
Towards Practical 2D Grapevine Bud Detection with
Fully Convolutional Networks

Wenceslao Villegas Marseta,∗, Diego Sebastián Péreza, Carlos Ariel Dı́aza,
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Abstract

In Viticulture, visual inspection of the plant is a necessary task for measuring

relevant variables. In many cases, these visual inspections are susceptible to

automation through computer vision methods. Bud detection is one such visual

task, central for the measurement of important variables such as: measurement

of bud sunlight exposure, autonomous pruning, bud counting, type-of-bud clas-

sification, bud geometric characterization, internode length, bud area, and bud

development stage, among others. This paper presents a computer method for

grapevine bud detection based on a Fully Convolutional Networks MobileNet

architecture (FCN-MN). To validate its performance, this architecture was

compared in the detection task with a strong method for bud detection, Scan-

ning Windows (SW) based on a patch classifier, showing improvements over

three aspects of detection: segmentation, correspondence identification and lo-

calization. The best version of FCN-MN showed a detection F1-measure of

88.6% (for true positives defined as detected components whose intersection-

over-union with the true bud is above 0.5), and false positives that are small

and near the true bud. Splits –false positives overlapping the true bud– showed

a mean segmentation precision of 89.3%(21.7), while false alarms –false positives

not overlapping the true bud– showed a mean pixel area of only 8% the area of a

true bud, and a distance (between mass centers) of 1.1 true bud diameters. The
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paper concludes by discussing how these results for FCN-MN would produce

sufficiently accurate measurements of bud variables such as bud number, bud

area, and internode length, suggesting a good performance in a practical setup.

Keywords: Computer vision, Fully Convolutional Network, Grapevine bud

detection, Precision viticulture

1. Introduction

For decades, viticulturists have been producing models of the most rele-

vant plant processes for determining fruit quality and yield, soil profiling, or

vine health, and have been gathering a wealth of information to feed into these

models. Better and more efficient measuring procedures have resulted in more

information, with its corresponding impact on the quality of model outcomes.

Such information corresponds to a long list of variables for assessing the state

of different parts of the plant, as the one found in the manual published by

The Australian Wine Research Institute (a,b). Most of these variables of in-

terest, however, are still being measured with manual instruments and visual

inspection. This results in high labor costs that limit measurement campaigns

to only small data samples which, even with the use of statistical inference or

spatial interpolation techniques (Whelan et al., 1996), restrict the quality of the

decisions that agronomists can conduct from them.

Precision viticulture in general (Bramley, 2009), and computer vision algo-

rithms in particular, have been growing in the last couple of decades mostly

due to their potential for mitigating these limitations (Seng et al., 2018; Matese

and Di Gennaro, 2015). These algorithms come along with the promise of an

unprecedented boost in the production of vineyard information as well as many

expectations not only about possible improvements in the quality of the mea-

surements, but in its potential to produce better models by feeding all this

information to big data algorithms.

The present work contributes to this general endeavor with FCN-MN 1 (Long

et al., 2015; Shelhamer et al., 2017), an algorithm for measuring variables related

1Both code and data have been made available online at https://github.com/

WencesVillegasMarset/DL4BudDetection. The shared repository includes both the corpus

of images used for training and testing, as well as runnable code for inspecting and visualizing
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to one specific plant part: the bud, an organ of major importance as it is the

growing point of the fruits, containing all the plant’s productive potential (May,

2000). The present contribution of autonomous bud detection not only enables

the autonomous measurement of bud-related variables currently measured by

agronomists (see Table 1 for a non-exhaustive list of bud-related variables), but

it also has the potential to enable the measurement of novel, yet important,

variables that at present cannot be measured manually. One example is the

total sunlight captured by buds, which depends on the unfeasible manual task

of determining the exact location of buds in 3D space. Although the present

work focuses on 2D detection, it could be easily upgraded to 3D by, for instance,

integrating 2D detection into the workflow proposed by Dı́az et al. (2018).

Table 1 shows a non-exhaustive list of the main bud-related variables cur-

rently measured by vineyard managers (Sánchez and Dokoozlian, 2005; Noyce

et al., 2016; Collins et al., 2020), together with an assessment of the extent

to which detection contributes to their measurement. The right-most column

(other required operations) indicates the information beyond detection, neces-

sary to complete the measurement, while the middle columns labeled (i), (ii),

and (iii) indicate the specific aspects of detection required for that variable: (i)

whether it requires a good segmentation, i.e., the discrimination of which pixels

in the scene correspond to buds and which correspond to non-bud; (ii) a good

correspondence identification, i.e., discrimination of bud pixels as belonging to

different buds; or (iii) a good localization, i.e., the localization of the bud within

the scene. For instance, regarding the bud number variable, for it to coincide

with the detection count, different components detected for the same bud must

be bundled together as a single detection. For the type-of-bud classification,

in addition to correctly identifying components with buds, the segmentation of

the part of the image corresponding to the bud must minimize the noise pro-

duced by background pixels. Lastly, to measure the incidence of sunlight on the

bud, localization rather than segmentation is necessary, plus the leaf 3D surface

geometry.

the complete set of results of our experiments, embedding the various models of the FCN-

MN detector in variable measurement systems, or re-training the FCN-MN on user provided

images.
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Variable (i) (ii) (iii) Other required operations

Bud number x none

Bud area x x none

Type-of-bud classification x x plant structure (trunk and canes)

Bud development stage x x classifier over bud mask

Internode length (by bud detection) x x plant structure (trunk and canes)

Bud volume 3D reconstruction

Bud development monitoring x x x none

Incidence of sunlight on the bud x x 3D reconstruction, leaves 3D surface geometry

Table 1: A non-exhaustive list of important bud-related variables accompanied by an as-

sessment of the extent to which detection contributes to their measurement. The right-most

column indicates the information beyond detection necessary to complete the measurement,

while the middle columns labeled (i), (ii), and (iii) indicate the three aspects of detection

required: segmentation, correspondence identification, or localization, respectively.

A good detector, therefore, should be evaluated on all three aspects of seg-

mentation, correspondence identification and localization. This is easy for our

detector as its implementation first produces a segmentation mask, which is

then post-processed to produce correspondence identification and localization.

The specific aspects of this approach are detailed in Section 2. The analysis of

detection results presented in Section 3 shows that this approach is superior to

state-of-the-art algorithms for grapevine bud detection. Finally, Section 4 dis-

cusses the scope, limitations of the results obtained for bud detection, sufficiency

of the performance achieved for the measurement of a selection of variables in

Table 3, as well as the most important conclusions, future work and potential

improvements.

