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Abstract

This work demonstrates the development of a neural network algorithm able

to determine the function of a bee’s flight within six measurements (≈18 sec-

onds with current radar technology) of its relative position on leaving a nest.

Engineering advancements have created technology to track individual insects,

unlocking research possibilities to investigate how bumblebees react to their en-

vironment in more detail. This includes how they discover and make use of

resources. The development of an intelligent algorithm would allow for the au-

tomated monitoring of resource use and nest health. An imbalance of bee flight

tasks may indicate a shortage of resources or over-reliance on a plant that may

soon stop flowering. Recent developments using drones to track insects can ben-

efit from an intelligent target acquisition system given limited drone battery life.

Such knowledge will also benefit the tracking itself by allowing for customised

flight parameters to match target flight patterns. Data captured by these track-

ing techniques are taxing to parse manually using human expertise. Artificial

intelligence can produce meaningful knowledge faster with equal precision. In

this work, a comparison between a neural network (NN), random forest (RF),

and support vector machine (SVM) is provided to distinguish the best model

for the task by comparing cross entropy loss and accuracy across the dataset,

showing improved results as time goes on. In situations where the radar lost

sight of the target, a purpose-built filter was created to mitigate signal losses.

The generated model provides results with a peak accuracy of 92%. This model,
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combined with the filter, create an opportunity to monitor the number of bees

leaving the nest for each flight task with smaller, cheaper, and stationary re-

ceiver solutions with shorter ranges by removing the need to track a bee for its

entire flight to ascertain its errand.

Keywords: Bombus, Pollinator, Decline, Machine Learning, Insect Tracking,

Harmonic Radar

1. Highlights

� An accurate model to predict bumblebee errand within 6 measurements.

� Best model chosen from Neural Network, Random Forest, and Support

Vector Machine.

� Final hit rate of over 90%.

� Includes a filtering process to mitigate losses from radar technology.

� Useful to support insect tracking systems, pollination services, and nest

monitoring.

2. Introduction

Despite a long history of using nest-building insects such as bumblebees

(Bombus terrestris) in human agriculture, our understanding of them has re-

mained limited. It has become clear that pesticides, parasites, and climate

change have all had a significant impact on bee behaviour and population de-5

cline (Thompson, 2003; Williams, Paul H. and Osborne, Juliet L., 2009; Potts

et al., 2010). In particular, it has been shown that pathogen spillover from

commercially produced bumblebees to native wild bees can happen when the

two groups share common flower food sources (Colla et al., 2006).

Historically, only 6 of 19 British Bumblebee species maintained their ranges10

between 1960 and 1980 (Williams, 1982). Bumblebee species are projected to

decline significantly in North America by 2070 (Sirois-Delisle and Kerr, 2018).

Bumblebee species richness reduction is expected to impair pollination services,

with a consequential effect on food yields and human welfare.

Maximising the efficiency of colonies in the face of new pressures is now15

an opportunity to learn more about bees while increasing investment return

(Potts et al., 2016). Using radar technologies allows for recommendations to
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be made based on the real-time evaluation of colony activity. Bumblebees, in

particular, are important pollinators for soft fruit such as tomato (Lycopersicon

esculentum) with up to 50 colonies used per hectare during the growing season.20

The value of these crops is estimated to be ¿12 billion (Hayo H.W. Velthuis

and Adriaan van Doorn, 2006).

Recent technological advances are bringing the possibility of intensive, life-

long tracking of animal movements (Kays et al., 2015). This may lead to an

explosion in the acquisition of movement data comparable to the effect of DNA25

sequencing (Nathan et al., 2008). However, for this increase in data availability

to lead to an equivalent leap forward in our understanding of behaviour, we

need appropriate analysis techniques that are scalable to very large datasets

and which provide genuine insight into the behaviours being measured.

Classification of movement data into distinct activity types is one such area30

in which machine learning can speed up analysis and improve accuracy. Using

bumblebees as an example in a commercial setting, if many individuals across

multiple nests were tracked across lifetimes to determine pollination efficiency,

the volume of data would necessitate advanced tools able to contextualise the

information.35

However, making sure that any classification matches are similar to that

done by experts is paramount. This leads to the importance of machine learning

algorithms using human insights, such as the classification of exploration and

exploitation flights, to ensure that the outputs make biological sense.

