
1 

 

Implementation of Deep-learning Algorithm for Obstacle Detection and Collision Avoidance 1 

for Robotic Harvester 2 

Li Yanga, Iida Michihisaa,∗, Suyama Tomoyaa, Suguri Masahikoa, Masuda Ryoheia 3 

a Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-4 

8502, Japan 5 

 6 
Abstract: Convolutional neural networks (CNNs) are the current state of the art systems in 7 

image semantic segmentation (SS). However, because it requires a large computational cost, it 8 

is not suitable for running on embedded devices, such as on rice combine harvesters. In order 9 

to detect and identify the surrounding environment for a rice combine harvester in real time, a 10 

neural network using Network Slimming to reduce the network model size, which takes wide 11 

neural networks as the input model, yielding a compact model (hereafter referred to as “pruned 12 

model”) with comparable accuracy, was applied based on an image cascade network (ICNet). 13 

Network Slimming performs channel-level sparsity of convolutional layers in the ICNet by 14 

imposing L1 regularization on channel scaling factors with the corresponding batch 15 

normalization layer, which removes less informative feature channels in the convolutional 16 

layers to obtain a more compact model. Then each of the pruned models were evaluated by 17 

mean intersection over union (IoU) on the test set. When the compaction ratio is 80 %, it gives 18 

a 97.4 % reduction of model volume size, running 1.33 times faster with comparable accuracy 19 

as the original model. The results showed that when the compaction ratio is less than 80 %, a 20 

more efficient (less computational cost) model with a slightly reduced accuracy in comparison 21 

to the original model was achieved. Field tests were conducted with the pruned model (80 % 22 

compaction ratio) to verify the performance of obstacle detection. Results showed that the 23 

average success rate of collision avoidance was 96.6% at an average processing speed of 32.2 24 
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FPS (31.1 ms per frame) with an image size of 640 ×480 pixels on a Jetson Xavier. It shows 25 

that the pruned model can be used for obstacle detection and collision avoidance in robotic 26 

harvesters. 27 

Keywords: robotic combine harvester; deep learning; human detection; image cascade 28 

network; network slimming. 29 

 30 

1 Introduction 31 

To ensure the safety and precision operation of autonomous combine harvesters it is 32 

important to identify obstacles quickly and accurately in the surrounding paddy. When a 33 

combine is working in a paddy, it should avoid colliding with paddy field ridges and humans, 34 

and it should also go along the navigation line between harvested and unharvested areas. Our 35 

laboratory has developed algorithms to determine the path between harvested and unharvested 36 

areas (Cho et al., 2014a; Cho et al., 2014b), the identification of ridges (Takagaki et al., 2013), 37 

and the detection of humans in the field (Hisae et al., 2017). However, the paddy field 38 

environment is complex, and with many different objects (the harvested area, unharvested area, 39 

ridges, and humans) need to be detected simultaneously. Traditional image recognition 40 

methods are based on hand-crafted features, such as HOG, LBP and Haar features (Yao et al, 41 

2015, Singh, et al., 2015, Cabrera et al., 2011). Since it is tedious to design features manually 42 

and susceptible to the effects of light, vibration, and dust, it is difficult to mine deep-feature 43 

information and obtain accurate results. One approach to addresses these challenges is semantic 44 

segmentation (SS), which can realize pixel-by-pixel identification in an image.  45 

Recently, SS has become a popular approach for a variety of computer vision tasks in 46 

agriculture. For example, Yang et al. (2017) employed a SS method to recognize lactating sows. 47 

Milioto et al. (2018) proposed a SS model for crop and weed. McCool et al. (2017) proposed 48 

an approach for training SS that can be used to derive compact models for robotic platforms. 49 
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These research results indicate that SS can be used to achieve good results for processing 50 

agricultural images (Kamilaris et al., 2018), thereby reducing manual preprocessing and 51 

subsequent processing to obtain the final segmentation result directly from the original input 52 

image (Tang et al., 2016). However, the large computational cost of SS models still makes it 53 

difficult to apply to embedded devices in real-time. Our objective is to make a SS model 54 

compact to implement for embedded devices and apply it for obstacle detection of robotic 55 

combine harvester.  56 

To achieve this objective, on the one hand, many scholars have proposed different real-57 

time SS models. For example, Yu (Yu et al., 2018) proposed a bilateral segmentation network, 58 

which used affluent spatial details and large receptive field to improve the speed and accuracy 59 

of SS. Wang (Wang et al., 2019) designed an asymmetric encoder-decoder architecture for SS. 60 