1.1. Related work

A wide variety of research using computer vision and machine learning algo-

rithms to acquire information about vineyards (Seng et al., 2018) can be found

in the literature, such as berry and bunch detection (Nuske et al., 2011), fruit

size and weight estimation (Tardaguila et al., 2012), leaf area indices and yield

estimation (Diago et al., 2012), plant phenotyping (Herzog et al., 2014a,b), au-

tonomous selective spraying (Berenstein et al., 2010), and more (Tardáguila

et al., 2012; Whalley and Shanmuganathan, 2013). Among the outstanding

computer algorithms in recent years, artificial neural networks have aroused
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great interest in the industry as a means to carry out various visual recogni-

tion tasks (Hirano et al., 2006; Kahng et al., 2017; Tilgner et al., 2019). In

particular, Convolutional Neural Networks (CNN) have become the dominant

machine learning approach to visual object recognition (Ning et al., 2017). Two

recent studies have successfully applied visual recognition techniques based on

deep learning networks to identify viticultural variables to estimate production

in vineyards. One of them, Grimm et al. (2019), uses an FCN to carry out

segmentation of grapevine plant organs such as young shoots, pedicels, flowers

or grapes. The other, Rudolph et al. (2018), uses images of grapevines under

field conditions that are segmented using a CNN to detect inflorescences as re-

gions of interest, and over these regions, the circle Hough Transform algorithm

is applied to detect flowers.

Several works aim at detecting and locating buds in different types of crops

by means of autonomous visual recognition systems. For instance, Tarry et al.

(2014) presents an integrated system for chrysanthemum bud detection that can

be used to automate labour intensive tasks in floriculture greenhouses. More

recently, Zhao et al. (2018) presented a computer vision system used to identify

the internodes and buds of stalk crops. To the best of our knowledge and re-

search efforts, there are at least four works that specifically address the problem

of bud detection in the grapevine by using autonomous visual recognition sys-

tems. The research work by Xu et al. (2014), Herzog et al. (2014b) and Pérez

et al. (2017) apply different techniques to perform 2D image detection involving

different computer and machine learning algorithms. In addition, Dı́az et al.

(2018) introduces a workflow to localize buds in 3D space. The most relevant

details of each are presented below.

Xu et al. (2014)’s study presents a bud detection algorithm using indoor

captured RGB images and controlled lighting and background conditions specif-

ically to establish a groundwork for an autonomous pruning system in winter.

The authors apply a threshold filter to discriminate the background of the plant

skeleton, resulting in a binary image. They assume that the shape of buds re-

sembles corners and apply the Harris corner detector algorithm over the binary

image to detect them. This process obtains a recall of 0.702, i.e., 70.2% of the

buds were detected.
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Herzog et al. (2014b)’s work presents three methods for the detection of buds

in very advanced stages of development when the buds have already burst and

the first leaves are emerging. All methods are semi-automatic and require human

intervention to validate the quality of the results. The best result is obtained

using an RGB image with an artificial black background and corresponds to a

recall of 94%. The authors argue that this recall is enough to solve the problem

of phenotyping vines. They also argue that these good results can be explained

by the particular green color and the morphology of the already sprouting buds

of approximately 2cm.

Pérez et al. (2017) outlines an approach for the classification of bud images

in winter, using SVM as a classifier and Bag of Features to compute visual

descriptors. They report a recall of over 90% and an accuracy of 86% when

sorting images containing at least 60% of a bud and a ratio of 20-80% of bud

vs. non-bud pixels. They argue that this classifier can be used in algorithms for

2D localization of the sliding windows type due to its robustness to variation in

window size and position. It is precisely this idea that has been reproduced in

the present work to implement the baseline competitor to our approach.

Finally, Dı́az et al. (2018) introduces a workflow for the localization of buds

in 3D space. The workflow consists of five steps. The first one reconstructs a 3D

point cloud corresponding to the grapevine structure from several RGB images.

The second step applies a 2D detection method using the sliding window and

patch classification technique of Pérez et al. (2017). The next step uses a voting

scheme to classify each point in the cloud as a bud or non-bud. The fourth step

applies the DBSCAN clustering algorithm to group points in the cloud that

correspond to a bud. Finally, in the fifth step, the localization is performed,

obtaining the center of mass coordinates of each 3D point cluster. They report

a recall of 45% and a precision of 100% and a localization error of approximately

1.5cm, or 3 bud diameters.

Although these research studies represent a great advance in relation to the

problem of detecting and localizing buds, they still show at least one of the

following limitations: (i) use of artificial background outdoors; (ii) controlled

lighting indoors; (iii) need for user interaction; (iv) bud detection in very ad-

vanced stages of development; (v) low bud detection/classification recall, and
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(vi) although some of these works perform some kind of segmentation process as

part of the approach, none of them aim to segment the bud or report metrics of

the quality of the segmentation performed. These limitations represent a major

barrier to the effective development of tools for measuring bud-related variables.

2. Materials and Methods

2.1. Fully Convolutional Network with MobileNet (FCN-MN)

As outlined in the introduction, the approach proposes the use of computer

vision algorithms to: (i) segment buds by classifying which pixels in the scene

correspond to buds and which correspond to background (non-buds), (ii) identify

bud correspondences by discriminating those pixels that belong to different buds

in the observed scene, and (iii) localize each bud in the scene.

For the segmentation operation, i.e., pixel classification, the fully convolu-

tional network introduced in (Long et al., 2015) is taken as a basis and trained

for the specific problem of grapevine bud segmentation. The following section

2.1.1 describes in detail the architecture considered for these networks. The re-

sulting fully convolutional network returns a probability map on the same scale

as the original image, where the value of one pixel represents the probability

that the corresponding pixel in the input image belongs to a bud. To obtain a

binary mask, a binarization threshold τ with values {0.1, 0.2, . . . , 0.9} is applied

to each pixel, classifying the pixel as bud (non-bud) if its probability is higher

(lower) than τ . To identify bud correspondences, post-processing of this binary

mask is performed to determine that two bud pixels correspond to the same bud,

as long as they belong to the same connected component, i.e., joined by some

sequence of contiguous bud pixels. Finally, there are several alternatives for the

localization of objects among which are bounding box, pixel-wise segmentation,

contour and center of mass of the object (Lampert et al., 2008). In this work

the last one was considered, choosing to localize buds by the center of mass of

the connected component.

2.1.1. Encoder-decoder architecture

For the pixel classifier, the three versions –32s, 16s and 8s– of the fully con-

volutional networks originally introduced by Long et al. (2015) were considered,
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Figure 1: Diagram of the FCN-MN network architecture proposed in this work, based on

the fully convolutional network proposed by Shelhamer et al. (2017), replacing its feature

extraction encoder with the MobileNet network Howard et al. (2017), which produces feature

maps with a downsampling factor of n. As a decoder for the production of the segmentation

map, the SkipNet network Siam et al. (2018) is used, implementing variants 32s, 16s and 8s.

mainly due to their promising results in many image segmentation applications

(Litjens et al., 2017; Garcia-Garcia et al., 2018; Kaymak and Uçar, 2019). These

networks have characteristic architectures with two distinct parts: encoder and

decoder (see Figure 1).

