  

 

The Linear trends  

Although the best fitting regression trends for the image-derived indices against thermal time were 

binomial, the linear trends may also provide valuable information particularly for the short-term 

variations. Figure 4 shows the split linear trends of variations in the image-derived indices of the 1st 

cultivar monoculture. Based on the objectives, the equations of the linear trends between pairs of 

points (observations) may be used for interpreting the variation through the season. For instance, 

despite the fact that the number of imaging events in the two seasons were not the same, and also they 

were not necessarily synchronized, the linear increasing trends from sowing to the maximum CC 

observed (CCmax) were approximately similar; with the slopes equal to 0.0005 vs 0.0006 (Fig. 4, see 

the dotted lines in the parts A and B). The CC linear declining trends of this early-ripening cultivar 

were still more identical; having the slopes exactly equal to -0.0018, and the intercepts of 3.87 vs 3.71 

in the first and second year, respectively. It implies that the declining rates of CC during ripening was 

in average, about 3 times faster than their increasing rate during the canopy development. The linear 
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GR declining trends were also very similar in the both growing seasons, though the linear increasing 

trend of the first year was 2.5 times faster, compared with the second year. A relatively comprehensive 

comparisons were carried out for other monocultures and mixtures, in the same way (Fig. S9, Tables 

S7 to S9).  

As shown in Fig. S9, the CC linear declining trends of the mixture treatments (during ripening, 

from CCmax to CC0) were divergent towards the end of season, under well-irrigation conditions; while 

the same trends were more parallel under the deficit-irrigation condition. It is notable that this linear 

trend (CCmax to CC0) could not predict the ripening time (CC0), and was not comparable with the 

accuracy of the binomial equations described before. Tables S7 to S9 represent the effect of mixture 

and irrigation treatments on the linear trends of the image-derived indices, and the results of mean 

comparisons over the two years. Obviously, the significant effects of the mixture or irrigation 

treatments, and also their interaction on the linear trends were frequent (Table S7), which may 

indicate the potential and sensibility of the split linear trends in detecting the different temporal trends 

among treatments.  

Another advantage of using the split linear trends in evaluating the short-term variations and/or 

fluctuations of the image-derived indices, relying on the variation between the consecutive points 

(imaging dates) is shown in Fig. S10. In this figure, the results of monocultures in the second year of 

the study were represented (since the imaging events were more frequent in this year, so a higher 

temporal resolution for detecting the minor variations was provided). The linear slope of CC between 

the second and third imaging dates had increased steeply, compared with the previous and the 

preceding trends, and despite the reduced thermal times (in the winter). This trend coincided with the 

early- to middle- tillering growth stage and the respective canopy coverage development. Oppositely, 

in the same period, the previously sharp linear slopes of GR declined gradually, as an initiation for 

the meantime trend of the declining slopes till reaching the maximum GR.  

Furthermore, two irrigation events during the ripening, made two sets of minor fluctuations in 

overall declining trends of the either image-derived indices, irrespective of the irrigation treatment. 

Interestingly, as the CC fluctuations indicate, the responses of the cultivars to the irrigation in the late 

season, were in the order of their ripening rate; so the 1st and 2nd cultivars were less influenced, while 

the CC of the 3rd and 4th cultivars were even increased, in contrast to the general direction of ripening. 

Such increasing is expected to be the consequence of altering leaf angels after irrigation, in the more 

stay-green canopies. Similar responses are also evident for the GR and CCGR indices. In general, 

these results show that each irrigation event had temporarily postponed the overall ripening trend for 

several days; the process which was associated with both green surface quantity and quality. 
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Predicting the image-derived indices of the mixtures, 

 based on the corresponding monocultures 

 

A reasonably estimation approach suggested for evaluating cultivar mixtures, is predicting the 

intended factors using the averaged amounts of the monocultures included in the mixtures (Finckh 

and Mundt, 1992; Mille et al., 2006). Figure 5 indicates the diversion of the observed diurnal CC, 

