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b Agriculture Victoria Research, Agribio, 5 Ring Road, Bundoora, Victoria 3083, Australia 
c Valorisation of Agricultural Products Department, Walloon Agricultural Research Centre, 5030 Gembloux, Belgium 
d Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Alberta, Canada 
e La Trobe University, Bundoora, Victoria 3083, Australia 
f National Funds for Scientific Research, 1000 Brussels, Belgium   

A R T I C L E  I N F O   

Keywords: 
Dairy Cow Liveweight 
Mid-Infrared 
Feature Selection 
Bias and Robustness 
Modeling 

A B S T R A C T   

Body weight (BW) of dairy cows is relevant for breeding programs and farm management to assess the main-
tenance requirements, reproduction performance, or health status of cow. Currently, it is still difficult to follow 
BW changes of individual cows routinely in large herds. Combined with animal characteristics, milk mid-infrared 
(MIR) spectrum was proposed as an additional source of information to predict BW under the framework of dairy 
herd improvement (DHI) programs. However, the presence of less informative variables in the prediction 
equation could impact negatively its robustness. This research aims to improve the robustness of BW regression 
models by applying a feature selection before modeling. A total of 5,920 BW records composed of animal 
characteristics and milk MIR spectrum were collected from Holstein cows. Three feature selection algorithms 
were applied to select the most informative variables: partial least squares regression (PLS) combined with sum 
of ranking difference (PLS-SRD), PLS combined with uninformative variables elimination (PLS-UVE), and the 
output of Elastic Net regression (EN). Four herd independent validation sets and the corresponding remained 
calibration datasets having on average 163 and 1,708 records, respectively, were used to develop models using 
PLS or EN approaches. Ten-fold cross-validation was conducted to parametrize each model. Parity, days in milk 
(DIM), milk yield (MY), and two MIR spectral points were selected as relevant variables to predict BW. PLS (root 
mean square error of validation, RMSEp = 60 kg) and EN (RMSEp = 60 kg) regressions employing these 5 
predictors were more robust than the models developed without MIR or using MIR without feature selection. The 
EN models had a cross-validation root mean square error of around 53 kg. The 2 MIR points explained up to 
4.20% variation in predicting BW. The RMSE of validation sets using another brand of spectrometer were around 
64 kg. This study confirms the possibility to predict an indicator of BW from animal characteristics and MIR 
variables. The variable selection procedures improved the model’s robustness and transferability. The accuracy 
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of BW prediction seems to be sufficient to provide useful information for breeding program and farm manage-
ment decisions under a DHI framework.   

1. Introduction 

Phenotypes related directly or indirectly to feed efficiency have to be 
considered in animal breeding and farm management (Miglior et al., 
2017; Zhang et al., 2020). Quantifying the cow feed intake is important 
in order to accurately compare feed efficiency between dairy herds. 
Unfortunately, measuring individual feed intake is difficult and expen-
sive. However, the body weight (BW), which is one of the indicators of 
importance to monitor the energy balance which is related to the cow 
health, reproduction, and feed efficiency (Thorup et al., 2012; Zhang 
et al., 2020), can be used to approximate maintenance requirements 
(Haile-Mariam et al., 2014). For breeding purposes, a limited number of 
BW measurements can be sufficient. However, for management purpose, 
the estimation of BW changes on a routine basis is more relevant and this 
requires repeated estimates (Mäntysaari and Mäntysaari, 2015). 