The encoder consists of a convolutional neural network that performs a down-

sampling of an input image into a feature set, by means of convolution operations

to produce a set of feature maps, i.e., an abstract representation of the image

that captures semantic and contextual information, but discards fine-grained

spatial information. These operations reduce the spatial dimensions of the im-

age as one goes deeper into the network, resulting in feature maps 1/n the size

of the input image, where n is the downsampling factor. The decoder is an

upsampling subnet, which takes the low-resolution feature map and projects it

back into pixel space, increasing the resolution to produce a segmentation mask

(or dense pixel classification) with the same dimensions as the input image.

This operation is implemented as a network of transposed convolutions with

trainable parameters, also known as upsampling convolutions (Shelhamer et al.,

2017).

To refine the segmentation quality, connections that go beyond at least one

layer of the network, called skip connections, are often used to transfer local

spatial information from the internal encoder layers directly to the decoder. In

general, these connections improve segmentation results, since they mitigate the

loss of spatial information by allowing the decoder to incorporate information
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from internal feature maps. Their impact may vary depending on the proposed

skip architecture. In Long et al. (2015), three skip architectures are proposed:

32s without information from internal encoder layers; 16s that adds spatial

information from deep encoder layers; and 8s that adds spatial information from

deep and less deep encoder layers. The details of these architectures are beyond

the scope of this paper, but can be found in Long et al. (2015) and Shelhamer

et al. (2017). Since the results reported in the literature are not conclusive

regarding which architecture is better, in this work all three alternatives are

considered.

In spite of having achieved excellent results in practice, these architectures

carry a significant load of computational resources. With this in mind, in this

work the VGG encoder of Simonyan and Zisserman (2015), originally proposed

by Long for fully convolutional networks, was replaced by the MobileNet network

of Howard et al. (2017), thus the suffix MN in the name of the FCN-MN algo-

rithm. This network stands out for having only 4.2 million parameters against

the 138 million parameters of VGG, allowing the training and testing process

to be considerably faster, with a much lower memory requirement. This situ-

ation was verified by preliminary experimentation, in which indeed MobileNet

ended as the fastest, less memory intensive option for our training specifica-

tion and hardware available. This experimentation is outside the scope of this

manuscript and thus further details have been omitted. The use of MobileNet as

an encoder in the fully convolutional networks of Long et al. (2015) is not new,

but had already been proposed for the 8s architecture by Siam et al. (2018) in

his SkipNet architecture. Technically, Siam et al. (2018)’s proposal is extremely

simple; motivating us to extend it to the 16s and 32s architectures originally

proposed by (Long et al., 2015).

2.2. Sliding Windows detector

This section describes both, the approach proposed by Pérez et al. (2017)

for the classification of bud images, and our implementation for detection based

on the sliding windows outlined in the original paper, denoted hereon by SW.

Details of the six steps of the proposed SW detection procedure are shown in

Figure 2.
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Figure 2: Diagram of the SW bud detection approach based on Pérez et al. (2017). Multiple

patches from the input image shown in (a) are extracted via the Sliding Windows algorithm

(b). Then, in step (c) a SIFT + BoF descriptor is computed for each patch. These descriptors

are classified by an SVM binary classifier (d) in order to determine whether a bud is present

on each patch. Finally, the generation of a binary segmentation mask is achieved in two

steps. First, in step (e) a voting scheme is applied to each pixel, assigning it one vote for

each positive patch it belongs to. Then, the pixel is incorporated in the output segmentation

mask if the number of votes it obtained is more or equal to a user given threshold ν. Finally,

step (f) shows the output mask corresponding to ν = 3 (black) together the ground truth

segmentation (white).
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In the present work, different variations of the SW algorithm are contem-

plated, considering squared windows of the 10 sizes 100, 200, 300, 400, 500,

600, 700, 800, 900 and 1000 pixels, and the four values {1, 2, 3, 4} for the voting

threshold ν. These window sizes were chosen on the basis of the robustness

analysis of the classifier presented by Pérez et al. (2017) for the window geom-

etry. This analysis shows that the classifier is robust for patches that contain

at least 60% of the pixels of a bud, and whose area is composed of at least

20% bud pixels. If we consider extreme cases, i.e., the smallest bud diameter

of 100px and the largest of 1600px, window sizes of 100px and 1000px could

contain at least 60% of the pixels of a bud. In addition, using a 50% displace-

ment, it is guaranteed that at least one patch will contain more than 20% bud

pixels, 50px and 500px, respectively. The authors argue that a sliding window

detection algorithm could easily propose a scheme for choosing window size and

displacement to ensure that at some point in the scan the window meets the

robustness requirements. However, no details are given on how to implement it,

so in this paper we only report results for fixed window sizes and 50% vertical

and horizontal displacement. As a result, each pixel of the image simultaneously

belongs to 4 patches, which justifies the maximum threshold value of 4.

For all remaining parameters we considered a single value. The parameter

values chosen for the Bag of Features and SVM algorithms (step c) are those of

the original publication of Pérez et al. (2017), and are discussed in Section 2.3.3

together with details of the algorithms’ training.

2.3. Model training

This section provides details of the training process for each approach. In

order to contrast both approaches they have been designed to receive the same

type of input, i.e., an image of a viticultural scene, and to produce the same

outputs, i.e., a binary mask of the same size as the original image whose positive

pixels represent bud-type pixels. This allows both algorithms to be trained with

the same image collection, which is described in the following section, followed

by model-specific training details.
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2.3.1. Image collection

The image collection used in this study is the same collection originally used

in Pérez et al. (2017), which has been downloaded from http://dharma.frm.

utn.edu.ar/vise/bc as indicated by the authors. The collection corresponds

to bud images captured in winter in natural field conditions, on approximately

a hundred Vitis Vinifera plants from 10 different varieties, all driven by a trellis

system. The complete collection consists of 760 images. However, in this work,

only images containing exactly one bud were kept from the original dataset, re-

sulting in a corpus of 698 images. Cases with more than one bud were scarce for

a proper training of the FCN-MN architecture. This may restrict the practical

applications of the trained detection model by forcing them to use frames with

only one bud. However, training and evaluating a one-bud model lays a strong

groundwork for any future work, both academic or technological, that could

overcome this limitation by producing the necessary multi-bud training corpus.

Each image in the corpus is accompanied by the ground truth, that is, a mask of

the manual segmentation of the bud. These images and their masks were used

during the training and evaluation of the detection models. For this purpose,

the image collection was separated into two disjoint subsets: the train set with

80% of the images and the test set with the remaining 20%. This resulted in a

train set of 558 images and a test set of 140 images, both with their respective

ground truth masks.