Zhao (Zhao et al., 2018) proposed ICNet, which uses an image cascade to speed up the SS 61 

method. On the other hand, many methods to compress large CNNs have been developed for 62 

fast inference. These include low-rank approximation (Denton et al., 2014), network 63 

quantization (Chen et al., 2015; He et al., 2015) and binarization (Rastegari et al., 2016; 64 

Courbariaux et al., 2016), weight pruning (Han et al., 2015), dynamic inference (Huang et al., 65 

2017), etc. Network Slimming is a simple yet effective compaction approach (Liu et al., 2017), 66 

and more importantly, it is convenient to obtain the pruned model just by modifying the number 67 

of corresponding channels in the configuration files. 68 

Considering the speed and accuracy in the CamVid (Atlas, 2018), the network used for 69 

rice field images were based on ICNet. This method incorporates effective strategies to 70 

accelerate network inference speed without sacrificing much performance (Zhao et al., 2018). 71 

In this study, a ICNet that maintains a high accuracy was trained first with paddy field images. 72 

Paddy field image are, however, not common in public data sets, such as the CamVid Dataset 73 

(Brostow et al., 2009). When the ICNet that performs well with public datasets is applied to 74 
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paddy field images, high segmentation accuracy was obtained. Since the network was designed 75 

manually, the importance of each component in the network cannot be determined before 76 

training. During training, it could learn the importance of each component through adjusting 77 

the weights in trainable layers automatically. After training, some connections and 78 

computations in the model would become redundant or non-critical (Ye et al., 2018). 79 

Consequently, the redundant or non-critical connections and computations in the network can 80 

be removed without significant degradation in performance (Ye et al., 2018). Based on this 81 

assumption, we removed these redundant parameters in the model while ensuring similar 82 

accuracy, thereby increasing the speed of the model. 83 

Since Network Slimming method is a simple yet effective compaction approach (Liu et 84 

al., 2017), the pruned SS models were obtained based on this method in the convolutional 85 

layers of ICNet. To this end, we enforced channel-level sparsity of convolutional layers by 86 

imposing L1 regularization on channel scaling factors γ in batch normalization (BN) layer (the 87 

latter in formula (3)), then removed the less informative channels in the convolutional layers, 88 

which correspond to the small γ to obtain the pruned models. The models and methods were 89 

introduced firstly in Section 2; then the pruned models were evaluated on test dataset and in 90 

the field. Then the results and discussion were presented in Section 4. Finally, we made a 91 

conclusion in Section 5. 92 

2 Materials and Methods 93 

2.1 Semantic segmentation model 94 

In order to achieve SS in real-time, ICNet was used for paddy field images in this study, 95 

and its structure is shown in Fig. 1. In this figure, numbers in parentheses are feature map size 96 

ratios to the full-resolution input (640 ×480 pixels). Operations are highlighted in brackets. 97 

The final ×4 upsampling in the bottom branch is only used during testing. The ICNet takes 98 

cascade image inputs (i.e., medium- and high-resolution images), and it adopts a pyramid 99 
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pooling module (PPM) and cascade feature fusion (CFF) unit in Fig. 2.  It was trained with 100 

cascade label guidance. Different-scale (e.g., 1/16, 1/8, and 1/4) ground truth labels were 101 

utilized to guide the learning stage of low, medium and high-resolution input.  102 

As shown in Fig. 2a, the PPM fuses four different pyramid scale features, and ’POOL’ 103 

means pooling layer in the figure. First, it separates the feature map into different sub-regions 104 

by using an operation called adaptive average pool. Then upsampling the low-dimension 105 

feature maps to get the same size feature as the original feature map via bilinear interpolation. 106 

Finally, different levels of the features are summed as a final pyramid pooling global feature. 107 

To combine cascade features from different resolution inputs, 2 CFF units were used in the 108 

ICNet. Details of the structure is shown in Fig. 2b, the sizes of feature maps F1 and F2 are C1 109 

× H1 × W1 and C2 × H2 × W2, respectively, and the resolution of the label is 1 × H2 × W2, 110 

where H2 = 2 × H1. It combines feature maps F1 and F2. In order to enhance the learning of 111 