For decades, strategies for the use of BW as a management tool have 
been explored in both production and research conditions (Bewley and 
Schutz, 2008; Maltz et al., 1997). Moreover, assessing individual in-
formation like BW is required to improve the accuracy of genetic pa-
rameters estimated for this trait (Korver, 1988). Thus, efforts have been 
made to monitor dairy cow BW at large and individual levels (Song et al., 
2018; Soyeurt et al., 2019). Several methods exist to quantify or estimate 
the BW of dairy cows such as the electronic weighing scale, the 3-D 
camera (error around 43 kg) (Kuzuhara et al., 2015), the prediction of 
BW from body condition score (BCS) (error around 47 kg) (Haile- 
Mariam et al., 2014), the BW prediction using animal conformation 
traits (error varied between 37 kg and 110 kg) (Banos and Coffey, 2012; 
Haile-Mariam et al., 2014; Vanrobays et al., 2015). However, the first 
and second methods are not always available on commercial farms due 
to their cost. The third and fourth ones are laborious and time- 
consuming (Soyeurt et al., 2019; Yan et al., 2009) and subject to the 
assessor’s ability (Edmonson et al., 1989). Moreover, the last one is often 
made only one time during the cow productive life in most countries 
(Soyeurt et al., 2019). However, dairy herd improvement (DHI) pro-
grams can provide beneficial information to estimate BW at individual 
and large level. For instance, BW can be predicted from the milk yield, 
number of lactation and parity (Enevoldsen and Kristensen, 1997; 
Kuzuhara et al., 2015; Song et al., 2018). Moreover, a larger part of the 
individual variability of BW can be assessed by adding the test-day milk 
mid-infrared (MIR) spectrum (Soyeurt et al., 2019) in the predictive 
model. 

However, some issues could exist which indicate that these pre-
liminary BW prediction equations could be improved. First, expanding 
the size of the calibration set would be meaningful to cover a larger 
variability of BW. Second, because the accuracy and the robustness of a 
predictive model evaluated from the same calibration set partly depend 
on the predictors used (Mehmood et al., 2020), the elimination of un-
informative variables from the BW model should be relevant to avoid 
over-fitting. 

Therefore, the accuracy and robustness of a calibration model could 
be improved by optimizing the variable selection before modeling (Cai 
et al., 2008). To address this issue, several informative variable selection 
algorithms have been developed such as the sum of ranking differences 
(SRD) procedure (Kalivas et al., 2015; Tencate et al., 2016), the unin-
formative variables elimination (UVE) (Centner et al., 1996), and the 
use of the output of Elastic Net (EN) penalized regressions. In brief, 
compared to the most usual way to parametrize a model that is only 
based on the root mean square error of cross-validation (RMSEcv), SRD 
procedure selects the most relevant predictors based on the computation 
of considered merits derived from statistical parameters denoting the 
model complexity, variance and bias (e.g., RMSEcv, reliability of 

regression coefficients, L2 norms). This is conducted without being 
affected by parameters’ weight allocation problems (Nie et al., 2019). 
The UVE combined with Partial Least Squares (PLS) is another method 
allowing to select the most relevant subset of predictors. The hypothesis 
of this method is that the most informative variables have a higher 
importance in the regression compared to the artificial noisy variables. 
The EN method was proposed to fix the problems in the presence of high 
correlations among variables; it select groups of correlated variables and 
conducts continuous shrinkage, and it can also simultaneously conduct 
variable selection; the output of this algorithm can be considered as 
selected variables (Zou and Hastie, 2005). 

The objective of this research was to improve the robustness of BW 
prediction models, based on cow’s characteristics and milk MIR spec-
trum, by selecting the most informative variables based on the feature 
selection algorithms mentioned above. 