2.3.2. FCN-MN training

The 558 images reserved for this purpose were used to train this approach.

These images have different resolutions; however, the three proposed FCN-MNs

require a fixed size entry. Therefore, all images (including their masks) were

scaled to a resolution of 1024×1024 pixels using a bilinear interpolation method

(Han, 2013). In addition, for the train set images, the pixel RGB intensity values

were scaled from [0; 255] to [-1; 1].

Given the small number of images in the train set, two techniques widely used

in practice were employed to achieve robust training: transfer learning (Pan and

Yang, 2009) and data augmentation (Shorten and Khoshgoftaar, 2019). The

transfer learning process was carried out as follows: (i) the original MobileNet

network proposed by Howard et al. (2017) was implemented; (ii) the network was
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initialized with the parameters pre-trained on the ImageNet benchmark dataset

(Kornblith et al., 2019); (iii) the MobileNet multi-class classification layer was

replaced by a binary classification layer; (iv) the network was trained as a bud

and non-bud patch classifier in an analogous way to SVM training using the

same balanced patch train set used for training SW, after scaling all its images

to 224× 224 pixels; and (v) the parameters obtained in the previous step were

used to initialize the encoder of our FCN-MN. The data augmentation process

was applied on the fly during training, meaning that at each iteration the trainer

receives one transformed version of the original image obtained by applying the

following seven operations to the original image over parameter values chosen

at random with uniform probability: rotation of up to 45◦; horizontal shifting

of up to 40%; vertical shifting of up to 40%; shear of up to 10%; Zoom of up

to 30%; horizontal flip and vertical flip. Given that there are 200 epochs, the

trainer is presented with 200 transformed versions of each image in the corpus,

equivalent to one large dataset of 111600 images.

For the training of the three FCN-MN variants –8s, 16s, and 32s– it is

required to specify the optimization method and dropout value, two parameters

typically defined by the user. In this work, the optimization methods considered

were: Adam with learning rate 0.001, beta1 = 0.9 and beta2 = 0.999; RMSProp

with learning rate 0.001 and ρ = 0.9; and Stochastic Gradient Descent with

learning rate 0.0001 and momentum = 0.9. For the dropout case, two values

were considered: 0.5 and 0.001. These values were pre-selected by preliminary

experiments not discussed here.

The best combination of optimization method and dropout was determined

in training time over a validation set, using the 4-fold cross validation approach

by 60 epochs and batchsize equal to 4, varying over the three optimization

methods and the two dropout values. The values selected were those that max-

imize the mean of Jaccard’s Intersection-over-Union (IoU) (Jaccard, 1912), a

typical assessment measure in segmentation problems. For each combination of

optimizer and dropout values the simple mean is reported over 12 IoUs corre-

sponding to the 3 variants considered in each of the 4 folds. It can be observed

in Table 2 that the combination of parameters with which the highest average

IoU is reached is RMSProp with a dropout of 0.001. Using these parameters,
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Mean IoU

Optimizer Dropout = 0.001 Dropout = 0.5

RMSprop 0.44253 0.3117

Adam 0.240277 0.315714

SGD 0.000886 0.00151

Table 2: For each combination of optimizer and dropout values the simple mean is reported

between 12 IoUs corresponding to the 3 variants considered in each of the 4 folds.

the 8s, 16s, and 32s architectures were trained over 200 epochs and batch size

of 4.

2.3.3. SW training

The training of SW is conducted in the same way as for the original workflow

proposed in Pérez et al. (2017). This involves training a binary classifier to learn

the concept of bud versus non-bud from a collection of rectangular patches that

may or may not contain a bud. During the training, bud patches must be regions

that perfectly circumscribe the bud while non-bud patches must be regions that

contain not a single bud pixel (see Figure 3). Therefore, to build the patch

collection, the 558 images and their masks were processed following the same

protocol as in Pérez et al. (2017), obtaining a total of 558 patches circumscribing

each bud (one per image), and more than 25000 non-bud patches (the non-bud

area is much larger than the area occupied by a bud in the image). The size of

these patches is variable, with resolutions between 0.1 and 2.6 megapixels for

the 100× 100 to 1600× 1600 pixels patches.

From this collection of patches, a balanced patch train set was created, with

558 patches for each class, where non-bud patches were taken at random from

the collection of 25000 background patches. The training was performed as

detailed in the pipeline proposed by Pérez et al. (2017): (i) all SIFT descriptors

were extracted from the train set; (ii) BoF was applied with a vocabulary size

equal to 25; and (iii) the SVM classifier was trained on the BoF descriptors of

each patch using a Radial Basis Function kernel, where the value of the γ and

C parameters was established by means of a 5-fold cross-validation on the same

value ranges: γ = {2−14, 2−13, . . . , 2−7} and C = {25, 26, . . . , 214}.
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Figure 3: A sample of the collection of patches used in this work. The first and second rows

correspond to bud patches and non-bud patches, respectively. Image extracted from Pérez

et al. (2017).

3. Experimental results

In this section we present a systematic evaluation of the quality of our pro-

posed FCN-MN procedure for bud detection over all three aspects of detection

required for the measurement of the relevant bud-related variables listed in Ta-

ble 1: segmentation, correspondence identification, and localization . First, in

the following subsection, we present metrics that quantify the quality of these

aspects, followed by subsection 3 that presents the results for the metric values

obtained for different experiments over the image test set.

3.1. Performance metrics

3.1.1. Correspondence identification metrics

Detection of buds is the result of two steps: (i) thresholding of the output

masks into a binary mask, and (ii) considering each connected component of the

binary mask as exactly one detected bud. For FCN-MN, the thresholding is

done by keeping all pixels of the probabilistic mask with values higher than τ ,

and for SW this is done through the voting mechanism that keeps all pixels that

belong to at least ν positive patches. The correspondence identification metrics

measure to what extent these detections are correct or incorrect. Detected

components are considered to be correct when most of its mask coincides with

the mask of the true bud. This condition is formalized by considering true

positives as those whose intersection-over-union between their masks and the

masks of true buds surpasses some threshold α. Denoted IoU , this coefficient
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is defined as the area of the intersection between the detected and true masks,

normalized by the area of their union. The IoU coefficient has also appeared

in the literature as the Jaccard’s coefficient (Jaccard, 1912), an alternative to

the harmonic mean (a.k.a. F1-measure) of the pixel-wise precision and recall

between the detected components and the true mask. The IoU coefficient runs

from 0 when the detection missed completely the true bud, to 1 when the masks

coincide perfectly. Values in between correspond to some true buds missing in

the detected mask, or non-buds showing in the detected mask. This definition

of detection may result in confusion when some detected component correctly

detects more than one bud, i.e., some detected component overlaps with an IoU

higher than 0.5 with more than one true bud. This, however, cannot occur in

our experiments because the image collection contains only one bud per image.