F1, auxiliary label on the upsampled feature of F1 is applied. 112 

2.2 Network Slimming algorithm 113 

The algorithm used in this paper to prune the network model was based on the principle 114 

of Network Slimming method (Liu et al., 2017). The method could remove the less important 115 

connections with small weights in each convolution layer. As we know that, batch 116 

normalization (BN) layer performs the following transformation after each convolution layer 117 

in the model: 118 

�̂�𝑧 = 𝑧𝑧𝑖𝑖𝑖𝑖 − µ𝐵𝐵

�σ𝐵𝐵
2+ε

                                                             (1) 119 

𝑧𝑧𝑜𝑜𝑜𝑜𝑜𝑜 = γ�̂�𝑧 + β                                                          (2) 120 
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where zin and zout are the input and output of a BN layer, µB and σB are the mean and standard 121 

deviation values of input activations over B, B denotes the current minibatch, γ and β are 122 

trainable affine transformation parameters (scale and shift). 123 

As γ in BN layers corresponds to a specific convolutional channel, γ was used for channel 124 

scaling factors. The approach imposes L1 regularization (the latter part in formula (3)) on the 125 

channel scaling factors γ in BN layers for each channel. Pushing the values of channel scaling 126 

factors towards zero with L1 regularization enables insignificant channels to be identified. The 127 

network weights and these channel scaling factors were trained with sparsity regularization 128 

(the latter part in formula (3)). The training objective of our approach is given by 129 

𝐿𝐿 = ∑ 𝑙𝑙(𝑓𝑓(𝑥𝑥,𝑊𝑊),𝑦𝑦)(𝑥𝑥,𝑦𝑦) + λ∑ 𝑔𝑔(γ)γ∈𝑇𝑇                                     (3) 130 

where (x, y) denotes the training input and target, W denotes the trainable weights, the first 131 

sum-term corresponds to the normal training loss of a CNN, T denotes the gradient of each 132 

convolution layer, g(·) is a sparsity-induced penalty on the channel scaling factors, and λ 133 

balances the two terms. In our experiment, we chose g(s)=|s|, which is known as L1-norm and 134 

widely used to achieve sparsity. Subgradient descent was adopted as the optimization method 135 

for the non-smooth L1 penalty term. The channel scaling factors act as the agents for channel 136 

selection. As they were jointly optimized with the network weights, the network can 137 

automatically identify insignificant channels, which can be safely removed without greatly 138 

affecting the generalization performance. Channels with small factors γ removed (all their 139 

incoming and outgoing connections), then we could get the pruned network model. 140 

2.3 Dataset for semantic segmentation models 141 

All the images in the training set, validation set and test set were derived from 142 

experimental videos from December 2016 to August 2019. A detailed description of the above 143 

data set is shown in Table 1, which includes sample number, rice variety, field type, weather, 144 
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camera angle, camera depression angle, etc. Since some of the scenes in the video are not 145 

related to the field scene, and sometimes some areas in the image are not clear enough, so some 146 

clear images of appropriate size were cut out from the original images. Then the cut images 147 

were rotated (±15°), and flipped horizontally. Finally, a total of 5000 images (jpeg format) 148 

were obtained. The size of all images was 640×480 pixels, and the mean value of the RGB 149 

channels of the images were 0.485, 0.456, and 0.406, and the standard deviation were 0.229, 150 

0.224 and 0.225, respectively, when these images were transformed to the range of [0, 1]. 151 

According to a previous field trial video, a training set and test set were prepared, including 152 

4,000 and 1,000 images, respectively, which were selected up from the data set of 5,000 images 153 

mentioned before; Then the data was normalized to reduce the negative effects of uneven 154 

brightness.  155 

2.4 The procedure of getting pruned (segmentation) model 156 

During the training process, a stochastic gradient descent method was used for backward 157 

propagation of the learning phase to obtain the best network parameters. The initial learning 158 

rate was 0.02, and the decay coefficient of the learning rate was 0.5. The decay frequency was 159 

10 epochs, with the batch size of 4. The regularization parameter λ was 0.0001, with a penalty 160 

factor 0.0001 to perform channel-level sparsity regularization. When the current loss function 161 

converged and stabilized, training was halted. 162 

After sparsity training, we removed channels with a global threshold γ1 across all layers 163 

except for CFF, which was defined as a certain percentile of all the needed scaling factor values. 164 