2. Materials and methods 

2.1. Training dataset 

For the data from herd1 to herd11 (Fig. 1), a total of 1,915 records 
were collected from 363 Holstein cows during 2007 to 2016 from the 
herds of following institutions: University of Liège (Liège, Belgium), 
Walloon Agricultural Research Centre (Gembloux, Belgium), University 
of Alberta (Alberta, Canada), Aarhus University (Tjele, Denmark), Agri- 
Food and Biosciences Institute (Northern Ireland), University College 
Dublin (Dublin, Ireland), Walloon Breeding Association (Ciney, 
Belgium), Leibniz Institute for Farm Animal Biology (Dummerstorf, 
Germany). Part of those data (N = 754) was initially used by Soyeurt 
et al., (2019) and part of those data were from Genotype Plus Envi-
ronment (GplusE) project (http://www.gpluse.eu). Parity ranged from 1 
to 11 and the number of days in milk (DIM) ranged from 1 to 512 days. 
Milk yield (MY) was recorded on daily basis and fat and protein contents 
were measured locally using Foss MilkoScan FT+ or FT6000 spec-
trometers (Foss, Hillerod, Denmark) or Standard Lactoscope FT-MIR 
automatic (PerkinElmer, Waltham, United States) in Walloon Agricul-
tural Research Center (Gembloux, Belgium). The spectrum provided by 
the milk mid-infrared analysis was also recorded and standardized ac-
cording to the procedure proposed by Grelet et al. (2017). Then, a first- 
derivation was applied to these data with a window of 5 spectral points 
to correct the baseline drift. The weighing scales used to measure the BW 
were manufactured by Fullwood (Shropshire, UK), Gallagher (Canley, 
UK) or Griffiths Elder (Bury St Edmunds, UK) instruments. The dataset 
was edited using the following editing. First, the records were edited 
according to the International Committee for Animal Recording (ICAR) 
standard (ICAR, 2017): milk yield between 3.0 and 99.9 kg/d, fat con-
tent between 1.5 g/dL and 9.0 g/dL of milk, and protein content be-
tween 1.0 g/dL and 7.0 g/dL of milk. Before modeling, the DIM records 
were split into 35 classes of 15 days. Parity records were split into five 
classes (i.e., 1, 2, 3, 4, and 5 or more). After removing the noisy MIR 
regions, which are well known to be related to water absorbance as 
described by Soyeurt et al. (2019), the first derived absorbance values 
located in the range of 950–1,600 cm− 1, 1,750–1,800 cm− 1, and 
2,600–3,000 cm− 1 (i.e., 277 spectral variables) were merged to DIM 
classes, parity classes, MY and BW to constitute the training dataset. So, 
this contained 1,871 records composed of 280 predictors collected from 
355 cows (i.e., 5.27 records per cow on average). 

2.2. Prediction models 

As presented in Fig. 1, four herd independent validation datasets 
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(herd5, herd7, herd10 or herd11) having approximately the same 
number of records in each set were used in this study to assess the 
performance of the developed models. Consequently, the calibration sets 
using the remaining samples had also a similar number of records be-
tween them. For each calibration set, a principal component analysis 
was performed on the spectral data to calculate the Global H distance 
(GH) of each record to detect potential spectral outliers. The number of 
principal components used explained 99% of the spectral variability. 
Records with a GH distance higher than 5 were discarded. 

A common modeling procedure was applied on each calibration set 
(Fig. 2). First, the predictors were scaled and centered. Second, a 10-fold 
cross-validation was used to choose the best parametrization of models 
(i.e, optimum number of latent variables (LV) for PLS and the best 
penalty for EN regression). The best parametrization was the one for 
which the next value for the considered parameters (LV or penalty) did 
not contribute to a substantial reduction in the RMSEcv. Third, the po-
tential BW outliers were discarded based a residual analysis. If the 
prediction residual was higher than the mean + 3SD or lower than the 
mean – 3SD, the BW record was discarded. Fourth, PLS models were 
rebuilt using this second edited data set and the obtained regression was 
validated using the corresponding validation set. Finally, the model 
performance was assessed by calculating the calibration (RMSEc), cross- 
validation (RMSEcv) and validation RMSE as well as the ratio of per-
formance to deviation (RPD) which was the ratio of the standard devi-
ation of BW variable to the RMSEcv. The relative error was quantified by 
dividing RMSEp by BW mean calculated from the validation set. The 
robustness of the models was assessed according to the difference be-
tween RMSEcv and RMSEp, since in robust calibration models, the 

RMSEp is equal or nearly equal to the RMSEcv (Müllertz et al., 2016; 
Wang et al., 2018). 