This results in the following metrics for correspondence identification, de-

fined for an arbitrary value of the threshold α:

• True Positive (TP (α)): number of detected components with IoU ≥ α.

• False Positives (FP (α)): number of detected components with IoU < α.

• False Negatives (FN(α)): number of true buds for which there is no

true positive detected component, that is, no detected component with

IoU ≥ α.

Rather than reporting these quantities individually, we combine them in the

well known precision and recall metrics, denoted as PD(α) and RD(α), referred

to as detection-precision and detection-recall, and defined formally as

PD(α) =
true positives

true positives+ false positives
=

TP (α)

TP (α) + FP (α)
,

RD(α) =
true positives

true positives+ false negatives
=

TP (α)

TP (α) + FN(α)
.

Given these quantities, we also report the F1-measure, denoted F1(α), com-

puted as their harmonic average F1(α) = 2× PD(α)×RD(α)
PD(α)+RD(α) .
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These correspondence identification metrics provide a strong summarization

of the merit of the detection, but may lack some refinements necessary for

assessing aspects of the bud detection with impact on the different possible

applications of bud related variable measurements. For that, it is paramount

to understand the impact of the false positive components. To start then, we

distinguish them between those that overlap a true bud on at least a single

pixel, named hereon as splits, and those that do not overlap a true bud, named

hereon as false alarms. Formally,:

• Split (S(α)): number of detected components satisfying 0 < IoU < α,

i.e., are false positives but overlap the true bud.

• False Alarm (FA(α)): number of detected components with IoU = 0,

i.e., are false positives and do not overlap a true bud.

In the following sections, α is considered to be 0.5, the most common choice

in the literature of detection algorithms, with some minor exceptions considered

for a detailed and thorough analysis. To simplify the notation we drop (α) for

the cases corresponding to α = 0.5. For instance, we replace PD(0.5), RD(0.5)

and F1(0.5) with PD, RD and F1.

3.1.2. Segmentation metrics

All correspondence identification metrics, including S and FA, are based

on the rather coarse binary assessment of correct or incorrect. This allows a

simple and summarized evaluation but may miss some subtle, pixel-wise errors,

and their resulting impact on the measurement of bud related variables. A true

positive, for instance, could miss that some component may have an IoU much

larger than 0.5, even 1.0, meaning that its mask is matching perfectly that of

the true bud. For other non perfect cases, the same IoU can be obtained for

many combinations of intersections and unions, with extreme cases of a small

detected component completely contained within the true bud presenting the

same IoU of a large detected component containing completely the true bud.

A pixel-wise comparison of the masks could also help to assess the quality

of false positive detections. For the case of splits, the best case would be one

completely enclosed within the true mask, –i.e., presenting not a single false
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positive pixel–, while covering half minus one of the pixels of the true bud

mask. For the case of false alarms, a correspondence identification metric may

miss how large or small are these false positives.

The community has proposed several metrics to quantify segmentation er-

rors. The most obvious ones are those that report the fraction of the detected

mask corresponding to true positive, false positive, and false negative pixels;

denoted TPF , FPF , and FNF , respectively. Again, one can simplify the anal-

ysis by considering pixel-wise precision and recall, denoted as PS and RS and

referred to as segmentation precision, segmentation recall, defined formally as:

PS = TPF/(TPF + FPF ),

RS = TPF/(TPF + FNF ),

which can be combined by their weighted harmonic mean, the well-known

F1-measure or Dice coefficient. The IoU coefficient is, however, a more natural

choice, both for its similarity with the Dice coefficient, and the fact that it was

used in the definition of the correspondence identification metrics.

One could further refine these metrics by applying them, not to the whole

mask, but to the individual correspondence identification cases; for instance,

by reporting the mean IoU over only true positive components. Also, one

could apply them only to splits to assess how bad or good splits are, meaning,

how much extra area of the true bud is detected by them. The case of false

alarm detections is rather monotonous and not very informative as its precision

and recall is always zero. Instead, these components can be better assessed

by considering a normalization against bud size to measure their relative size,

resulting in the normalized area, denoted as NA and defined formally as the

area of the component normalized by the area of the (single) true bud in the

image, with a component’s area corresponding to its total number of pixels.

3.1.3. Localization metrics

As a complement to the segmentation metrics we consider the localization

of the detected components. Mostly useful for false alarms by noticing that

false alarms at different distances of the true bud may affect differently the
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measurement of some bud related variables. In some cases, with proper post-

processing (e.g. spatial clustering), the impact of near-by false alarms on the

overall error in the measurement of bud related variables may be reduced or

could even disappear.

The selected metric for assessing the localization error of detected compo-

nents is normalized distance, denoted as ND and formally defined as the dis-

tance between the center of mass of the component and the center of mass of

the true bud, divided by the diameter of the true bud, with the bud’s diameter

corresponding to the maximum distance between any two bud pixels.

3.2. Results

This section validates that FCN-MN is a better detector than its SW coun-

terpart through a systematic assessment over each of the metrics defined in the

previous section..

For a thorough comparison, several cases for each algorithm were considered:

training 27 FCN-MN detectors and 40 SW detectors over the training set of 558

images, one for each combination of their respective hyper-parameters. For

FCN-MN, these hyper-parameters are the three architectures –8s, 16s, and 32s–

and the 9 values {0.1, 0.2, . . . , 0.9} for the binarization threshold τ . For SW,

in turn, these hyper-parameters are the 10 patch sizes {100, 200, . . . , 1000} and

the 4 values {1, 2, 3, 4} of the voting threshold ν. Once trained, each of these

67 models were evaluated over the 140 images reserved for testing purposes,

obtaining for each image the detection components.

Table 3 shows the results for the best detectors of each algorithm, reporting

all performance metrics of the three aspects of detection over all detected com-

ponents over the 140 test images: correspondence identification, segmentation

and localization. The first column shows the label of the selected detectors, with

the subscript indicating the architecture and patch size for the case of FCN-MN

and SW, respectively; and the superscript indicating the thresholds τ and ν,

respectively.

The table includes all metrics defined in Section 3.1 required for a thor-

ough comparison of FCN-MN against SW. First, four correspondence identifi-

cation metrics are included: detection-precision PD, detection-recall RD, the

F1-measure F1, and S, the total count split components, all corresponding to
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an α of 0.5. Also, seven segmentation metrics are included: the mean and

standard deviation (in parenthesis) of the segmentation precision, segmentation

recall, and the IoU measure over the α = 0.5 true positives and splits, denoted

in the table by PTPS , RTPS and IoUTP and PSS , RSS and IoUS for true positives

and splits, respectively; plus the mean and standard deviation of the normalized

area for α = 0.5 false alarms, titled NA. Finally, the table reports the normal-

ized distance ND of the α = 0.5 false alarm components, and omits the ND

for true positives and splits, assumed too close to the true bud to produce any

results of interest. This is confirmed below when their minimum and maximum

NDs are reported and discussed.

