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Abstract

Fruit yield estimation in orchard blocks is an important objective in the context of precision agriculture, as

it makes it easier for the farmer to plan ahead and efficiently use resources. Nevertheless, its implementation

is labour-intensive and involves the manual counting of the fruit present in the trees. While colour (RGB)

has been widely shown to be successful and arguably sufficient for yield estimation in orchards, hyperspec-

tral imaging (HSI) shows promise for more nuanced tasks such as disease detection, cultivar classification

and fruit maturity estimation. Therefore, it is important to ask how appropriate is HSI for the task of

yield estimation, with a view to performing all of these tasks with just one sensor. This paper presents

a novel mango yield estimation pipeline using ground based line-scan HSI acquired from an unmanned

ground vehicle. Hyperspectral images were collected on a commercial mango orchard block in December

2017 and pre-processed for illumination compensation. After tree delimitation and mango pixel identifi-

cation, an optimisation process was carried out to obtain the best models for fruit counting, using mango

counts obtained by manually counting the fruit on-tree, and using state-of-the-art RGB techniques for yield

estimation. Models were validated and tested on hundreds of trees, and subsequently mapped. In testing,

determination coefficients reached values of up to 0.75 against field counts (predicting 18 trees) and 0.83

against RGB mango counts (predicting 216 trees). These results suggest that line-scan HSI can be used to

accurately estimate yield in orchards, especially in scenarios in which this technology is already chosen for

the determination of other traits.
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1. Introduction

Fruit yield estimation is a sought key objective for the precise management in orchard blocks, and it would

also be more useful if performed several times within the growing season. Nonetheless, its current practice—

involving labour-intensive tree sampling, manual counting and extrapolation—becomes virtually infeasible

to be considered as an efficient tool in the decision making process (Payne et al., 2013). Furthermore, even5

if performed, the accuracy of manual counting is greatly decreased by the fact that yield variability can

be very high between trees, so the correct spatial representation of fruit yield distribution is difficult to
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measure (Anderson et al., 2018). The use of different types of sensors for fruit detection can be found in

several studies (Gongal et al., 2015), and computer vision has emerged as the most popular choice (Payne

and Walsh, 2014). In the case of mango orchards, standard cameras have been used by Payne et al. (2013);10

Qureshi et al. (2017) for fruit counting, and Wang et al. (2017) made use of three different depth cameras

for the estimation of mango size. Additionally, Stein et al. (2016) demonstrated the possibility of applying

multiple view geometry to identify and track every piece of fruit in mango orchards. The accuracy of RGB

cameras has thus been extensively demonstrated for in-field mango counting and yield estimation, and is

arguably sufficient for this application.15

Beyond yield estimation, it is also desirable to measure traits such as disease and stress, maturity and

nutritional status, for which sensors other than RGB show promise. Hyperspectral imaging (HSI), due

to its great potential and capability of characterise multiple objective traits, has been extensively studied

and used for many food and agricultural applications (Sun, 2010; Park and Lu, 2015). This technology

takes advantage of both spectral and spatial spaces, combining the powerful and demonstrated prediction20

effectiveness of spectroscopy analysis and the high amount of information that two-dimensional images cover.

Uses of HSI have been reported for the monitoring of fruit in apples (Tian et al., 2018; Ma et al., 2018);

mangoes (Pu and Sun, 2015; Rungpichayapichet et al., 2017); or grapes (Diago et al., 2016; Gomes et al.,

2017), and in plants for disease control (Lu et al., 2017; Thomas et al., 2018); nutritional status assessment

(Wang et al., 2018; Zhou et al., 2018); and varietal classification (Diago et al., 2013; Guo et al., 2017). All25

these works exemplify how HSI can be considered as a promising and useful technology to take over the

tasks that are usually assigned to many other destructive, time-consuming procedures.

While many HSI studies were performed under controlled indoor laboratory conditions, it has been

demonstrated in recent years that HSI can be performed in field conditions also. Some examples are found

in studies using HSI from satellites or aerial platforms (Yang et al., 2004; Oldeland et al., 2010; Zhang30

et al., 2013), and more recently mounting hyperspectral cameras on unmanned aerial vehicles (UAVs) for

a closer range monitoring (Uto et al., 2013; Yue et al., 2017; Ishida et al., 2018). Although UAVs can

rapidly cover large areas, they usually offer low resolution when measuring all relevant elements from the

target. For this reason, ground based HSI arises as an useful alternative to provide high resolution data

while still retaining the ability of extensive, rapid monitoring. Some studies have recently displayed the35

deployment of hyperspectral cameras on mobile ground-vehicle platforms under field conditions. Deery et al.