Four different modeling approaches were tested and compared: PLS 
regression including only cow’s characteristics (parity + MY + DIM) 
named PLS-NoMIR; PLS regression using cow’s characteristics and MIR 
spectrum (parity + MY + DIM + 277 MIR variables) as done by Soyeurt 
et al. (2019) and named as PLS-All; PLS and EN regressions employing 
the variables selected in common by the 3 used feature selection algo-
rithms, named as PLS-FS and EN-FS, respectively. The feature selection 
algorithms used are explained further in this section. Consequently, a 
total of 16 models were built to predict test-day BW of dairy cows 
(Fig. 1). Then, Pearson correlation coefficients between predictions were 
calculated to assess the prediction consistency between models. The 
optimal model will be the one having low RMSEp and RMSEcv combined 
with a small difference between RMSEcv and RMSEp. The performance 
of this optimal model was also evaluated through the estimation of 
RMSEp per class of 60 kg of BW. The C value of the absolute regression 
coefficients was used to assess the contribution of each predictor to the 
BW prediction. 

2.3. Feature selection 

Based on the working hypothesis that the most informative variables 
must be selected by different feature selection algorithms from different 
training sets, three feature selection algorithms were implemented on 
the 280 variables included in the 4 different training sets. Then, from 
those 12 selections, the common selected variables were grouped as they 
were assumed to be the most informative variables. In the process of 

Fig. 1. The technical flow chart of the different modeling approaches used in this study. (PLS-NoMIR = Partial least squares regression included milk yield, parity, and 
days in milk; PLS-All = PLS using milk yield, parity, days in milk and 277 MIR data; PLS-FS = PLS using the 5 variables selected by feature selection; EN-FS = Elastic Net 
regression using the 5 variables selected by feature selection). 
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each modeling algorithm across the feature selection section, 10-fold 
cross-validation will be used to choose the best parameter. In brief, 
those 10-fold cross-validations will be conducted in simply the same way 
(i.e., randomly separate the training set into 10 folds) except based on 
the different training sets or modeling approaches. 

2.3.1. Feature selection based on sum of ranking difference algorithm 
(SRD) 

The first variable selection method was based on SRD algorithm 
proposed by Kalivas et al. (2015). A 10-fold cross-validation was firstly 
used to predict BW from the 280 scaled and mean-centered predictors. 
Consequently, 10 PLS models were built, providing 10 regression co-
efficients per predictor. For each predictor, the mean and standard de-
viation (SD) of those coefficients were calculated to compute the 
reliability (C) (i.e., mean divided by SD (Centner et al., 1996)). The 
higher the value of C, the more informative and reproducible is the 
predictor. In a second step, following a decreasing value of C, predictors 
were included into new PLS models one by one. The tested number of LV 
was the one considered as optimal in PLS-All and the ones around it 
having a similar mean and SD of RMSEcv. Then, for each number of LV, 
different models were tested considered a different number of predictors 
ranging from LV + 1 to 280. For each tested model, 8 merits were 
calculated in order to assess the model relevancy. Merit 1 was the jag-
gedness (J) denoting the model complexity and the degree of over-fitting 
of a regression model (Eq. (1)) (Gowen et al., 2011). 

J =
∑m

i=2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(bi − bi− 1)
2

√

(1)  

where the bi denotes the regression coefficient (b) of ith predictor of a 
model; m is the number of predictors in this model. Merit 2 (called B2) 
corresponds to the L2 norm of a model (2) and reflects the variance of 
the model. 

B2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

i=1
bi

2

√

(2)  

where bi is the regression coefficient (b) of the ith predictor in a model; m 
is the number of predictors in this model. Merit 3 was the RMSEcv 
denoting the model accuracy. Merit 4 (C1, Eq. (3)) and Merit 5 (C2, Eq. 
(4)) reflect the model bias and variance. 