The table is a summary, as it includes only a subset of all 27 FCN-MN

cases and all 40 SW cases. A detector was considered for inclusion in the table

if, when compared to its counterparts of the same algorithm, it resulted in

the highest value for at least one of the metrics. The corresponding cell was

marked in bold in the table. For instance, the detector FCN-MN0.6
16s has been

included because its detection-precision PD of 88.6% is the largest among the

detection-precision of all 27 FCN-MN detectors. Similarly, the detector SW3
700

has been included because its precision PD = 2.5% is the largest among all 40

SW detectors. Also, for all metrics, the best among the FCN-MN detectors

(bolded) has been compared to the best among the SW detectors (bolded), and

the larger of the two has been underlined. The table shows an overwhelming

improvement of FCN-MN over SW. A first analysis of the table shows FCN-MN

with larger metrics over SW in all cases, except for the segmentation recall RSS

for splits, for which the SW case has a better (larger) mean of 98.1% compared

to the 58.6% for FCN-MN. These improvements are not statistically significant,

however, as the large standard deviations of 50.5 for the FCN-MN cases results

in (statistically) overlapping values.

For the case of correspondence identification metrics PD, RD, F1 and S,

FCN-MN values are overwhelmingly better to those of SW, with the best preci-

sions and recalls of SW all below 6.4% against those of FCN-MN whose values

surpass 30.1%. For the case of splits one can observe the same pattern, with

SW showing the best case of 82 splits, much larger than the 9 splits of the best

case of FCN-MN. Although not quite overwhelming, the segmentation metrics
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of FCN-MN are still larger than those of SW. For instance, for the segmen-

tation precision of true positives PTPS , and split PSS , the FCN-MN over SW

improvements are 98.2% versus 94.1%, and 98.8% versus 54.2%, respectively.

Finally, for NA and ND (of false alarms), where a smaller value is better, again

FCN-MN shows large improvements over SW, with the best values of NA are

0.04 versus 0.23, and the best values of ND are 1.10 versus 5.97, for FCN-MN

versus SW, respectively.

FCN-MN also shows improvements over the mean normalized distances of

the true positives and splits. These have been computed but omitted in the ta-

ble. For FCN-MN the minimum and maximum mean and standard deviations

are 0.038(0.037) and 0.055(0.053), respectively. Similarly, the FCN-MN minimal

and maximal pair for the split components are 0.216(0.138) and 0.482(0.212), re-

spectively. As predicted, all rather small, with both the minimum and maximum

mean distance falling well within one diameter of a true bud, for all cases. For

the SW detectors, the min/max pair of mean normalized distances for the true

positive components is 0.045(0.023)/0.210(0.076), and for splits components is

0.412(0.210))/3.250(5.961), respectively. As can be observed, again FCN-MN

shows an improvement over SW, with a minor statistically significant overlap

of their min/max intervals for both the true positives and split cases.

3.2.1. Detailed analysis of correspondence identification metrics

Graphically, one could expect a better combined analysis of detection-precision

and detection-recall than could be obtained by comparing the F1-measure. This

is shown as a scatter plot in Figure 4a, a graphical representation of a non-

summarized version of the second and third columns of Table 3. Each dot

in the plot is located according to the detection-precision and detection-recall,

and the color black or white, whether it corresponds to an FCN-MN or an SW

detection model.

The graph reinforces the clear and undisputed improvements of FCN-MN

over SW already shown in the table, with overwhelmingly larger detection pre-

cisions and recalls.

One concern that may arise is the confidence one can ascribe to such over-

whelmingly bad results of the SW correspondence identification metrics. One

possible explanation may arise by noticing the large number of splits of SW.
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Table 3: Correspondence identification, segmentation and localization metrics for the best

FCN-MN and SW detection models. Each column shows bolded cells corresponding to the

cell with the best metric among all FCN-MN rows and the cell with the best metric among SW

rows, and underlined cells corresponding to the best among all combined models, i.e., the best

of the column. Columns PD, RD, F1 and S show results for the Correspondence identification

metrics detection-precision, detection-recall, F1-measure and number of images with splits,

respectively: Columns PTP
S , RTP

S and IoUTP (resp. PS
S , RS

S and IoUS) correspond to the

segmentation metrics mean segmentation precision, mean segmentation recall, and mean IoU

measure over all true positive components (resp. split components), with standard deviations

in parenthesis (undefined cases denoted by “-”); and Columns NA and ND show the mean

NA and mean ND over all false alarm components.
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(a)

(b)

Figure 4: Scatterplots of detection-precision PD(α) versus detection-recall RD(α), with results

for α = 0.5 and α = 0.1 shown in Figure (a) and (b), respectively. Results for FCN-MN and

SW are shown in black and white dots, respectively. Each dot represents the detection-

precision PD and detection-recall RD for some particular configurations of hyper-parameters

among all models (27 for FCN-MN and 40 for SW).
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Splits are components that could not pass the IoU ≥ 0.5 condition but are

overlapping the true bud. This suggests that SW may be producing too many

small detections of the bud, all of which could not make the cut for α = 0.5.

This can be confirmed by observing in Table 3 the mean IoU of splits for the

SW models, all of which are well below 50%, with the maximum at 19.7%.

We complement this by also considering correspondence identification metrics

with a smaller α of 0.1, whose precision-recall scatterplot is shown in Figure 4b.

With similar results for FCN-MN, the graph shows clear improvements for SW ,

with precisions reaching almost 40% and recalls above 80%. The increase in

the detection-precision proves that many of the α = 0.5 splits are true positives

for α = 0.1. This may even result in some true buds with not a single true

positive for the case of α = 0.5, may now have one, which explains the increase

in detection-recall.

3.2.2. Detailed analysis of segmentation metrics

Figures 5a and 5b show scatter plots for segmentation-precision and segmentation-

recall for the α = 0.5 true positive and split components in all 140 masks of

the test images, respectively. These correspond to their respective columns of

(a non-summarized version of) Table 3 with black and white dots representing

the values of FCN-MN and SW detection models, respectively. The position of

each dot in the plot corresponds to the mean segmentation-precision and mean

segmentation-recall over all the true positive components (splitted components,

respectively) of the masks produced by the detection model associated to that

dot. The standard deviation of the recall (precision) is shown as a horizontal

(vertical) bar.

In Figure 5a (true positives), one can observe that all black dots (FCN-MN)

are clustered in the upper-right corner of the graph, enclosed by a minimum

precision and recall above 70%, while the white dots (SW), also clustered in the

upper-right corner, are enclosed in a slightly smaller minimum precision and

recall of 50% and 65%, respectively.