The use of machine learning in aiding the monitoring of insect nest health has40

become a key area of research in recent years. Studies involving the prediction of

insect species via sound, using low-cost camera equipment for inter-nest track-

ing, and behavioural analysis are just some examples of how machine learning

is aiding in understanding the complex behaviour of insect colonies (Kawakita

and Ichikawa, 2019; Boenisch et al., 2018; Blut et al., 2017).45

These studies, and most others, are limited to observing colonies in contained

spaces, without any positional information, or through metrics such as nest

weight, temperature, and humidity (Rafael Braga et al., 2020).

The use of Radio-Frequency (RF) technologies bypasses these limitations

and represents a novel way to monitor, predict, and understand these creatures.50

Principally, RF offers a potential understanding of how to encourage bees to

utilise local flora efficiently. Similarly, noting how the local balance of flora

affects nest longevity and reproductive success. Commercially, it will contribute

to best practices for planting crops, wild-flowers, field margins, and gardens to
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maximise pollination potential and benefit bee populations.55

This work is concerned with the rapid classification of bumblebee flight task

using data relating to detailed bee positional information during flight. In par-

ticular, the data acquisition methods as described by Woodgate (Woodgate

et al., 2016) provide an opportunity for additional investigation focused on the

automatic early classification based on flight patterns.60

Given recent developments in tracking technologies for individual insects,

such as by Shearwood (Shearwood et al., 2018), classification of flight could serve

as an auxiliary aid to deploy tracking techniques that match the characteristics

of the flight at hand.

Recent insect tracking technology developed at Bangor University can be65

mounted on a drone and is significantly more portable than harmonic radar

(Shearwood et al., 2020a,b). Classification of initial bee flights could allow this

type of drone tracking system to prioritise targets, and consequently maximise

tracking focused flight by making best use of a limited battery life (approx.

40 minutes). As a conceptual design (Fig. 1), an intelligent target acquisition70

system could provide the drone with detailed flight behaviours and predicted

bee tasks to augment the drone’s own flight parameters to match the nimbler

target.

Figure 1: Conceptual design of a proposed system with target acquisition to prioritise targets
for a battery-limited drone.

A robust algorithm for the early classification of flight purpose could make

it possible to monitor how colonies of bees divide their labour resources between75

exploration for new floral resources and exploitation of those already known, in

near-real-time. This would allow researchers or commercial users of bumblebee
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pollinators to monitor the efficiency of pollination, colony health and predict

future needs in time to respond flexibly to them: an increase in exploration

flights might suggest that currently known resources are insufficient to support80

the colony; while a drop in exploitation flights could predict upcoming starva-

tion. Furthermore, these methods would scale well, opening up the potential to

monitor pollination services over large areas or allow researchers to investigate

interactions between colonies in resource exploitation.

Woodgate et al. (2016) gathered data using harmonic radar at Rotham-85

sted Research Station. Locations where bees stopped to forage were recorded

by manually visiting the GPS coordinates to confirm exploitation behaviour

(Woodgate et al., 2016). The authors described an algorithm for classifying

flights into those which explore for new resources versus those focused on for-

aging from known floral sources. This algorithm was inherently simple and90

effective. An exploitation flight was a flight which consisted of a single loop

where the bee stopped for a length of time at a location it had previously inves-

tigated. All other flights, including those with multiple loops to and from the

nest, were considered exploration flights. In this work, we are concerned with

improving the data acquisition of similar studies and investigate the automated95

early classification of these flights.

Individual bees seemed to follow a loose pattern of some initial exploration

flights followed by periods of exclusive exploitation flights. This, in turn, could

be included in the dataset as information to assist with prediction. This is true

only if each bee can be uniquely always identified. RF techniques do not easily100

afford this. Therefore, it was decided to exclude this so that the algorithm

generated can function with a wide range of technologies, some of which may

not uniquely identify the bee.

For their assessment to work, Woodgate et al. required knowledge of the bees

flight from start to end. The goal of this work was to generate an algorithm105

that could predict the bumblebee’s task much earlier in its flight.