Such as 5-th percentile, corresponding to a 5 % compaction ratio. Then the compaction ratio is 165 

defined as  166 

compaction ratio = 𝐶𝐶1
𝐶𝐶2

× 100%                                           (4)   167 
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where C1 is the numbers of removed channels, C2 is the numbers of channels in the original 168 

network. Two convolution layers before the ‘sum’ operation in the CFF unit were required to  169 

have the same channel number. To match the feature channels of the 2 layers, we iterate through 170 

the layers and perform the same percentile compaction operation to generate a pruning mask 171 

for these connected layers, respectively. The percentile is same as the percentile used for the 172 

global threshold γ1. 173 

The channel pruning procedure is shown in Fig. 3. ICNet was initially trained with 174 

channel-level sparsity regularization; sequentially, pruned ICNet was obtained by pruning 175 

feature channels to a certain ratio according to their scaling factors in the ICNet; After channel 176 

pruning, a fine-tuning operation was performed on pruned models to compensate potentially 177 

temporary degradation in segmentation accuracy. The Network Slimming (training with 178 

sparsity regularization, pruning, and fine-tuning) was repeated several times. The model was 179 

pruned 10 % each time. In our experiments, we directly retrain using the same training hyper-180 

parameters as the initially training of ICNet.  181 

2.5 Experimental condition in field test 182 

In order to evaluate the performance of the pruned model, the pruned model which with 183 

the compaction ratio of 80 % was used in the field test for human detection. Tests were 184 

conducted in actual paddies, the places were in Kisosaki, Kuwana District, Mie, Japan 185 

(35°05'19.9"N, on Aug. 24-25, 2019 and Nantan City, Kyoto, Japan (35°02'35.4"N, 186 

136°46'16.8"E), on Sep. 22, 2019. The weather was sunny on Aug. 24-25, 2019 and cloudy on 187 

Sep. 22, 2019. Fig. 4 shows the main devices used in this study. The base machine was a four-188 

row head-feeding combine harvester ER470 (Kubota, Osaka, Japan). Our laboratory has 189 

developed an autonomous harvesting system based on ER470 (Iida et al., 2017), which could 190 

follow a target path based on its absolute position and orientation, planning a counterclockwise 191 

spiral path in a rectangular paddy field. An Intel RealSense D435 (Intel, Santa Clara, USA) 192 
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camera was mounted on the front of the harvester to capture color images and depth data in 193 

real-time. It was mounted at a height of 1.65 m above the ground, and with its lens facing down 194 

at an angle of 28 ° to the horizontal. A Jetson Xavier (NVIDIA, Santa Clara, USA) was used 195 

for running segmentation models. Light levels were measured under different conditions with 196 

a digital light meter KG-75 (Kaise, Nagano, Japan). 197 

Since the pruned models could segment 5 classes (harvested area, unharvested area, ridges 198 

area, human and background) and the combine could harvest rice automatically, the test was 199 

conducted in this way. When the combine automatically harvested along the target path at a 200 

speed of 1.0 m/s, a human would appear at different times on the target path in front of the 201 

combine at different distances. In these conditions based on segmentation results and the 202 

distance obtained by the depth camera, the combine took three actions timely, either stopping, 203 

slowing down or continuing to work. The principal flow of the test algorithm for automatic rice 204 

harvesting is shown in Fig. 5. When the combine begins harvesting, it captures color images 205 

and depth data from the D435 camera, then inputs the RGB images into the segmentation model. 206 

Based on the segmentation results, if there is a human in the image, it calculates the center of 207 

the human area and gets the corresponding distance to the center from the depth data. Then 208 

according to the distance between the combine and the human, it sends a control signal to stop, 209 

slow down or continue to work, to the combine's electronic control unit through an RS-232 210 

serial port. Two tests were conducted, in Test 1, a human appeared on the target path in front 211 

of the combine at different distances. In Test 2, no human appeared on the target path in front 212 

of the combine. 213 

3 Results and Discussion 214 

3.1 Comparison of segmentation performance 215 

To evaluate the robustness of the models, each of the pruned models were validated on 216 

the test set. Fig. 6 presents the mean intersection over union (IoU) at different compaction ratios. 217 



10 

 

Based on the data in Fig. 6, the following results were found. As the compaction ratio continues 218 

to increase, there is a small loss in the accuracy of the model. In our experiments, the fine-219 

tuned pruned model could even achieve higher accuracy than the original unpruned model in 220 

some cases (compaction ratio: 61.4 %). However, when the compaction ratio is greater than 221 

80 %, the accuracy of the model seriously degrades. When the compaction ratio is less than 222 

80 %, compelling results are achieved in comparison to the original counterpart. 223 