GR, and CCGR from the predicted values estimated based on the averaged amounts of the respective 

monocultures, under various irrigation conditions during the two seasons. Despite the differences 

between the results of the 1st and 2nd year, as the variation ranges were narrower in the latter, the 

ranges were increasingly enhanced towards the end of season, i.e. during ripening (Figure 5). Among 

the indices, GR and CCGR had the lowest and highest ranges of variations, respectively, regardless 

of the year and irrigation treatment. Generally, the amounts of variation seem to be considerably high, 

as for instance, the biases up to almost ±60% and ±40% were frequent in the 1st and 2nd years, 

respectively. An agronomic implication of such comparisons are represents in the Figure S11, where 

the two-component mixture of the 1st and 4th cultivars under deficit-irrigation condition (treatment 

14) were compared with the corresponding monocultures. The mixture had a higher degree of stay-

green than either of the monocultures, (Fig. S11; see the images and diagrams), as CC and CCGR 

values of this mixture were approximately 3 times higher than the values in the more late-ripening 

monoculture, while the differences between the GR amounts were lower. Although particularly under 

the terminal water stress conditions, the resulted higher stay-green characteristic may be a valuable 

advantageous, the related mechanisms or reasons are outside the scope of this paper. It also should 

be noted that such differences among the canopies may be not necessarily such apparent in the images, 

so that the comparisons would be possible only by utilizing the quantified indices.  

Using the similar approach for evaluating the mixtures’ diversions from the average of the 

corresponding monocultures, the ripening date (i.e. CC0 calculated based on the binomial model) was 

also considered, besides the diurnal values. As Fig. S12 indicates, despite for the diurnal values 

described before, the maximum diversions were less than 2 dates, irrespective the year or irrigation 

conditions, though, the biases were even relatively lower under the post-anthesis deficit irrigation. 

 

The relationship between CC and GR 

The relationship between CC and GR (i.e. the quantitative parameters represents quantity and 

quality of the green canopy), was also evaluated (Fig. 6, 7, and Table S10). In both years, they did 

not show any significant relationship unless at a particular stage during ripening, when the correlation 

(and also regression) parameters raised to a significant peak. This peak was recorded at 192 DAS in 

the first year, and jointly at 200 (for both well- and deficit-irrigation) and 208 DAS (under well-
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irrigation) in the second year. Although based on the thermal time or days after sowing, the 

phenomenon occurred at different times (in both growing seasons), the conventional phenological 

stages were almost identical; which seems to be the best criteria for determining the time of reaching 

the highest correlation between CC and GR. The respective growing stage was at soft dough in the 

most early-ripening cultivar, synchronized with the milk stage of the most late-ripening one, in both 

years (Fig. S13, see the cultivars’ growing stages at 192 and 200 DAS in the 1st and 2nd year, 

respectively).  

It is obvious that at the time when CC and GR show the strongest relationship, the cultivars with 

the highest values of CC had also the highest amounts of GR, and vice versa. Since having the 

maximum CC and GR simultaneously is considered as a physiological advantage, particularly late at 

the season, it might provide a potential opportunity for comparing the mixtures (and also cultivars) 

arranged in a reasonable linear low-to-high order. Therefore, seeking more evidences for 

understanding the related implications and consequences, the relative positions of the treatments –

especially the monocultures- in the mentioned line were compared with some other measured 

physiological trends including grain yield and yield components (data not shown). However, no 

considerable similarities were found, except for the order of ripening, which may explain the 

condition clearly (the pairs of detailed regression charts in Fig. 6 and 7). Obviously, the arrangement 

of mixture treatments (including monocultures and mixtures) with the order of least-to-highest CC 

and GR values followed the ripening patterns of the 1st, 2nd, 3rd, and 4th cultivars, respectively. For 

instance, the 4th cultivar had the highest rank as the most late-ripening one, while the early ripening 

cultivars along with their respective mixtures were in the lowest rank. More research is needed to 

understand whether the reported observations about the relationship between CC and GR, are limited 

to the situations of the present study or may be extrapolated to other conditions and genotypes. 

Besides, for more information about the comparative trends of the image-derived indices and 

conventional phenology, (see Figure S13) which represents the brief timelines of the events during 

the ripening of the 4 monocultures evaluated.  