C1 =

(
‖B2‖ − ‖B2‖min

‖B2‖max − ‖B2‖min

)

+

(
RMSECV − RMSECVmin

RMSECVmax − RMSECVmin

)

(3)  

C2 =

(
‖J‖ − ‖J‖min

‖J‖max − ‖J‖min

)

+

(
RMSECV − RMSECVmin

RMSECVmax − RMSECVmin

)

(4)  

where the max and min represent the maximum and minimum values of 
B2 or J observed among the models. Merit 6–8 were defined after the 
calibration process and correspond to the absolute value of R2 − 1 (|R2 

− 1|) where R is the calibration correlation coefficient, the absolute 
value of the regression slope − 1 (|slope − 1|), and the absolute value of 
the estimated intercept (|intercept|) calculated from the linear regres-
sion fitted from the measured and predicted BW records. The lower the 
values of the 8 merits, the better the PLS model is fitted. 

The calculation of SRD value was based on a matrix, which was 
constituted by 8 rows and up to 822 columns. The workflow is shown in 
Fig. 3. First, to make the merits comparable at a same amplitude, all 
merits calculated for each tested model were normalized by models. 
Second, the gold-rank was defined using the minimum normalized merit 
value obtained from column (i.e., among the models) and ranked ac-
cording to an increasing trend by row (i.e., among the merits). Third, for 
each model (i.e., column), a model ranking based on an increasing trend 
of their normalized merits value were defined. Fourth, the ranking dif-
ference of each model was calculated using the gold-rank and the cor-
responding rank of each merit of each model. Finally, the sum of ranking 

Fig. 2. The scheme of the model specifica-
tions and parameter choice for different 
modeling approaches. (PCA = Principal 
component analysis; GH = Global H distance; 
SD = Standard deviation; RA = Residual 
analysis; PLS-NoMIR = Partial least squares 
regression included milk yield, parity, and days 
in milk; PLS-All = PLS using milk yield, parity, 
days in milk and 277 MIR data; PLS-FS = PLS 
using the 5 variables selected by feature selec-
tion; EN-FS = Elastic Net regression using the 5 
variables selected by feature selection; PLS-SRD 
= Partial least squares regression combined with 
sum of ranking difference; PLS-UVE = Partial 
least squares regression combined with unin-
formative variable elimination; EN = Elastic Net 
regression; MY = Milk yield; DIM = Days in 
milk).   
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difference of each model was calculated by accumulating all ranking 
differences obtained for the considered modeling. Thus, from the 
example illustrated in Fig. 3, Model 1 has the best prediction perfor-
mances among these 3 models due to its minimum SRD value. 
Furthermore, to assess the consistency of the ranking result, the rank 
reliability measure (RRM) (Eq. (5)) (Tencate et al., 2016) was calculated 
from the SRD values based on the 8 merits and used to choose the 
optimal model and the corresponding predictors. The optimal model 
was the one with the lowest RRM value. For all the tested models, the 
RRM was calculated as follows: 

RRMi =

(
σFRi − σFRmin

σFRmax − σFRmin

)

+

⎛

⎝ FRi − FRmin

FRmax − FRmin

⎞

⎠ (5)  

where σFRi and FRi are the standard deviation and mean of SRD scores of 
tested models and scaled to range at 0 and 1 using the minimum and 
maximum values of all the models. Finally, the predictors included in 
the optimal model having the lowest RRM value were considered as the 
most interesting combination of predictors. If equal RRM were obtained 
for different models, the one with the lowest RMSEcv was considered as 
having a better fitting. 