3. Materials and Methods

The dataset gathered by harmonic radar contains 244 flights, each flight

consisting of polar coordinates of the bee’s position and a timestamp taken

when the radar scanned (360 degrees every 3s). Two classes of data exist within110

the dataset, namely flights labelled as those exploiting existing resources and

those exploring for new resources.
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Some fixed conditions could influence the final outcome such as experiments

being undertaken during daylight hours in good weather. The primary concern

with the dataset was that there were too many potential variables to fully de-115

scribe all drivers that might affect bee behaviour. This range includes things as

simple as local temperature up to small undetectable air currents.

Variable such as this were excluded to form a baseline. The algorithm was

designed to work in ignorance of such factors so that a bumblebee flying in

windy weather can be predicted with the same accuracy as a bee flying in calm120

weather.

The acquired data were taken as coordinates representing the distance in

meters from the source nest. Using this data in this study allowed for the

extraction of meta-data such as current speed, average speed, distance from the

nest, and perpendicular distance from the average bearing.125

An additional metric was used as described in the original work, named

digressiveness. This measure was a numerical representation of flight efficiency,

with a value of 1 representing a perfectly efficient flight. Given that the work

here focuses on machine learning, a small adjustment was made to this metric

to enable better normalisation. This original equation is as shown in Equation130

(1) with the changes made as in Equation (2). Flight distance is the sum of

all vectors between detected positions, and the optimal distance represents a

straight line between start and endpoints.

D =
FlightDistance

2 ∗ OptimalDistance
(1)

D =
FlightDistance

OptimalDistance
− 1 (2)

These changes were made as the emphasis is on early detection of a task,

where the insect may not as yet have returned to the nest, therefore only the135

outward journey is important necessitating the removal of the factor of two

in the original equation. Similarly, having a perfect flight represented by zero

allows for better use of the metric in learning models. Neural networks, in

particular, expect the data to be normalised between zero and one. By having

the most efficient flight defined as a value of one, the normalisation would lose140

the full range of potential values.

With this new equation, a perfect flight would be D = 0 rather than D = 1

as per the original specification, allowing better normalisation of digressiveness
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over the series. A simple demonstration is present in Fig. 2, showing the

digressiveness value for a selection of lines.145

Figure 2: Example digressiveness metrics for hypothetical bee flight patterns.

It is noted that additional metrics could be used that describes the bum-

blebees’ trajectory from the nest, which would likely aid in classification such

as the exact heading from North which would highlight the bearing of flowers

the bee is targetting. However, this work aimed to strip positional informa-

tion from the data to allow any generated models to work with other colonies150

with different geographical features. In particular, by not including bearing as

a metric the characteristics of the landscape for this nest are not dominant in

determining predictions. Because the data is expressed in more general terms

such as distance from the nest, current speed, and average speed the data from

other colonies can be substituted effectively.155

There is a caveat when using the data in that localisation error can occur

(Woodgate et al., 2016). For instance, occlusions such as those caused by the

bee flying behind a tree would mask the detection leading to dropouts in the

dataset. Other perturbations exist, requiring the filtering of data. An example
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of this is shown in Fig. 3, detailing the missing elements of an otherwise strong160

track. In the case of flight 83, there is a large distance gap which is unaccounted

for that must not be allowed to affect the data. Similarly, in flight 130, the bee

was likely busy collecting pollen from shrubbery for some time which led to it

being occluded. In the current work, the concern is with when the bee is both

moving and able to be seen therefore both tracks must be filtered down to the165

relevant parts.

Figure 3: Details of (a) flight 83 and (b) flight 130 showing lost segments of flight (as solid
red lines), with T being time since track beginning.

As the work was focused on the early prediction of bumblebee flight task,

a sampling window of 50 positional readings was used. This is the first 50
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positions read by the radar if they satisfy the data filtering process.

The chosen approach for filtering the data was to focus on three variables;170

current speed, perpendicular deviation from current bearing, and digressiveness.