(2014) reported the use of HSI among other sensors on man-driven buggies, while Gutiérrez et al. (2018)

demonstrated the suitability of on-the-go HSI for varietal classification. Moreover, fully autonomous robots

equipped with multiple sensors (including a hyperspectral camera) have been successfully developed by

Wendel and Underwood (2016) or Underwood et al. (2017), while the authors have also refined the reliability40

of outdoor hyperspectral data, subjected to changing illumination conditions (Wendel and Underwood,

2017b), and for accurate mapping (Wendel and Underwood, 2017a). Therefore, ground based HSI and its

wide range of applications becomes a powerful tool to be applied in precision agriculture.

Considering the practical deployment of an orchard mapping system with minimal sensors, it is therefore

important to ask how appropriate is HSI alone for the task of yield estimation, as an alternative to RGB45

cameras. RGB is arguably good enough, but HSI offers advantages for estimating additional nuanced traits.

If the latter are required in addition to yield estimation, a simpler system would aim to do both tasks with
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the one sensor. Because, to the best of our knowledge, no prior work exists on yield estimation using ground

based HSI, we therefore wish to answer the question, what is the performance of line-scan HSI for yield

estimation compared to a state-of-the-art RGB approach? The full spectral information in HSI data should50

be better per-pixel than RGB for detecting fruit, as there is significantly more information in each pixel,

though modern RGB fruit detection methods (e.g., neural networks) also rely on contextual information

which may be more important than pixel colour. Though superior information is available in each pixel, line-

scan HSI sensors commonly make significant sacrifices in the spatial dimension compared to RGB cameras,

with lower resolution and/or limited fields of view, which would make them less suitable. This is particularly55

problematic considering the success of modern approaches based on convolutional neural networks, which

explicitly consider spatial structure within the data (Bargoti et al., 2015; Bargoti and Underwood, 2017)

and the use of multiple view geometry to mitigate occlusion of hidden fruit (Stein et al., 2016).

The objective of this paper was to evaluate the performance of line scan, ground based HSI for the task of

mango yield estimation, as this technology has not yet been used for this task, to the best of our knowledge.60

This work breaks new ground both by developing a pipeline that is appropriate for the end-to-end task

where none previously existed, and comprehensively evaluating the performance compared to state of the

art RGB techniques at whole-orchard scale. We therefore present new knowledge to orchard mapping system

designers in two forms: first, how well does HSI imaging work compared to state of art RGB approaches,

to answer whether the trade-off is acceptable; and second, a validated implementation for the processing65

pipeline.

2. Materials and methods

The sequential steps in the proposed method form a pipeline as shown in Fig. 1. In summary: in-

field HSI of mango trees was performed in an commercial orchard block by an unmanned ground vehicle

platform; spectral pre-processing was applied for illumination compensation; trees were delimited using a70

complimentary LIDAR segmentation method; mango pixels were identified by classifying the spectra and

clusters of connected fruit pixels were segmented to individual fruit using morphological operations; an

optimisation procedure was designed to obtain the best the parameters for fruit counting; results were

validated with field counts and fruit counts from an RGB baseline approach and they were finally mapped.

Mango yield ground truth values (i.e., the number of mangoes present in each tree) were required in the75

optimisation and validation steps. These were provided from two different procedures: manual mango field

counts (a person in the orchard counting fruit in the tree) and state-of-the-art RGB machine vision mango

counts (from Stein et al. (2016)). The processing pipeline for mango yield estimation using HSI remained

the same regardless of the ground truth values used.

2.1. Data collection80

Data were collected during the 6th and 7th December 2017 in a mango (Mangifera indica L.) commercial

orchard block (cultivar B74) from Simpson Farms, located in Bundaberg, Queensland, Australia. Ten tree

rows were measured, with lengths ranging from 58 m to 260 m, comprising a total of 494 trees. The full

dataset was split into five different subsets, described in Table 1. The specific tree assignments are displayed

in Fig. 2. Field count data were collected by manually counting on-tree mangoes.85
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Figure 1: Workflow of the methodology applied in this paper. Hyperspectral imaging was collected by an unmanned ground

vehicle; followed by spectral pre-processing; tree delimitation; mango detection and fruit counting; optimisation and validation;

and finally mapping.

Table 1: Subset used in the study described in this paper.

Dataset name Number of trees Purpose

Field count train 27 Optimisation with field count data

Field count test 18 Testing against independent field count data

RGB train 18 Optimisation with RGB fruit counts

RGB validation 215 Validation of the optimisation results

RGB test 216 Testing against external RGB fruit count data

The data were subdivided into five subsets. The reader is also referred to Fig. 2. The total number of

trees in the orchard is 494. RGB fruit counts were obtained following the procedure by Stein et al. (2016).

Field count data were obtained by manually counting the visible mangoes still on the tree.