2.3.2. Feature selection based on uninformative variable elimination (UVE) 
algorithm 

The second method used for the selection of informative variables 
combined PLS and UVE which was proposed by Vitezslav et al. (Centner 
et al., 1996). First, the predictors were scaled and centered. Second, a 
matrix of artificial noise variables having the same number of rows and 
columns than the calibration set was randomly created and added into 
the predictor matrix column by column. The minimum and maximum 
value of the noise was set according to the range of the MIR spectra used 
(–0.35 and 0.36 in this case) in order to have the same magnitude than 
the MIR signal. A 10-fold cross-validation was applied on the new pre-
dictor matrix. A Monte Carlo process (Li et al., 2009) was simulated 8 
times during the PLS procedure in order to acquire a stability in the 

estimation of the regression coefficient from both the MIR and artificial 
noise variables. Finally, 10 PLS models were generated. Similar to the 
SRD method, the C value was calculated for each predictor. The infor-
mation amplitude of the noise must be determined in advance to esti-
mate the suitable cutoff. The amplitude was set at 10–11 and an arbitrary 
value k was set as proposed by Cai et al. (2008). The k value was adopted 
based on the average of C value estimated for each predictor from the 
artificial noise matrix. Finally, the predictors having higher C rank than 
the artificial noises were selected as the most informative variables. 

2.3.3. Feature selection based on Elastic Net regression (EN) 
The third feature selection method was based on the output of the 

penalized EN regression including the whole scaled and centered pre-
dictors. The alpha parameter was set at 0.5 to be between Ridge and 
LASSO penalized regressions. The tested range for the penalty (called 
lambda) varied between 0.5 and 1. The optimal lambda was fixed ac-
cording to the obtained RMSEcv estimated from a 10-fold cross- 
validation. Finally, the variables with a regression coefficient different 
than 0 were considered as informative variables. 

2.4. External validation 

To assess the model transferability, the 16 developed regressions 
were further validated using a completely independent data set coming 
from another country (i.e., herd12, validation RMSE expressed as 
RMSEv) and MIR spectral data obtained from another brand of spec-
trometer. This validation set totalized 4,005 records collected between 
2015 and 2017 from 231 cows belonging to the research farm of the 
Victorian Department of Jobs, Precincts and Regions (Melbourne, 
Australia). MIR spectra as well as fat and protein contents were provided 
by a Bentley spectrometer (Model 2000, Chaska, MN, USA). The BW was 
measured using walkover scales (DeLaval, Tumba, Sweden) as described 
by HO et al. (Ho et al., 2019). As the BW equation was initially devel-
oped from milk Foss MIR spectra, the Bentley spectra were standardized 
(Grelet et al., 2017) to be expressed on the Foss basis. The RMSE 

Fig. 3. Workflow of sum of ranking differences (SRD) algorithm.  
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estimated between the fat and protein contents predicted externally 
from the standardized spectra and the ones provided by the Bentley 
spectrometer were 0.11 and 0.27 g/dL of milk, respectively. To ensure 
the quality of the standardized spectral data, the absolute difference 
between the fat content predictions (standardized vs. Bentley) was 
calculated for each record. Records having an absolute fat difference 
above 0.30 g/dL of milk were discarded. Then, the editing procedure 
and data editing were the same as the ones used for the training dataset. 
The final validation dataset contained 3,956 records. The average parity 
was 2.05 with a range comprised from 1 to 8. The DIM records ranged 
from 37 to 161 days with a mean of 104 days. 

2.5. Computation 

All computations and modeling were performed using R software 
(version 3.6.2) (R Core Team, 2019). The descriptive statistics were 
analyzed using base package (R Core Team, 2019). The PLS were 
implemented using the pls package (Bjørn-Helge Mevik, 2019) and the 
caret package (Max Kuhn et al., 2019) as also for EN regression. The PLS- 
SRD was computed using a homemade script using R software (version 
3.6.2). The PLS-UVE procedure was performed partly from the plsVarSel 
package (Mehmood et al., 2012)). 