When a combine harvester is working in the field, the harvested area, unharvested area, 224 

ridge area, and human area occupy different ratios at different stages. Fig. 7 shows the 225 

segmentation result for each class at different compaction ratios. It shows that models are more 226 

inclined to predict pixels in the image as the harvested area and the unharvested area. This may 227 

be due to data imbalance, because the harvested area and unharvested area occupy a bigger part 228 

than the ridge area and human area for most images. It shows that when the compaction ratio 229 

is less than 80 %, the mean IoU for each class at different compaction ratios is close to the 230 

original counterpart. When the compaction ratio is greater than 80 %, the mean IoU for each 231 

class decreases quickly. 232 

3.2 Inference run-time performance 233 

All these models were tested with an image size of 640 ×480 pixels, Table 2 shows the 234 

frames per second (FPS) on the Jetson Xavier and model volume of different pruned models. 235 

Because the accuracy of the model drops sharply when the compaction ratio is greater than 236 

80%, only models with a compaction ratio of less than 80% were measured. The run-times 237 

were achieved using CUDA 10.0.117 and cuDNN 7.3.07. As can be seen from Table 2 as the 238 

compaction ratio increases, the size of the model volume decreases and the speed of the model 239 

increases. When 80 % of the channel been pruned, the model has a 97.4% reduction of model 240 

volume size, and ran 1.33 times faster with comparable detection accuracy to the original model. 241 

It can be known from segmentation performance and the inference run-time performance that  242 
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when the compaction ratio is less than 80 %, the Network Slimming method could be used for 243 

decreasing the computational cost of the ICNet for field image segmentation. 244 

3.4 Results and discussion in field test 245 

Because the combine harvester traveled counter-clockwise during the harvesting, as 246 

shown in Fig. 8, the noise levels in the acquired images differed as the light conditions changed 247 

depending on the direction of movement. All of the test scenes were categorized into four 248 

scenes (A, B, C, D) according to the direction of harvester movement. In all scenarios, based 249 

on the segmentation results of the model, the harvester would take the appropriate action (stop, 250 

slow down or continue to work). Table 3 shows the results of Test 1 by using the pruned model. 251 

Because a human always appeared on the target path in front of the combine at different 252 

distances during Test 1, if the harvester slowed down, stopped and then continued to work, it 253 

was regarded as a successful result. 254 

The results show that the average success rate of collision avoidance was 96.6% at an 255 

average processing speed of 32.2 FPS (31.1 ms per frame). The evaluation results show that 256 

the proposed method is effective for human segmentation and collision avoidance regardless 257 

of the movement direction of the combine harvest or the light conditions experienced, as shown 258 

in Fig. 9. However, as shown in the last column of Fig. 9, the human is not successful 259 

segmentation when the camera is backlighted (dataset B). Because the camera in scene B was 260 

in backlight mode, the sunlight affected the image quality obtained by the camera, which 261 

reduced the accuracy of model segmentation. Finally, it made the success rate in scene B lower 262 

than that in other scenes. 263 

Table 4 shows the result of Test 2. Because no humans appeared on the target path in front 264 

of the combine in Test 2, the harvester should continue to work normally, so we focused on the 265 

number of false results in this test. If the harvester slowed down or stopped, it was regarded as 266 

a false result. The result in Table 4 indicate that the number of false detection was small under 267 
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various light conditions. However, the segmentation is not successful when the camera is 268 

backlighted (first column in Fig. 10), or the shadow of rice is similar to that of a human (second 269 

column in Fig. 10). 270 

It can be known from two field tests that when the camera is in a backlight mode or some 271 

objects are visually similar to a human in the image, the SS model that only relied on a color 272 

image as input still has the probability of false detection. Since thermal images and Lidar data 273 

are less affected by light than color images, which could provide additional information for 274 

making detection. So, our future work is to fuse the thermal image or Lidar data for further 275 

improving the accuracy of detection. 276 

4 Conclusion 277 

1) Network Slimming based on ICNet was proposed and evaluated as a means to compact 278 

the semantic segmentation model. It directly imposes sparsity-induced regularization on the 279 

scaling factors in batch normalization layers, and unimportant channels in convolutional layers 280 

can thus be automatically identified during training.  281 

2) The pruned models, which were achieved through channel pruning of the convolutional 282 

layers, substantially decreased the computational cost of ICNet, with a slightly reduction in 283 

accuracy. When the compaction ratio is 80 %, it gives a 97.4 % reduction of model volume 284 

size, running 1.33 times faster with comparable detection accuracy as the original model. 285 