The spectral data were acquired using an unmanned ground vehicle (UGV) developed at the Australian

Centre for Field Robotics, called Shrimp. The platform was equipped with a Resonon Pika II Vis-NIR

hyperspectral line-scan camera (Resonon, Inc., Bozeman, USA), a Velodyne HDL64E 3D light detection and

ranging (LIDAR) (Velodyne LiDAR Inc., San José, USA) and a Novatel SPAN-CPT real time kinematic

GPS and inertial navigation system with RTK correction (NovAtel Inc., Calgary, Canada). The camera90

acquires a single line of 648 spatial pixels, each one of them containing a spectra of 244 datapoints with

a bit depth of 12, covering the range from approximately 390 to 890 nm (spectral resolution of 2 nm). It

was mounted to the platform to cast a vertical measurement line for a push-broom hyperspectral image

composition (by the platform’s motion) at 133 frames per seconds. A 6 mm objective lens (43.5º of field

of view–FOV) was installed to the camera and manually focused with a checker board at a measurement95

distance of 2 m. On average, this distance was maintained during continuous data acquisition. With the

described FOV and distance, the vertical line covered a height of approximately 1.6 m upon the trees. The

LIDAR sensor was mounted sideways for a complete tree height measurement, and set for a 10 Hz spin rate,

taking 1.3 million points per second.

The spectral data was taken from both the east and west side of the mango tree rows, traversing the lanes100

with a continuous data acquisition at 5 km/h. The UGV was configured to make a complete measurement
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Field count train
Field count test
RGB train
RGB validation
RGB test

Figure 2: Orchard block used in data collection, comprising a total of 494 trees. The complete tree dataset was split into

five subsets comprising 27, 18, 18, 215 and 216 trees, respectively. The reader is also referred to Table 1. Orthoimagery was

collected from Google Maps.

run of the whole orchard in a single run, without stopping, other than to turn at the headland. Each row side

was measured assuring that the sun was directly lighting the trees from behind the camera. Therefore, the

east side acquisitions were performed in the morning, and west side in the afternoon. Illumination reference

panels (QPcard 102) were mounted on tripods and placed at several sunlit and shaded points in the field to105

cover a wide range of reference illumination conditions. Likewise, dark current measurements were taken in a

regular basis, by covering the sensor lens and acquiring data for 10 s. Concurrently to HSI acquisition, RGB

images were also acquired at 5 Hz using a Prosilica GT3300C camera (Allied Vision Technologies GmbH,

Stadtroda, Germany) synchronised to four Excelitas MVS-5002 strobe lights (Excelitas Technologies Corp.,

Waltham, USA). Full details about RGB acquisition can be found in Stein et al. (2016)110

2.2. Spectral preprocessing

The data acquired by the hyperspectral camera are stored in raw digital numbers, and need to be

corrected by measuring several reference values without changing the camera’s parameters. As suggested by
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Suomalainen et al. (2014), in order to reduce the effects of non-uniform lens transmittance and to account for

sensor quantum efficiency, the digital number (DN) at each wavelength (λ) should be converted to at-sensor115

radiance (LSample),

LSample(λ) =
DNSample(λ)−DNSampleDarkCurrent(λ)

DNFlatField(λ)−DNFFDarkCurrent(λ)
LFlatField(λ) (1)

where DNSample and DNSampleDarkCurrent are digital number measurements from the sample and nearest

(in time) dark current, respectively; and DNFlatField and DNFFDarkCurrent, the digital numbers from flat

field and corresponding dark current measurements. An integration sphere with a light level about 95% of

saturation was used to provide flat field measurements, also providing internal radiance values (LFlatField).120

Additionally, to obtain accurate sample reflectance measurements, illumination compensation was per-

formed following the ”LOGSEP” method described by Drew and Finlayson (2007); Wendel and Underwood

(2017b). This compensation procedure makes use of in-field illumination radiance and surface reflectance

values for training, and these were taken from the illumination reference panels’ mid-grey strip.

2.3. Tree delimitation, mango detection and fruit counting125

To accurately obtain all the mango information for each one of the tree sides, an automatic procedure

for tree delimitation, mango pixel detection and individual fruit counting was used. Tree delimitation

was carried out according to Underwood et al. (2015) and Stein et al. (2016). All trees where segmented

within the LIDAR data, which was in turn projected into the camera frames using the methodology from

Underwood et al. (2007). In this way, the tree segmentation is transferred to the imagery, to automatically130

identify which tree is visible in every hyperspectral frame. Fig. 3(a) shows an example of two hyperspectral

images of different mango trees in true colour RGB, as segmented automatically by this method. The two

images in Fig 3(a) are colour images for human readability, but the full underlying spectra were used in

data processing.

A convolutional neural network (CNN) was used as the mango pixel classification model. Classification135

was performed independently per pixel using the complete spectrum at all available wavelengths, and con-

volution occurred only along the spectrum and not between adjacent pixels. This differs from typical recent

CNN approaches with RGB cameras, where convolutions are performed spatially across regions of adjacent

pixels, with just one or three broad spectral bands per pixel. The architecture used for the CNN was based

on the two convolutional layer plus two fully connected layers (Fig. 4) model examined by Windrim et al.140

(2016). For full details of CNN architecture and usage, the reader is encouraged to read Wendel et al. (2018).