Perpendicular deviation takes the bearing of the flight, including the current

point, and evaluates the absolute distance between the average bearing and the

bee’s true position, serving as a method of understanding how quickly the bee

changes direction without using specific positional information.175

The distribution of unfiltered data was explored to find the point at which

growth becomes exponential within the set. Final values for the filter were

determined to be a max speed of the bumblebee of 8 meters per second, a

perpendicular deviation of no more than 8 meters, and a digressiveness of 2 or

less.180

The filtration of digressiveness is key as some rare flights had multiple, short

distance occlusion losses. Coupled with the radar’s accuracy (±2m) this could

give the appearance of the bee looping multiple times in a short distance, skew-

ing results.

It is also noted that the limitations on speed are less than with similar185

research where the maximum speed of a bumblebee is around 15 meters a second

(Osborne et al., 1999), however, this could be due to previous research noting

a range of 3 to 15 meters a second depending on environmental conditions such

as wind resistance.

Presented in Fig. 4 are the normalised distributions of the dataset. Some190

machine learning algorithms, such as neural networks, struggle to separate two

classes differentiated by exceptionally small values, especially given intrinsic

rounding errors. The filter allows better distribution of the data for machine

learning with much less obscured by having compacted values.

The filtered data was divided into two similar-sized sets for both classes195

(n≈1130 each) before being inputted into the following models;

� A random forest classifier (RF (Ho, 1995)) of 1000 nodes initialised to a

random state.

� A support vector machine classifier (SVM (Pedregosa Fabian et al., 2011))

with a radial basis function kernel, regularization of 1, and a kernel coef-200

ficient of 0.5.

� A neural network (NN) with two hidden layers of scaled exponential linear

units (SELU (Klambauer et al., 2017)) with a final sigmoid activation layer

9



Figure 4: Filtered (Solid line) and unfiltered (Dashed line) normalised data distributions of
the data set.
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and a dropout rate of 0.5.

The size of each dataset is the number of points present in the first 50205

readings in each flight, filtered based on the discussed parameters. There was

an approximate 3:1 ratio of available points for exploitation and exploration

respectively pre and post-filtering. Neural networks are sensitive to imbalanced

classes of data (Buda et al., 2018). In this instance, we used undersampling of

the larger class to even the dataset. To strengthen the conceptual results of the210

work, we include learning outcomes for both filtered and unfiltered data. This

allows the demonstration of patterns discovered from filtered data matching

patterns in unfiltered data.

To confirm prediction validity, both accuracy and loss were evaluated. Bi-

nary cross-entropy loss, also known as log loss, was used as a loss function for all215

the models generated (Ma et al., 2004). This loss can loosely be interpreted as

the proportion of correct predictions produced by the model in a set, in addition

to its confidence in those predictions. A perfect loss would have a value of zero,

as demonstrated in Equation 3. In this case, i is the index of a given prediction,

yi represents the target value output and ŷi is the predicted value.220

lossi = yi · log ŷi + (1 − yi) · log(1 − ŷi) (3)

To calculate the loss for both the RF and SVM, these models were created

in scikit-learn with SVM probabilities determined by Platt’s method (Platt and

Others, 1999).

For the original learning outcomes, 8:2 ratio was used to split data into

training and testing sets for the models, with the neural networking taking a225

small sample (20%) of its training set to act as a validation set. In this method,

the flights were disassembled into constituent context points and reformed into

randomised composited sets.

In the case of the neural network, the check-pointed model with the highest

accuracy against the validation set was used as the final outcome to limit any230

residual overfitting.

For predictions over time, 180 flights were used as training with 64 flights

held for testing. As the filtering process could shorten a flight to less than 50

measurements, three separate instances of each model were trained. One triplet

of models would contain one NN, one SVM, and one RF. Each triplet of models235

shared the same set of flights. The average accuracy across sets of triplets was

used as the final measurement.
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In essence, each of the three datasets was a random permutation of the

original set, split further as discussed into a training and testing set. This served

the purpose of reducing possible bias introduced by the training data having a240

disproportionate number of flights with the full 50 possible values versus the

testing set.

An important observation of this data is that measurements were taken

every 3 seconds by the radar. The initial measurement was not guaranteed to

be the first possible point of the bumblebee leaving the nest as the bee could245

be obscured by the nest itself or masked by the rotation of the radar. To

counteract this, predictions are made from the second point onwards so as not

to make faulty assumptions as to a target’s current speed.