In Figure 5b (splits), one can observe a rather different scenario, with FCN-

MN showing split components with precisions as large as 100% but small recalls

spanning the range of 10% to a maximum 60%, while SW is showing the opposite

trend recalls ranging from a low 15% to a maximum of 100% but small preci-
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sions all below 60%. When read properly, these results show, again, a better

performance of FCN-MN against SW, with the former resulting in small splits

(low recall) but mostly within the enclosure of the true bud (large precision),

while the latter resulting in components reaching beyond the enclosure of the

true bud (low precision).

Figure 6 show a graphical representation of the segmentation results for the

false alarm components, the NA for each of the 27 models of FCN-MN and each

of the 40 models of SW, i.e., for each cell in the one-before-last column of (a

non-summarized version of) Table 3. results are grouped in two histograms, one

for the FCN-MN detection models (black) and one for the SW models (white).

Bars in the histogram represent the proportion of detection models whose mean

NA (over all false alarm components of all images) falls within the bin interval.

The more concentrated to the left the better the algorithm, as this indicates that

more detection models for that algorithm resulted in smaller NA (on average).

When compared to the histogram of SW, one can observe that the histogram for

FCN-MN is considerably more concentrated towards the left, with all FCN-MN

models concentrated in a single bar at the left-most interval of [0.0, 1.0). For

SW, the situation is rather different with bars at intervals as far to the right as

[57.0, 58.0), that is, detection models with areas as large as 58 times the bud

area. These high values correspond to SW models with large window sizes, e.g.,

1000px, that for low thresholds are classified as bud patches, rendering all its

pixels as bud pixels.

3.2.3. Detailed analysis of localization metrics

To conclude, this subsection presents a graphical representation of the local-

ization results reported in Table 3, that is, the normalized distance (ND) only

for the α = 0.5 false alarms. Figure 7 summarizes the ND values reported in

the corresponding column of the (non-summarized version of) Table 3 in the

form of two histograms, one for FCN-MN (black) and one for SW (white). Bars

in the histogram represent the proportion of detection models (27 for FCN-MN

and 40 for SW) whose mean ND falls within the bin interval. The more concen-

trated to the left the better the algorithm, as this indicates that more detection

models for that algorithm resulted in smaller ND (on average). Here, again,

the advantage of FCN-MN over SW is clear, with the histogram for FCN-MN

25



(a)

(b)

Figure 5: Segmentation Precision-Recall scatterplots reporting the results for FCN-MN and

SW in black and white, respectively, with dots representing the segmentation precision and

segmentation recall average over all images in the test set (and bars representing standard

deviations) with one dot per hyper-parameter configuration (27 for FCN-MN and 40 for SW).

In (a) averages were computed over the segmentation precision and recall of all α = 0.5 true

positive components, while in (b), averages were computed over the segmentation precision

and recall of the α = 0.5 split components. Recall and precision standard deviations are

represented by the horizontal and vertical grey error bars, respectively.
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Figure 6: FCN-MN (black bars) and SW (white bars) histograms of the mean normalized

area NA of false alarm components with bars representing the proportion of detection models

whose mean NA falls within the bin interval.

more concentrated in the left-most part than that of SW, with the FCN-MN

histogram running from the (0, 1] to the (7, 8] bin, and the SW histogram run-

ning from the (5, 6] towards the (9, 10] bin; and their respective maximums are

at (3, 4] and (7, 8], respectively, indicating that most FCN false alarms are at

a distance of 3 to 4 bud diameters, while most SW’s false alarms are at 7 to 8

bud diameters.
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Figure 7: FCN-MN (black bars) and SW (white bars) histograms of mean normalized distance

ND over all false alarm components with bars representing the proportion of detection models

whose mean ND falls within the bin interval.

4. Discussion and Conclusions

This section discusses the results obtained by the proposed approach in the

context of the problem of grapevine bud detection and its impact as a tool for

measuring viticultural variables of interest. The discussion is complemented

with some highlights of the most important conclusions together with some

potential lines of future work.

This work introduces FCN-MN, a Fully Convolutional Network with Mo-

bileNet architecture for the detection of grapevine buds in 2D images captured

in natural field conditions in winter (i.e., no leaves or bunches) containing a

maximum of one bud.

The experimental results confirmed our main hypothesis: that the detection

quality achieved by FCN-MN is improved over the sliding windows detector

(SW) in all three detection aspects: segmentation, correspondence identification

and localization. Being SW the best bud detector known to these authors, one

can conclude that FCN-MN is a strong contender in the state-of-the-art for bud

detectors. However, improving over SW is not enough to prove the practical
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impact of the proposed detection algorithm, as it may still result in a bud

detector with limitations for addressing the quality requirements of practical

measurements of bud-related variables (c.f. in Table 1).

Quality performance could be assessed by the metrics reported in Table 3.

In the best case, when correct detections (true positives) are considered to

be those that overlap true buds with an IoU of at least 0.5, FCN-MN shows

a detection-precision and detection-recall of 88.6% and 95.0%, respectively, a

mean (and standard deviation) segmentation-precision and segmentation-recall

for true positives of 98.2%(5.1) and 98.2%(5.5), respectively; and for splits

98.8%(7.2) and 58.6%(50.5), respectively. For false alarms, it shows a minimum

NA of 0.04(0.09) and a minimum ND of 1.10(0.65). However, each of these

best cases occur for different FCN-MN detectors. A better assessment must

be conducted for a single detector. A balanced choice is the detector FCN-

MN0.6
16s. This detector reaches detection-precision and detection-recall of 88.6%

and 88.6%, respectively, meaning than only 11.4% of all the detected connected

components over all test images are false positives, and that only 11.4% of all

true buds could not be detected (i.e., are false negatives). As expected, for splits

it resulted in small mean IoU of 18.6%(19.5), corresponding to a mean segmen-

tation precision of 89.3%(21.7) and a mean segmentation recall of 26.9%(34.1).

A small recall or small precision is expected for a small IoU , but a large preci-

sion and small recall is preferred as it corresponds to small components mostly

within the true bud. True positives resulted in mean IoU of 83.1%(9.4), con-

siderably larger than the minimum threshold of 0.5, with correspondingly large

mean segmentation precision and recall of 92.8%(6.7) and recall of 89.3%(10.2),

respectively. The false alarm results for this detector showed an NA = 0.08

and ND = 1.1, showing that these components are rather small covering only

an area that is 8% in size of the total bud area (on average) and distant to the

true bud by only 1.1(0.65) diameters, on average.

With one select best model it is now possible to assess the impact of its good

metrics on the quality for the measurement of different bud related variables.

For brevity, this point is discussed for three variables selected from Table 1: bud

number, bud area, and internode length.