For each hyperspectral image, each pixel (spectrum) were classified as mango or non-mango by the CNN

(Fig. 3(b)), forming binary images with mango pixel detected (Fig. 3(c)).

Finally, from the binary images with mango pixels detected, fruit segmentation was performed, in order

to cluster mango pixels and count the number of different mangoes visible in the canopy. Taking as input145

each binary image (with 0 as non-mango class and 1 as mango pixel), the procedure involved the following

sequential steps:

1. Morphological dilation followed by erosion. The structuring element for each operation was parametrised

by the choice of either a full rectangle or ellipse, and the corresponding width and height (Fig 3(d)).
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Figure 3: Example of image processing in two different hyperspectral images. These are shown in true colour RGB (a), with

the trees delimited and identified in each case. Each hyperspectral pixel (spectrum) is classified as mango or non-mango by a

CNN (b), to form a binary image (c). From the binary images, mango pixels are dilated, eroded and segmented (d). From the

segmentation, the total number of mangoes in the hyperspectral image can be identified and counted (e). The two images in

(a) are colour images for human readability, whereas the full underlying spectra were used in data processing.

2. From this output, the distance transform is computed (the distance from a pixel marked as 1 to its150

nearest 0) using the Euclidean distance (Paglieroni, 1992).

3. The local maxima were identified, considering local square regions parametrised by width and height

values 1

4. The number of local maxima was used as fruit counting output (Fig. 3(e)).

All the adjustable parameters involved in the described fruit counting steps were selected after an opti-155

misation procedure detailed in the next section.

1Steps 2 and 3 are usually carried out immediately before applying marked-based watershed algorithm Roerdink and Meijster

(2000), that uses the inverse of the distance transform as input and the local maxima as markers (Bargoti et al., 2015; Stein

et al., 2016; Bargoti and Underwood, 2017).
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Figure 4: CNN architecture used in this study. The architecture is the two convolutional layer plus two fully connected layer

model presented by Windrim et al. (2016). No padding was used for the convolutions. The network provides two outputs

representing the softmax “confidence” of mango and non-mango classes.

2.4. Parameter optimisation

Fruit counting makes use of different adjustable parameters that needs to be tuned, as their values

influence the final output (the number of mangoes counted). Specifically, these parameters are:

• Dilation structure width (Dw), height (Dh), D ∈ Z>0.160

• Erosion structure width (Ew), height (Eh), E ∈ Z>0.

• Structuring elements’ shape for both morphological operators (S), S ∈ {rectangle, ellipse}.

• Local square region width (Lw) and height (Lh), in local maxima computation, L ∈ Z>0.

Therefore, an optimisation process was designed for the parameters set P = {Dw,Dh,Ew,Eh,S,Lw,Lh}.
The performance was evaluated by applying the morphological operations for fruit counting defined in165

Section 2.3 to the “field count train” or “RGB train” subsets (described at the beginning of Section 2.1),

and finally computing the correlation metrics. As ground truth, each one of these datasets used, respectively,

manual mango field counts and RGB counts following the procedure by Stein et al. (2016). Therefore, the

optimisation problem was defined as:

argmax
P

f(data,Dw,Dh,Ew,Eh,S,Lw,Lh) (2)

where f is an objective function returning R2 between mango counts and hyperspectral counts given data170

∈ {field count train, RGB train} and a parameter set.

Because f is a non-continuous, non-differentiable function, it is not possible to use optimisation methods

based on derivatives or gradients. Therefore, evolutionary algorithms were used as metaheuristic to solve

the optimisation problem, as they can also work with bounded and constrained parameters, as the ones

in P . A genetic algorithm based on CHC (Eshelman, 1991) was developed in Python 2.7.12, adapted175
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for this problem. CHC algorithm (C standing for cross-generational elitist selection; H for heterogeneous

recombination; and the last C for cataclysmic mutation) provides a good trade-off between exploitation

(getting as close as possible to a found maxima by incest prevention and elitist selection) and exploration

(providing new genetic material when the population has converged too much to explore other maximum).

The algorithm starts with a random population of N individuals and a convergence value δ set to |P |
4180

that is crossed by randomly picking two parents without replacement, but only allowing the mating if there

is enough difference in the parents’ genes (avoiding inbreeding). Afterwards, the N best individuals are

selected among the union of the original parents and the offspring, and they become the new population. If

no offspring was generated (implying that there was low genetic variability in the population), δ is decreased

by one, and if it falls bellow zero, a cataclysmic mutation is carried out. This mutation consists on keeping185

the best individual in the population, adding N −1 random individuals, resetting δ to |P |
4 and starting over.