It is also prudent to mention that Woodgate et al noted that their classi-

fication of flight task used an algorithm created to match human observation250

(Woodgate et al., 2016). However, they note that such classification was not

necessarily suited to the nuances of bee behaviour. Notably, they discuss the

trade-off between capturing what was happening precisely while also creating a

method that was as simple and universal as possible. This creates the possibility

that where the machine learning structures disagree with the original method,255

some of these instances may be due to the more complex nature of machine

learning and in fact represent the ground truth. This also formed part of our

study.

To investigate further, the unfiltered data were explored using Ward’s method

of clustering to build a set of data labels by calculating the incremental sum of260

squares. Following this, the method works by creating a simple nearest centroid

classifier to estimate a label based on proximity to the nearest Ward cluster

centroid (Jr., 1963). As shown in a dendrogram present in Fig. 5, there are in-

dications that there exist multiple sub-flight types, with ten clusters providing

the best distinctions in our study. The goal was to determine if more than the265

described two categories of flight exist by predicting them over a small set of

flights. This also allows exploration of whether multiple flight categories can be

present in a single flight, indicating the possibility of either adaptive tasks or

strict tasks.

4. Results and Discussion270

A final accuracy, on the initial 50 readings of each flight, was achieved as

91%, 81%, and 85% for the neural network, support vector classifier, and random

12



Figure 5: Dendrogram of unfiltered data, with the cluster threshold set to ten to match cluster
analysis.

forest classifier respectively. This is the result when flights were disassembled

and individual points re-composited to form sets, stripping them of intra-flight

relationships. These are detailed in Table 1, showing that the random forest275

performs very similarly regardless of filtering the data, even doing somewhat

better with unfiltered data. Both the neural network and the support vector

machine benefit from filtering the data, however, the SVM does have lower loss

with unfiltered data. These results do indicate that the patterns within the data

exist both with and without filtering.280

As the dataset was limited to 244 flights, it was not possible to disaggregate

the dataset by either ambient temperature or time of day. For example, the

random forest improved to 90% accuracy and 0.27 loss when the time of day was

included. However, this may be an overstatement of the algorithm’s capabilities.

After approximately 6pm, all recorded flights (6 total flights) were exploitation285

flights. This could mean that bees leave the nest that late in the day only for

food or that there was not enough data to capture the truth of the matter, so

the algorithm would likely (incorrectly) assign exploitation to all flights in this

slot. More flights would provide the correct ratio of classes for the algorithm

to attribute a label. Given this limitation, time was not used though it may be290

reincorporated as the dataset is further expanded. This also supports previous

arguments in favour of keeping the variables as general as possible.
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Table 1: Learning Results: Strongest results in bold.

Method Filtration Accuracy Loss*

Neural Network
Filtered 91% 0.42

Unfiltered 75% 0.60

Random Forest
Filtered 85% 0.35

Unfiltered 87% 0.32

Support Vector Machine
Filtered 81% 0.59

Unfiltered 71% 0.55

*Binary Cross Entropy Loss (Ma et al., 2004).

More interesting for this study was the accuracy versus flight-time. As each

subsequent point contains more context about the flight, such as a more refined

value for average speed, it is expected to see an increase in accuracy over time.295

It proved prudent to evaluate the results as an average of models across three

sets. To take the example of the neural network, results were 50%, 69%, and 47%

for each triplet respectively on the initial prediction (2 measurements taken.)

While some sway is to be expected, there is a 22% accuracy shift between the

weakest and strongest result. For comparison, the RF managed 74%, 71%, and300

73%. This is a much more typical sway with a gap of 3% accuracy.