The case of bud number, for example, requires identifying correspondences for
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buds in the scene, so its quality will be impacted only by the metrics of detection

precision and recall (88.6% and 88.6%, respectively). To evaluate this impact, it

is considered that a plant has approximately 240 buds on average. The number

of buds per plant depends on many factors, such as training system, grape

variety, type of treatment, time of year, among others, so this value is defined

as indicative to achieve an approximate analysis. For this particular case, a

detection-precision of 88.6% would result in 27 buds counted in excess per plant,

while a recall of 88.6% would result in the omission of 27 buds in the count;

resulting in a bud count that exactly matches the true count. This suggests

that this particular hand-picked model may be the best for the specific task of

measuring bud number, as long as these values of precision and recall remain

similar. However, even if it is indeed the case that these good results generalize

to practical situations, the approach still presents some practical limitations for

the measurement of bud number. Namely, it is incapable of associating counts

of the same bud appearing in two different images, limiting the scalability to

massive measurements of the bud count of a plant or plot.

The second variable of interest considered is bud area, where, in addition

to identifying correspondences for the buds of a scene, it is necessary to seg-

ment it to estimate its area in pixels. Correspondence identification analysis is

analogous to bud counting, so now only segmentation metrics are discussed. A

thorough error analysis requires an estimation of both false negative pixels or

fnx corresponding to undetected bud pixels; and false positive pixels or fpx

corresponding to non-bud detected pixels. These, however, are impossible to

compute exactly from existing segmentation metrics. False negative pixels are

encoded in the segmentation-recalls of true positives and splits, corresponding to

the sum of their complements. However, we have only their segmentation-recall

means, RTPS = 89.3% and RSS = 26.9%, which adds to more than 100%. As

an approximation we assume fnx = 0. False positive pixels are encoded in the

normalized area of false alarms and the segmentation-precisions of true positives

and splits. Precision, however, is normalized by the detected area, not the true

bud area. For the lack of a better solution, one can approximate fpx ignoring

this distinction, computing fpx as the sum of 8%, the (mean) false alarms NA,

with 7.2% and 10.7%, the complements of the mean segmentation-precision of
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true positives and splits (PTPS = 92.8% and PSS = 89.3%, respectively). This

results in an approximate fpx equal to 25.9%, which given fnx = 0, corre-

sponds to the total error. For illustrative purposes, we see that this error is

equivalent to the precision error resulting from measuring the area of a bud

with a caliper. If we assume that the shape of a bud fits a circle, and that the

typical diameter of a bud is 5 mm, the resulting area is 19.63mm2. Since a

caliper has an accuracy of 0.1mm, the area precision error would be ±1.7mm2,

equivalent to 8.6% of the total area, to which one should add the error of manual

measurement resulting from assuming a circular bud shape. From these, one

can conclude that, modulo the approximations, both the FCN-MN and caliper

errors are equivalent.

As in the case of counting, these good results in measurement precision are

limited to achieve a practical use of this type of measurement because it is

impossible to automatically associate area measurements of the same bud in

two different images, making it difficult to systematically measure this variable

for the buds of a plant or plot. Furthermore, in this case, the areas obtained

are in pixels, which need to be converted into length or area magnitudes.

Finally, the case of internode length is considered, estimated by the dis-

tance between buds of the same branch (by the closeness between buds and

nodes), which involves the operations of correspondence identification and lo-

calization. Again, correspondence identification analysis is analogous to bud

counting, which in this case will result in the reporting of more than one dis-

tance due to the detection of more than one component per bud. Among these

distances, it is understood that the worst case can occur between two false

alarms when they are at the farthest side to the other bud, at a distance ND.

On average, ND is 1.1 bud diameters, equivalent to 5.5mm after taking a typ-

ical vine bud diameter to be 5mm, resulting in a 7.3% error in estimating the

distance between buds/nodes by taking the typical bud distances to be approxi-

mately 15cm. An important limitation of our approach for achieving a practical

use of this measurement is the possibility of determining when two buds are

on the same branch, which requires knowledge of the plant structure. Further-

more, with our method, only the distance projected in the image plane could

be measured, which can arbitrarily differ from the actual distance in 3D.
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The greatest impact errors occur because of the excess or omission of con-

nected components, with the excess error exacerbated by the fact of associating

detected buds with individual connected components. A possible improvement

to mitigate these errors would be to apply some post-processing. One such

post-processing is spatial clustering of connected components grouping them by

proximity. One could expect this to improve the results based on the small

areas of split and false alarm components. First, due to the closeness of the

false alarms to the true bud (small ND) –as well as the splits and true positive

components (overlapping with it)–, and the fact that true buds in real plants

are typically tens or even hundreds of bud diameters apart, one could expect

that a simple spatial clustering of the components would connect all of them

together as a single, and correct, bud detection. Second, due to their small area

–if clustered together– the false alarm components would only slightly reduce

segmentation precision.

Another possible post-processing would be to rule out small connected com-

ponents, for example, whose area in pixels normalized to the total detected area

(sum of the areas of all connected components) is less than a certain threshold.

Improvements could be expected with this post-processing, since the results in

this work show that false alarms present small areas in relation to the true bud.

Lastly, connected component filters could be considered based on plant struc-

ture, for example, ruling out connected components that are far away from (or

do not overlap with) branches.

One could also consider in future works some improvements to overcome the

limitations for practical use mentioned above: (i) no associations between plant

parts of different images, (ii) distance and area measurements in pixels, (iii)

only 2D geometry, (iv) lack of knowledge of underlying plant structure, and (v)

need of images with no leaves.

One could also extend to buds the work of Santos et al. (2020) that addresses

limitation (i) for grape bunches. Limitation (ii) could be easily addressed by

adding to the visual scene some marker with known dimensions. This, how-

ever, requires such a marker in every image captured, a problem that could be

overcome by first producing a calibrated 3D reconstruction of the scene, i.e., a

3D reconstruction calibrated with a single marker in one of its frames (Hartley
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and Zisserman, 2003; Moons et al., 2009). In this way, every 2D image could

be calibrated against the 3D model, omitting the need for a marker. In addi-

tion, a 3D reconstruction of the scene could address limitation (iii) by locating

the detected buds in 3D space, following, for instance, the approach taken by

Dı́az et al. (2018). Finally, a solution to limitations (iv) and (v) would require

an integrated approach involving the detection in 3D of branches and leaves,

respectively.

To end, future research could examine a comprehensive evaluation of the

FCN-MN detector over images with multiple bud cases. This challenging task

involves the creation of a new corpus, the training of new FCN-MN models, and

the systematic evaluation of experiments. Such work may bring about a greater

impact to FCN-MN, by being able to validate its performance over a broader

range of practical cases that may take place in real vineyards.
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