 

Discussion  

The ripening trends of the mixtures were monitored and evaluated quantitatively using the 

declining trends of three image-derived indices including: (i) CC, which is a well-known index 

associated to the quantity of the green canopy cover; (ii) GR, a modified index related to the quality 

of the reflected light from green surfaces; and (iii) the new introduced index of CCGR, which can 

show the quantity and quality of the green surfaces of the canopy, integratively. Besides having 

simple formulae, as indicated by the statistical analyses (e.g. on the diurnal values), the indices 

seemed to show acceptable degrees of sensibility to the crop variations, high consistency with the 
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visual observations (or images), and were straightforward and easily interpretable; the beneficial 

properties which may maintain them among the efficacious choices for tracking the crop temporal 

trends, depended on the objectives.  

During ripening, the binomial equations showed the best fits on the declining trends of the image-

derived indices regressed on the accumulated thermal times, though their rates were different. 

Accordingly, CC values became zero late in the season earlier than the other two indices, therefore 

CC0 was selected as the criterion for ripening time in the diverse canopies of mixture treatments. The 

binomial trends of the indices could distinguish between the ripening of the 4 cultivars, and revealed 

that the post-anthesis deficit-irrigation had shorten both the ripening period and the diversity among 

the cultivars’ ripening time, regardless of the year. such findings might not have been detected in the 

heterogeneous mixtures, unless using the quantitative criteria. The results of model validations also 

showed the predictability of the indices based on the accumulated thermal times, -and also with a 

caution- on the GDDs. Correspondingly, the biases between the predicted and observed terminal zero 

values of the indices (the ATT/ or GDD at which the index quantity had been extinct completely) as 

the image-based events were as large as several days (in average, 5.2 to 6.2 for CC, 9.4 to 10.2 for 

GR, and 6.5-6.9 for CCGR, under well-and deficit-irrigation, respectively). Such amounts seem to be 

acceptable, respective to some other reports about using the remote sensing indices to predict a 

quantified event (e.g. Johnen et al., 2012). Moreover, when the purpose of the analyses is calculating 

the actual rates of the increasing or decreasing trends rather than their model-based estimated values, 

the observed points should also be utilized; as was carried out for calculating the average rates of the 

CC values from sowing to the maximum recorded peak, or from the peak to the terminal low 

extremes. However, for ensuring the capturing of the real peaks, or achieving them with the least 

diversions, the imaging events is required to be frequent enough. An example of such requirement 

may be the case for calculating the positive or negative linear slopes using the observed CCmax in the 

first year, which seems would lead to results with higher consistencies between the two years, if there 

were more observations around the current recorded imaging date (i.e. CCmax in the first year).   

In addition to utilizing the overall directions of the variations for evaluating the mid- to long-term 

trends of the canopy, the split linear trends were also assessed in order to interpret the temporary 

(short-term) fluctuations of the indices values (similar to Magney et al., 2016). Clearly, in the first 

strategy i.e. focusing on the long-term (binomial or linear) trends, the entire trend fitted to the data 

points is considered as the first priority, and the individual points (observations) and/or the temporary 

fluctuations might be ignored; while in the second strategy (split linear trends), even the pairs of 

points and minor fluctuation are taken into considerations. Among the instances, are determination 

of the ripening time based on the entire trend line, versus distinguishing the effect of irrigation events 

by concentrating on the minor index fluctuations.  
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Utilizing the image-derived indices, some other agronomic assessments were also carried out, 

including predicting the mixtures behavior based on the included monocultures, and evaluating the 

relationship between CC and GR, as the quantitative indices for quantity and quality of the canopy 

green coverage. The results showed that at least in the conditions of the present study, the diurnal 

quantities of the evaluated indices in the mixtures tended to be diverted increasingly from the 

averaged values of the respective monocultures, towards the late season. The high diversions at the 

late season may provide considerable evidences for either synergetic or antagonistic inter-cultivar 

relationships within the mixtures, which in the first case, can make potential opportunities for 

selecting the beneficial cultivar mixtures e.g. in order to improving the canopy stay-green, particularly 

under the stressful conditions late in the season. As described before, the situation may be influenced 

by the year and water stress. Despite the frequent diversions between the diurnal values of the 

mixtures and monocultures, the predicted mixtures’ ripening times (CCmax) based on the binomial 

trends of the corresponding monocultures, showed lower errors (less than 1 or 2 days) compared with 

the observed ripening dates.  