However, as time progresses this shift tapers out such that at the peak accu-

racy of the neural network, the results are 94%, 93%, and 90%. Comparatively,

at this point, the RF returned an accuracy of 79%, 81%, and 72%, now produc-

ing a 9% shift in accuracy.305

The likely reason behind these shifts is due to imperfect filtering of the

data, a smaller number of test flights than ideal, a residual error left from the

radar itself, and the discussed random flight order in the dataset. As previously

mentioned, the first reading of the bee was not always adjacent to the nest which

created the possibility of feed-forward error as points taken for learning purposes310

contain continuously more context about the flight. Flights were validated on

whether their initial distance from the nest (x ) was less than or equal to the

distance between the first and second reading (y). Assuming acceleration upon

leaving the nest, the bee must have been airborne for longer than the three

second rotation of the radar if x is greater than y. 53% of recorded flights315

began with the bee already beyond y distance from the nest, making speed at

these early points unknowable.

With a larger number of flights recorded an adaptive filter could be developed
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such that these issues may be addressed. For example, having a lower speed

limit at the start of a flight. This might be expected as the bee accelerates away320

from the nest and would serve to curtail the use of flights where the bee had

already covered some distance. With 244 flights, such an adaptive filter would

lack the proper context to correctly determine a meaningful value for this speed.

The binary cross-entropy loss across model triplets is much more stable,

though the trend for SVM results to spike remains. This supports the idea that325

accuracy issues stem from data points which are either incorrectly filtered or

form part of a set that was labelled incorrectly by the original algorithm.

As shown in Fig. 6, the loss values are strongest with the random forest.

The SVM results lack stability, and while both the neural network and random

forest start competitive, the random forest in time outpaces the competition.330

Conversely, with accuracy the results favour the neural network. It is worth

noting that both the random forest and support vector classifiers manage the

initial classification with higher accuracy than the neural network. However, the

neural network reaches its highest accuracy faster, with 81% at 4th measurement

(12 seconds) and a peak of 92% at the 6th measurement (18 seconds.) The neural335

network is also the strongest model over the entirety of the dataset.

Observing both loss and accuracy together, the neural network is strongest.

Before 18 seconds, the neural network and random forest are almost equal in

loss value but the neural network quickly climbs to its peak accuracy whereas

the random forest takes much longer to reach similar results.340

Another way of interpreting these results lies in looking at model predictions

on specific flights. Fig. 7 shows two flights, one exploration (flight 233) and one

exploitation (flight 89.) Flight 233 had a total flight prediction accuracy of

90%, though even at its third prediction it made a mistake. Flight 83 had a

final accuracy of 75% and made a substantial error on its ninth prediction by345

producing the incorrect results with almost certainty.

Both flights produce a majority vote in favour of the correct result within

the first four measurements, supporting the initial findings presented here.

Interestingly, these early results provide context surrounding some of the

incorrect predictions created by this approach. Flight 64 is an exploration flight,350

yet the neural network predicted only 10% of the points correctly. Context is

provided in Fig 8 and shows that for the first 12 measurements, this flight

bears a striking resemblance to flight 89. However, the full flight plot shows the

characteristic looping and backtracking associated with exploration flight.

As mentioned, cluster analysis was also performed. No filter was used, how-355
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Figure 6: (a) Average accuracy and (b) loss over time of the models trained on the dataset.
Error bars are for the min and max values across model triplets.
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Figure 7: First 12 positions of two flights, (a) flight 233 and (b) flight 89, with confidence
scores. Scores below 50 indicate an incorrect prediction represented by N. A score of 0 would
indicate total confidence in an incorrect prediction, a score of 100 indicating perfect prediction.
Correct predictions are marked by •.
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Figure 8: (a) First 12 samples of flight 64 with predictions plus (b) total plot of flight 64
showing characteristics of exploration.
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ever as with the models themselves, only the first 50 measurements were evalu-

ated. The goal was to determine if there is justification for there being more than

two types of flight present in the dataset and whether flight 64, in particular,

could be classed as a hybrid flight.

Ten clusters were formed from the entire dataset minus flights 64, 89, and360

233. With these cluster centroids, predictions were undertaken using the one

nearest neighbour classifier approach. Results of predictions for flight 64 in

Fig. 9 show that segments of the flight remain intact, rather than there being

randomly clustered data. This indicates that even a relatively simple algorithm

can segment a flight into similar sections. Furthermore, there appear to be365

repetitive clusters based on flight parameters. Using the example of cluster

5 (C5), it is present before the major arc of the flight and also immediately

following, indicating the same behaviour both before and after this arc.