3) A pruned model (with 80 % compaction ratio) was then tested in the field to validate 286 

the feasibility of the method. Results showed that the average success rate of collision 287 

avoidance was 96.6% at an average processing speed of 32.2 FPS (31.1 ms per frame) with an 288 

image size of 640×480 pixels on a Jetson Xavier. Results demonstrate that with channel 289 

reduction of the convolutional layer in the ICNet, a pruned (segmentation) model can be 290 
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successfully used in a rice combine harvester for obstacle detection and collision avoidance in 291 

real time. 292 
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Figures  365 
 366 

 367 

Fig. 1 ICNet structure for image segmentation.  368 

 369 

 370 

  
(a) Pyramid pooling module(PPM)  (b) Cascade feat fusion unit(CFF) 
Fig. 2 Pyramid pooling module (PPM) and cascade feat fusion (CFF) unit in ICNet.  371 

 372 

 373 
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 374 

Fig. 3. An iterative procedure of getting efficient segmentation model through sparsity 375 
training and channel pruning. 376 

 377 

 
Fig. 4. Robotic combine harvester and devices installed. 
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 378 

 379 

 380 

Fig. 5. The principal flow of the test algorithm for automatic rice harvesting. 381 

 382 

 383 

 384 

 385 
Fig. 6. The mean IoU at different compaction ratio. 386 

 387 
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 388 
 389 

Fig. 7. Segmentation accuracy of mean IoU for each class at different compaction ratio. 390 
 391 

 392 

 393 

 
Fig. 8. Movement direction of the robotic combine harvester in paddy field in Kisosaki. 

 394 

 395 

     

     
Fig. 9. Examples of images(top) and segmentation results (bottom) of the model in Test 1. 396 

 397 

 398 

 399 

N 
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Fig. 10. Examples of images (top) and outputs (bottom) from SS model in Test 2. 400 

  401 
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Tables 402 

 403 

Table 1 Description of the dataset. 404 

Items Description of dataset source 1 Description of dataset source 2 
Camera GoPro HERO5 Intel RealSense D435 
Time Morning, Noon Afternoon 
Weather Cloudy, Sunny Cloudy, Sunny 
Place Nantan, Japan; Narita, Japan; Narita, Japan; Kizu, Japan; 
Source image 
Size(width × 
height) 

1920 × 1080 640 × 480 

Rice variety KoshiHikari, Husakogane Husakogane, HinoHikari 
Source sample 
Number 700 550 

Field type paddy field paddy field 
Camera height 1.75 m 1.75 m 

Camera 
depression angle 

The lens is facing down and at 
an angle of 15 degrees to the 

horizontal 

The lens is facing down and at an 
angle of 15 degrees to the horizontal 

 405 
 406 

Table 2 The frames per second (FPS) on the Jetson Xavier and model volume of different 407 
pruned models.  408 

compaction 
ratio (%) 

FPS 
on 

Xavier 

inference 
time (ms) 

Volume size 
of model 
parameter 
file (MB) 

0 24.2 41.3 30.8 
10.0 26.2 38.2 26.7 
19.0 28.4 35.2 21.8 
27.1 29.0 34.4 17.5 
34.4 29.4 34.0 13.8 
41.0 29.5 33.9 10.8 
46.9 30.5 32.8 8.5 
52.3 30.6 32.7 6.6 
57.1 30.5 32.8 5.1 
61.4 30.5 32.8 4.1 
65.3 30.7 32.6 3.1 
68.8 30.8 32.5 2.4 
71.9 32.0 31.3 1.8 
74.7 31.3 31.9 1.4 
77.0 32.0 31.3 1.0 
80.0 32.2 31.1 0.8 

 409 
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Table 3 Results of Test 1 by the pruned models. 410 

Illumination 
[lx] 

Movement 
direction 

Number of times human 
appeared 

Number of 
successes 

32500 ~ 54850  

A 10 10 
B 5 4 
C 10 10 
D 5 5 

63210 ~ 79610  

A 10 10 
B 5 4 
C 10 10 
D 5 5 

 411 

 412 

 413 
 414 

Table 4 Results of Test 2 by the pruned models. 415 

Illumination 
[lx] 

Movement 
direction 

Travel 
distance[m] 

Number 
of 

failures 

32500 ~ 
54850  

A 200 0 
B 100 0 
C 200 0 
D 100 0 

63210 ~ 
79610  

A 200 0 
B 100 1 
C 200 1 
D 100 0 

 416 
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