3. Results 

3.1. Descriptive statistic 

The descriptive statistic of the edited training dataset and for the 
Australian data (herd12) is shown in Table 1. From the training dataset 
(i.e., herd1 until herd11), the average milk yield was 30.51 ± 11.99 kg/ 
d with a range comprised between 4.30 and 60.50 kg/d. The average fat 
and protein contents were 3.96 and 3.29 g/dL of milk, respectively. The 
BW varied between 309 and 984 kg with an average of 619 ± 79 kg. 
From Australian data (i.e., herd12), the average BW was 550 kg and 
ranged between 340 kg and 770 kg with a standard deviation of 65 kg. 

As shown in Fig. 4, for herds used in the modeling sets (i.e., from herd 
1 to herd 11), the mode of studied parity was 2 (Fig. 4A). The DIM re-
cords covered the 35 DIM classes (classes over 25 were shown as ≥ 25) 
and most records were distributed in the 1–4 DIM classes (Fig. 4B). BW 
records were normally distributed (Fig. 4C) and globally, BW increased 
with the parity to a stable trend above the third parity (Fig. 4D). The 
average BW was 540, 607, 662, 666 and 694 kg for first, second, third, 
fourth and fifth or more parity respectively. 

3.2. Predictive models and informative variable selection 

Table 2 summarizes the calibration and validation performances 
observed for the 16 developed models. As R2 of a model depends highly 
on the data structure like the distribution and the range of the data 

(Davies and Fearn, 2006), RMSE is the most relevant statistical param-
eter to assess the performance of a model (Grelet et al., 2020). So, only 
validation RMSE are mentioned in Table 2. Discarding of potential BW 
outliers from residual analysis lead to a slightly different number of 
records between the calibration sets. Therefore, the 10-fold cross- 
validation performances cannot be fully compared between models 
using the same dataset. However, we can compare the validation per-
formances between methods and assess the variability of prediction 
accuracy for one method thanks to the use of several validation datasets. 
So, the means and SD of RMSEcv, RMSEp and RMSEv as well as the 
absolute differences between RMSEp and RMSEcv estimated for each 
kind of models are mentioned in Table 3. 

The averaged RMSEp for PLS-NoMIR was 60 ± 5.57 kg (Table 3). The 
validation relative prediction error and RPD varied from 8.90% to 
13.14%, and 1.4 to 1.5, respectively. The absolute difference between 
averaged RMSEcv and RMSEp was 8 kg. Higher RMSEp were observed 
for herd5 and herd10 but more constant error was observed between 
models using herd12 (RMSEv) (Table2). 

The PLS-All models had LV number comprised between 5 and 6. The 
inclusion of 277 spectral data decreased the reproducibility of the 
models. Indeed, the SD of RMSEcv for PLS-All was more than 3 times 
higher than the one observed for PLS-NoMIR (Table 3). The same phe-
nomenon was observed for RMSEv. Only the SD of RMSEp decreased 
(Table 3). The model calibrated using a training set leaving herd10 and 
herd11 out had the worse prediction accuracy (Table 2). The RPD 
ranged from 1.48 to 1.63. The relative error of the RMSEp ranged be-
tween 9.04% and 15.46%. The average absolute difference between 
RMSEcv and RMSEp was 11 kg (Table 4) which was higher than the 
models from PLS-NoMIR approach. This high difference and the high 
observed SD of RMSE suggested a low robustness of PLS-All models. 

The instability of PLS-All models could be related to the presence of 
uninformative or non-reproducible in time or among instruments vari-
ables in the model. Indeed, the presence of such variables can impact 
negatively the robustness of the model (Centner et al., 1996). This 
confirms the relevance of testing different feature selection algorithms 
to select the best combination of predictors. Table 4 summarizes the 
results of the feature selections realized in this study. 