It is important to note the functions of the clusters would require further

analysis. This would also likely need a larger sample of flights to provide better370

definitions. However, it is important to evaluate the possibility of hybrid flights,

or perhaps flights that do not fall under the umbrella of either exploitation or

exploration.

Looking at the composition of the three flights in question, again shown in

Fig. 9, shows that it is likely that 64 does fall under a hybrid category. Like the375

exploitation flight 89 that it was mischaracterised as, it contains four component

clusters rather than the two present in the exploration flight 233. On the two

overlapping clusters C5 and C6, flight 64 falls directly between flight 89 and 233

in terms of proportion. The exploration flight is strictly composed of these two

clusters, with an overwhelming majority of C6 (88%). Flight 64 is much more380

similar to 89 with 52% and 38% respectively.

This is evidence that hybrid flights exist. In this particular case, it could be

that the bee went in search of additional food after a first visit. Further work

could investigate correlating clusters with other behaviours.

It is important to note that the final validation for the algorithm will be385

to test in the field. Real-time execution of the algorithm with third-party as-

sessment would refine measurement precision. This could be in the form of

observing bee pollen load on return to differentiate between foraging and other

flight types. Additional harmonic radar data gathering will enable further clas-

sification of the detected clusters (for example predation and disease). Early390

classification of behaviour types can improve unmanned drone air-time both in

prioritising bees to save battery life and in enabling adaptive flight to match
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Figure 9: (a) Flight 64 labelled with nearest centroid classifier and (b) proportional constitu-
tions of flights 64, 89, and 233 of their component clusters.
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bee flight patterns. This in turn will serve as more proof that the algorithm is

correctly predicting to match field observations.
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5. Conclusion395

This work shows that a rapid automated prediction of bumblebee flight task

can be achieved with strong accuracy. Results become more than 80% certain

after just 4 measurements with a peak accuracy of 92% achieved by the 6th

measurement. This is a faster assessment than previously possible and does

not require knowledge of the bee’s full flight. Predictions distinguish between400

two classes, previously labelled exploration and exploitation. Potential exists

for these to be conglomerates of multiple flight types. This algorithm will aid

future systems to gather more data for the distinction beyond the two included

classes. Prediction is generalised to other bumblebee nests because the raw

data was abstracted as current and average speed, perpendicular deviation from405

average bearing, distance from the nest, and digressiveness.

These results open pathways to expand on the radar tracking of insects by

allowing fast determination of flight errand. This could allow for automatic

prioritisation of exploring bees over foraging bees for longer range tracking to

build maps of nest resource acquisition. Similarly, it would allow for a shorter410

range system to sit near a nest to monitor the number of bees leaving for each

task over time, without needing knowledge of a bee’s destination.

With more development, this would lead to being able to monitor resource

use and pollination efficiency in near-real-time so that interventions can be made

to improve them, such as moving nests to help them make better use of crops415

or providing supplementary food when colonies are in need.

Further work could augment the process to predict the future needs of the

colony and nest health. Too many exploration flights might suggest they are

not getting enough food; too few exploration flights might suggest the colony

is over-reliant on a small number of food sources and will be in trouble if those420

plants stop flowering. Other deviations from normal behaviour may in turn

indicate other issues such as disease or pesticide ingestion.

This could scale to monitoring multiple colonies over a large area, such as an

entire farm, and allow for moving colonies to areas that are not getting enough

pollination. In addition, it would be possible to monitor wild bees to work out425

where conservation resources should be concentrated and researchers can start

to look at how the foraging decision of one colony affect another. This could

provide insights into how the pattern of nest foraging vs exploring affect the

nest’s overall health.

Given the 3-second time delay of the tracking system, a faster system might430

22



be able to produce better results. The additional resolution offered by more mea-

surements in a shorter time frame offers a potential boost in performance. This

may result in classification being possible in a shorter period than the demon-

strated 12 to 18 seconds which would further reduce the range requirement of

a classification device, thereby potentially making them easier and cheaper to435

manufacture.

These models represent proof of concept that real-time evaluation of bum-

blebee task can be carried out successfully and could aid in automated tracking

solutions for bumblebees and other colony insects.
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