Parameters {Dw,Ew} were coded as genes constrained to positive integers and bounded between 1 and

80, while {Dh,Eh,Lh} were positive integers between 1 and 40. On the one hand, the value 80 was selected

to prevent excessive mango deformation, and it is two times the average mango height of 40 pixels. On the

other hand, the heights were limited to half the maximum width because visible mangoes in hyperspectral190

images appeared stretched in the vertical dimension due to the relation between the UGV’s speed and the

camera’s frame rate. Local maxima region’s width and height, {Lw,Lh}, were bounded between 1 and 80, in

order to avoid considering regions beyond two times the average mango height. Following common practices

in genetic programming of deriving hyperparameters from problem’s constants, the population size was set

to 70, ten times the number of genes, and the number of CHC iterations to 280, four times the population195

size.

2.5. Validation and mapping

From each parameter optimisation performed with “field count train” and “RGB train”, the best unique

20 parameter sets from all the iterations, in terms of R2 values, were selected and considered as models for

mango counting using HSI. The unique selection was performed redefining the equality condition between200

two models. Two models were considered different if, for any of their parameters (excluding the structure

shape), their absolute difference surpasses a certain small threshold. This was done because a very small

alteration (e.g., one or two units) on any of the width or height parameters—although making the models

strictly different—results in a very similar performance.

The performance of mango counting optimised using both field and RGB counts was assessed. For field205

counts, the 20 best models trained with the “field count train” subset were used to predict the fruit count

from the 18 “field count test” trees, computing the determination coefficient (R2). For RGB counts, the 20

best models trained with the “RGB train” subset were applied to the 215 trees in the “RGB validation”

subset, computing the R2 values for single-, dual- and multi-view. From these results, the model with the

highest R2 (averaged from the three) was selected and applied to the 216 “RGB test” trees. Additionally,210

these predictions were mapped to illustrate their spatial distribution.

Finally, the hyperspectral images of the “RGB train” subset from the 7th December measurements were

processed as described in Sections 2.2 and 2.3, using the best model, to obtain the mango counting in that
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date. The outcomes were compared with the results from the 6th December dataset to test the repeatability

of the described techniques.215

3. Results

3.1. Field count optimised models

The best models from the parameter optimisation using the “field count train” subset are summarised

in Table 2, along with their performance when they were applied on the “field count test” subset. Upon

optimisation, the R2
opt values reached up to 0.79 (RMSEopt = 34.475 mangoes) in the two first models,220

that had similar dilation and erosion heights but very different erosion widths.

All the values of Dw lied between 53 and 78, while Dh, Lw and Lh exhibited a larger variability in their

values. On the other hand, the erosion’s height and width were found to have a highly ranged and balanced

distribution between the minimum and maximum values, 5 and 62 for Ew and 1 and 35 for Eh, respectively.

For the structuring element’s shape for erosion and dilation, both ellipse and square values were equally225

distributed among the 20 best models. The performance of the parameter sets on the “field count test”

subset was very similar to that from optimisation, with R2
test values ranging from 0.71 (model number 19)

up to 0.79 (model number 5). Only models 7 and 10, with R2
test of 0.59 and 0.60, respectively, returned

discordant statistics (also reflected by the higher RMSEtest values, above 50).

The correlation plots for the optimally trained model (first row in Table 2) are presented in Fig. 5. The230

result from the optimisation, using the “field count train” subset, is shown in Fig. 5(a), while Fig. 5(b) shows

the same model applied to the “field count test” subset, yield estimated using the slope intercept equation

in 5(a). The train plot displayed a regression line highly tilted toward the horizontal axis, meaning that the

hyperspectral counts were well correlated but consistently lower than the actual field counts. Nevertheless, a

good fit was present along the regression line, and for this reason, and after correcting with the slope intercept235

equation, RMSE values resulted in 34.475 and 36.478 mangoes, for train and test subsets respectively.

3.2. RGB count optimised models

After the parameter optimisation was carried out using the 18 trees in the “RGB train” dataset, the

results from the 20 best unique models are summarised in Table 3. Determination coefficients were also

computed from RGB single-, dual- and multi-view mango count against hyperspectral count. From the240

optimisation process, R2
opt values ranged from 0.75 to 0.82.

Within the 20 models, all the optimised parameters took a wide range of different values. Dw and Lh

obtained mostly high values, up to 75 in both cases. Nevertheless, when compared with results in Table 2,

the remaining parameters received values lying in the first half of their domains, with special attention to

Dh, that took values below 10, except in four of the models. Again, for the structuring element’s shape,245

both ellipse and square options were almost equally selected. Attending to the statistics from the “RGB

validation” subset, R2 values did not present the same trend of decreasing scores that was observed at

optimisation. The model with the highest validation performance in this subset was found not within the

first rows in the ranking of Table 3, but in row 13, with scores of 0.77, 0.83 and 0.74 against single-, dual-

and multi-view RGB counts, respectively. In almost all the cases, dual-view counts were better predicted250
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Table 2: Best models from the parameter optimisation using on-tree mango counts, “field count train” subset, and applied to

the “field count test” subset.