The linear relationship between CC and GR was weak, except in a critical growth stage in both 

seasons, when they showed high correlations. In the respected imaging dates, the relative ranking of 

the mixture treatments (especially monocultures) in having the highest amounts of CC and GR 

followed the ripening patterns of the cultivars included. 

As evidenced in the present study, common digital images may represent an extremely informative 

source for studying the canopy temporal trends quantitatively, in the light of reasonable indices and 

computation methods. However, no successful approach would be created unless the preconditions 

are met. Primarily, these quantitative remote sensing-based indices should provide an appropriate 

reflection of the crop respond to the progress of the parameter taken as the driving factor of the 

phenological dynamics (i.e. time, thermal time, cumulative growth degree days, etc.). In other words, 

the candidate indices should be sensible enough to the crop growth and development. Accordingly, 

as another preference, the candidate indices are also expected to be predictable enough to be used as 

alternatives for the conventional phenological events where needed (e.g. in the nowadays crop 

models). Furthermore, the most consistent data processing method with the objectives should be 

selected and utilized. For example, non-phenological fluctuations of the amounts should be 

distinguished and -depended on the purposes- either be included in or excluded from the calculations. 

The non-phenological variations are expected to be temporary (e.g. in the scale of hours to several 

days) and may be associated with field management including irrigation or fertilization, biotic or 

abiotic stresses, and the data acquisition practices (e.g. the time of imaging or sensor readings). 

Therefore, additional information i.e. about the occurred fluctuations during the cropping season may 

be required in practice, for interpretation of the variations in the index’s trend; even including the 
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conventional phenology, which was excluded from the main computational stream. Indeed, the 

conventional phenology may be useful for casual validation and checking that whether a given data 

point may be included in the evaluations or not. Further, it may provide the key for understanding 

and interpreting the apparently incompatible coincident trends, e.g. as mentioned before, the 

increasing trend of CC despite the declined diurnal degree days was explained by the crop growth 

stage (tillering) based on the conventional phenology and related biological facts (low temperatures 

requirement for tillering). Therefore, if utilized and integrated appropriately, it is expected that the 

novel independent quantitative frameworks and the conventional phenology may be synergetic for 

describing the temporal crop trends, efficiently.   

 

Conclusion 

In the present study, the option of monitoring and quantifying the ripening trends in the 

heterogeneous stands of wheat cultivar mixtures was evaluated using a commercial digital camera, 

independent of the conventional phenology. For this purpose, three simple image-derived indices, 

including the well-known canopy cover (CC), and the modified of G-R (i.e. GR) indices were 

employed as quantitative criteria for quantity and quality of the green surfaces in the canopy, and also 

the novel index of CCGR was introduced for analyzing the quality of reflected light (GR) from the 

green surfaces per unit area. The results showed that the different quantities of the indices regressed 

against thermal time may be taken as the new phenological events, depended on the purposes. 

Accordingly, the binomial trends showed the best fit to the declining trend of either index during 

ripening; by which, it was also shown that the utilized image-derived indices may be predictable 

based on the accumulated thermal time. Besides, some agronomic aspects were described using the 

various estimation methods based on the indices, including: (i) the post-anthesis deficit irrigation 

accelerated the ripening, and reduced the diversity of ripening dates among the cultivar mixtures; (ii) 

the short-term fluctuations in the values of the image indices revealed by the split linear trends, could 

reflect the irrigation events and their different comparative effects on the early- to middle-ripening 

cultivars; (iii) the relationship between CC and GR was not strong unless at the soft-dough and milk 

stage of the early- to the most late-ripening cultivars, respectively. The suggested indices appeared to 

have the potential use in developing independent quantitative frameworks, parallel to the 

conventional qualitative phenology, though they may contribute integratively to the interpretation of 

the temporal crop trends. 
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