Rank R2
opt RMSEopt Dw Dh Ew Eh S Lw Lh R2

test RMSEtest

1 0.79 34.475 61 35 5 4 square 34 18 0.75 37.435

2 0.79 35.118 75 38 48 3 ellipse 47 24 0.78 35.094

3 0.78 36.197 66 40 62 1 ellipse 48 22 0.75 38.027

4 0.77 37.203 67 34 15 16 square 42 20 0.77 35.971

5 0.75 38.825 71 34 60 26 square 79 19 0.79 33.633

6 0.74 39.687 71 35 47 32 ellipse 29 32 0.78 34.459

7 0.74 39.735 78 39 21 35 ellipse 70 48 0.59 54.758

8 0.74 40.033 59 19 9 10 square 40 53 0.73 39.925

9 0.73 40.831 75 35 62 12 square 49 15 0.79 34.262

10 0.73 40.921 56 38 10 22 ellipse 56 79 0.60 53.853

11 0.73 41.120 73 32 37 3 square 28 49 0.75 37.608

12 0.73 41.534 63 28 45 3 ellipse 56 57 0.72 41.154

13 0.73 41.634 57 32 13 4 square 69 68 0.72 40.974

14 0.73 41.689 57 31 10 16 ellipse 23 12 0.76 36.829

15 0.73 41.745 53 38 52 35 square 36 52 0.73 39.710

16 0.72 42.083 78 28 62 25 ellipse 46 21 0.74 38.382

17 0.72 42.122 69 37 22 16 square 21 47 0.71 42.246

18 0.72 42.539 59 22 42 14 square 56 37 0.74 38.623

19 0.72 42.627 57 32 17 11 ellipse 49 44 0.71 41.506

20 0.72 42.671 75 33 65 29 ellipse 33 25 0.75 38.146

R2
opt: determination coefficient in optimisation (in the “field count train” subset). RMSEopt:

root-mean-square error in optimisation (in the “field count train” subset). Dw, Dh: Dilation struct width

and height. Ew, Eh: Erosion struct width and height. S: Structuring element’s shape. Lw, Lh: Local region

square’s width and height, in local maxima computation. R2
test: determination coefficient when predicting

the “field count test” subset. RMSEtest: root-mean-square error when predicting the “field count test”

after applying the slope intercept equation.

than single-view counts, and in turn, these ones were better predicted than the multi-view counts. Only

models number 11, 14, 16 and 17 did not follow this behaviour.

3.3. Validation and mapping

The correlation results of model number 13 (Table 3) applied to the “RGB validation” (215 trees) and

“RGB test” (216 trees) subsets are plotted in Fig. 6. The plots show correlations against RGB single-255

view (a, b), dual-view (c, d) and multi-view (e, f). Hyperspectral estimated counts in test plots (b, d,

f) were obtained after applying their respective slope intercept equations. The results exhibited virtually

identical determination coefficients between each subset, for each RGB view mode. While the determination
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Figure 5: Correlation between field count values (on-tree mango counts) and hyperspectral mango counts in “field count train”

(a) and “field count test” (b), using the model number 1 from Table 2. RMSE: root-mean-square error after applying the slope

intercept equation.

coefficients were similar for dual- and multi-views, they only differed by one unit in the last figure (0.77 and

0.76) for single-view. As expected by the R2 scores, RMSE values were also similar between both subsets.260

As in the results seen in Fig. 5, the regression lines in multi-view train plot (Fig. 6(e)) presented a clear

lower gradient, tilting towards the horizontal axis.

As the 216 trees in the “RGB test” subset were not used in any training or validation process, their

predictions can be considered as external to the development of the optimised models. These predictions

(dual-view counts) were mapped and are presented in Fig. 7. The map showed a high variability in265

mango yield within the orchard, consistent with the field and RGB observations. Assuming tree rows with

Northwest-Southeast orientation, the two central ones presented very different yield predictions on their

trees, with high values of 156 mangoes in the left central row and yield below 39 in some trees in the right

central row. The two yield basins located at the Southwest and Northeast corners of the orchard could

correspond to low values in the surrounding trees reinforced by the fact that few trees were assigned to the270

“RGB test” subset in those corners, as can be confirmed from Fig. 2.

To test the capability of yield estimation by HSI using models optimised only against RGB data, the

parameter set number 13 in 3 was applied to the “field count test” dataset. The scatter plot in Fig. 8 shows

the correlation between on-tree mango and hyperspectral counts. A moderately good fit along the regression

line is observed (yielding a R2 of 0.72 and RMSE of 45 mangoes), presenting a low gradient, as field count275

values were underestimated by HSI.

The repeatability of the whole pipeline for mango yield estimation using HSI was tested by comparing

the outcomes from two subsets, “field count train” and “RGB train”, in two different dates, 6th and 7th

December 2017 (Fig. 9). The parameter sets used were taken from model number 1 (Table 2) and model

12



Table 3: Best models from the parameter optimisation using RGB single-view counts, “RGB train” subset, and applied to the

“RGB validation” subset.

Rank R2
opt Dw Dh Ew Eh S Lw Lh R2

Single R2
Dual R2

Multi

1 0.82 57 3 34 16 ellipse 27 58 0.68 0.78 0.68

2 0.80 34 9 20 20 square 10 9 0.74 0.80 0.69

3 0.79 70 4 26 21 square 9 25 0.71 0.77 0.67

4 0.79 31 1 2 14 square 47 6 0.72 0.78 0.68

5 0.78 70 2 6 9 ellipse 8 7 0.72 0.79 0.70

6 0.78 26 9 12 18 square 12 53 0.70 0.77 0.69

7 0.77 33 5 14 16 ellipse 51 15 0.73 0.79 0.72

8 0.77 42 6 35 19 ellipse 31 11 0.72 0.80 0.68

9 0.77 20 11 7 24 square 13 56 0.71 0.79 0.70

10 0.77 70 4 9 21 square 48 34 0.67 0.74 0.63

11 0.77 46 9 29 31 square 51 49 0.64 0.73 0.66

12 0.76 17 24 10 31 square 30 34 0.73 0.80 0.72

13 0.76 46 1 5 7 ellipse 50 16 0.77 0.83 0.74

14 0.76 51 1 4 10 ellipse 6 75 0.69 0.77 0.73

15 0.76 75 1 43 16 square 6 32 0.69 0.76 0.68

16 0.76 41 4 1 27 ellipse 64 35 0.68 0.75 0.70

17 0.75 49 4 44 19 ellipse 73 47 0.65 0.74 0.68

18 0.75 43 9 22 3 square 51 2 0.70 0.76 0.69

19 0.75 59 10 78 9 ellipse 80 16 0.65 0.72 0.61

20 0.75 30 21 23 30 square 16 10 0.73 0.81 0.68

R2
opt: determination coefficient in optimisation (in the “RGB train” subset). Dw, Dh: Dilation struct

width and height. Ew, Eh: Erosion struct width and height. S: Structuring element’s shape. Lw, Lh: Local

region square’s width and height, in local maxima computation. The last three columns refer to the

determination coefficient obtained when applying the model to the “RGB validation” subset, compared

with single-, dual- and multi-view counts.

number 13 (Table 3) respectively. Very close correlations were found in both cases, with R2 values of 0.88280

in field count and 0.91 in RGB subsets. For day 6th and 7th respectively, hyperspectral total counts were

929 and 903 (error of 2.8%, field count) and 15,798 and 15,587 (error of 1.3%, RGB counts).

4. Discussion

This paper presented promising results for extensive in-field prediction of mango yield using an unmanned

ground vehicle and hyperspectral imaging. The outcomes from the optimisation of the models provided high285

precision in the estimation of on-tree mango count, supporting that line-scan HSI can be employed for yield

estimation in orchards, and also reliable and accurate predictions when compared with estimations from
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Figure 6: Correlation plots from the orchard block monitoring, comparing RGB counts from single-view (a and b), dual-view

(c and d) and multi-view (e and f) with hyperspectral counts from the validation subset (a, c and e) and test subset (b, d, f).

Hyperspectral counts where obtained after applying the parameters of the model number 13 in Table 3. RMSE values were

obtained after applying the slope intercept equations from the regression line.

RGB techniques that were validated in prior work (Stein et al., 2016). Moreover, the results from the

validation on more than two hundred trees, and the testing of the whole pipeline on a further set of two

hundred other trees, indicate that the approach is viable in commercial scale orchard blocks.290

The determination coefficients in Table 2 showed consistency between the optimisation (R2
opt) and test

(R2
test) scores, as they maintained similar determination coefficients, and R2

test also maintained a general

descending trend down the ranking. The validation on independent data confirms the appropriateness of

the optimised models for yield estimation. Apart from the parameters that specified the width and height

of the dilation structuring element (that took values in a relatively close range), no specific pattern could295

be found in the remaining parameters, that acquired very different options, indicating that the results were

not sensitive to the parameter values. This insensitivity to parameter values could imply that the models

are more likely to be robust and generalisable, as good outcomes were observed in optimisation (and later

confirmed in an independent tree dataset) from very different values.
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Figure 7: Yield map of the orchard block, coloured by the number of fruit per tree. The map was generated by predicting

the RGB dual-view mango counts in all the trees from the orchard block and correcting the predicted values using the slope

intercept equation from model number 13 in Table 3. Orthoimagery was collected from Google Maps.

The main trait that is observed from Figs. 5 and 8, the low gradient present in the regression lines300

of the scatter plots, is explained by the fact that the amount of fruit that is visible in the canopy from

a lateral point of view is almost always lower than the actual fruit that is present. Particularly in fruit

trees, occlusion caused by leaves, branches and other fruit lead to this consequence, as reported by prior

work (Bargoti et al., 2015; Bargoti and Underwood, 2016, 2017). This is evident in the graphs presented

in Fig. 6, as the HSI results have a slope much closer to unity when compared to the RGB single- or dual-305

view counts. In other words, single viewpoints from RGB or from a swept line-scan camera unsurprisingly

result in a similar degree of undercounting compared to field counts. Yet in both cases the undercounting

is consistent and can be compensated by calibration (i.e., correction by the slope-intercept equation). This

good fit may be explained by making the assumption that fruit occlusion is present at a constant ratio, and

approximately 20 samples in the calibration or training could be sufficient to determine the factor between310

visible and actual fruit for estimation. Although spectroscopy is able to acquire spectral information from

a significantly wider range than RGB cameras, HSI (that ultimately compose a bi-dimensional image) is

affected by occlusion in the same way as a regular RGB camera (Stein et al., 2016).

The already developed methodology for mango yield estimation reported by Stein et al. (2016) opened

the possibility of computing performance statistics in hundreds of trees from a whole orchard comparing315
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Figure 8: Correlation plot comparing field count values (on-tree mango counts) with hyperspectral counts from the “field count

test” subset. Hyperspectral counts where obtained after applying the parameters of the model number 13 in Table 3. RMSE

values were obtained after applying the slope intercept equations from the regression line.

HSI to RGB imaging, allowing large independent training, validation and test sets to be used. As exposed

in Fig. 6, the very similar R2 values between validation and test subsets confirmed that the model number

13 (Table 3) was able to build a very consistent generalisation capability, with R2 scores of 0.77, 0.83 and

0.74 for single-, dual- and multi-view.

The different value ranges that the models’ parameters took among the 20 best ones (Table 3) also confirm320

that results were not sensitive to the parameter values, as in the optimisation against on-tree mango count

(the field count subsets). Attending to the determination coefficients obtained from the correlations of the

three different RGB fruit count methodologies, the trend described at the end of Section 3.2—correlations

with dual-view RGB counts always higher than the ones with single-view—is explained by data aggregation.

Dual-view counts (both hyperspectral and RGB) are but the sum of single-view ones from both side of the325

same tree. This aggregation (like averaging) reduces the magnitude in total of individual errors on either

tree side, hence the higher R2
Dual values in Table 3.

The correlation values from the comparison of hyperspectral counts against RGB single-, dual- and

multi-view counts indicates that it is not possible to completely reach the same level of accuracy as from

RGB cameras and computer vision techniques, especially when R2
Multi is considered. In fact, this was an330

expected result due to the lower optical features (i.e., lower resolution or limited field of view) commonly

offered by hyperspectral cameras. The restriction of line-scan cameras to only one spatial dimension makes

it impossible to implement multi-view techniques, which have been shown in prior work to improve accuracy

(Moonrinta et al., 2010; Song et al., 2014; Das et al., 2015; Stein et al., 2016). However, the performance
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Figure 9: Repeatability of hyperspectral counts on 6th December and 7th December 2017, using model number 1 from Table

2 on the “field count test” subset (a); and model number 13 from Table 3 on the “RGB test” dataset (b). Each dot represent

the sum of the mangoes counted in both sides of the same tree (dual view). If single views are independently considered, R2

values are 0.79 in (a) and 0.85 in (b).

statistics obtained in this paper raises HSI as a feasible alternative for extensive mango yield estimation,335

particularly in applications where HSI is already (and maybe solely) chosen to detect some other trait.

The methodology followed in this study also allows for the possibility of predicting field count values

with a moderately high precision, as shown in Fig. 8 (R2 of 0.72). This is also reinforced by the similarity

to the correlations from the optimisation directly with field counts (5) that, although higher, lied not very

far from Fig. 8. It can therefore be implied that the results from automatic monitoring with an UGV and340

a line-scan hyperspectral camera, exemplified by the yield map in Fig. 7, are reasonably precise for on-tree

mango estimation (trained with field counts or RGB data, Tables 2 and 3), accurate for hundreds of trees

(Fig. 6) and reliable at different times (Fig. 9).

5. Conclusions

This paper presented a new pipeline for the estimation of mango yield using line-scan hyperspectral345

imaging acquired from an unmanned ground vehicle in large orchards. The detailed pipeline produced

good results (R2 ≥ 0.75) using two different ground truth values, and comparable to state-of-the-art RGB

techniques. Several steps were followed, from data acquisition, through image processing to model optimi-

sation, and results were tested for both field count values and validated for hundreds of trees compared to

state-of-the-art RGB methodologies. Although RGB cameras can be argued as sufficient for automatic fruit350

counting in orchards, the outcomes from this paper demonstrate that, in scenarios in where HSI is already

deployed for the prediction of other nuanced traits, line scan hyperspectral cameras can also deliver accurate

estimations of yield, and therefore be extensively used in commercial orchards.
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