Multiple models were created during the PLS-SRD selection due to 
the inclusion of different LV number and predictors ranked based on the 
reliability of their regression coefficients. As mentioned in the materials 
and methods section, the number of LVs tested for PLS-SRD feature se-
lection was the one selected for PLS-All and the ones around it having 
similar mean and SD of RMSEcv. Therefore, the range of tested LV were 
5–7, 4–5, 5–6 and 4–5, respectively for the first, second, third and fourth 
calibration datasets. Based on the number of tested LV and the number 
of predictors possible for each model (ranged from LV + 1 to 280), 822 
models were built from the first calibration set (275 for LV = 5, 274 for 
LV = 6, and 273 for LV = 7). The number of models tested for the 3 other 
calibration sets were 551, 549 and 551, respectively (Table 4). Globally, 

Table 1 
Descriptive statistics of edited data sets.  

Herd N BW (kg) Days in milk (days) Parity Milk yield (kg/d) Fat (g/dL of milk) Protein (g/dL of milk) 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

1 32 680 71.  220.8  142.2  2.66  1.21  21.83  8.07  3.91  0.52  3.53  0.47 
2 41 680 79  217.3  112.5  3.00  2.44  28.67  9.44  4.27  0.54  3.54  0.36 
3 60 603 38  166.8  101.6  2.10  1.00  21.68  6.28  4.03  0.68  3.27  0.45 
4 70 656 79  159.3  85.5  3.54  1.05  21.20  6.73  4.18  0.73  3.34  0.39 
5 149 618 72  185.3  112.2  2.56  1.57  19.68  7.04  3.97  1.01  3.55  0.51 
6 358 628 69  125.4  77.6  2.36  1.35  19.39  5.20  3.16  1.13  3.11  0.31 
7 188 612 84  28.0  13.1  2.80  1.57  30.29  11.07  4.15  0.61  3.19  0.33 
8 635 599 86  28.5  12.6  2.40  1.55  37.69  10.47  4.03  0.86  3.39  0.34 
9 23 573 51  26.0  11.2  2.48  1.53  34.48  9.36  3.95  0.66  3.15  0.29 
10 180 612 69  28.1  12.4  2.44  0.64  41.30  6.66  4.58  1.42  3.18  0.35 
11 135 654 57  30.0  12.0  3.78  1.44  34.76  7.37  4.47  0.88  3.10  0.33 
12 3,956 550 65  104.0  18.7  2.05  1.06  25.77  4.95  4.18  0.96  3.17  0.34  
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RRM value obtained for each model fluctuated for all calibration sets 
along with the change of LV and the number of predictors included in 
the model (Fig. 5). The range was comprised from 0 to 1.69. The optimal 
model is the one having the lowest RRM. So, for the first dataset, the 
79th, 109th and 121st models had the lowest RRM value (around 0.02; 
Fig. 5A) revealing a similar robustness. However, 109th model pre-
sented the lowest RMSEcv. So, the 114 predictors including in this model 
into 5 LVs were considered as the most informative based on the first 
calibration set (i.e., leaving herd5 out). The same procedure was 
repeated for all other datasets and the results were summarized in 
Table 4. The best models are illustrated for each dataset in Fig. 5 by the 
red arrow. From PLS-SRD results, the number of selected variables 
ranged from 61 to 138 predictors (Table 4) with an average of 105 
predictors. In other words, the decrease of features number varied be-
tween 51% and 78% of the whole predictors. 

The PLS-UVE method selected 106, 120, 69 and 116 informative 
variables based on the 4 datasets used (Table 4). As for the PLS-SRD 
method, a strongly lower number of predictors was selected using the 
third dataset. Except for the third and fourth datasets, PLS-UVE selected 
a lower number of predictors compared to PLS-SRD. The number of LVs 
considered in PLS-UVE models were similar to the ones used by PLS-SRD 
models and turned around 4–5. 

Using EN feature selection, the number of selected variables ranged 
from 62 to 73 (Table 4). The decrease of variable number was stronger 
here compared to PLS-SRD and PLS-UVE except for the third dataset. 
The number of discarded samples after the residual analysis was around 
27 records which was similar to the ones obtained from PLS-SRD and 
PLS-UVE methods. The lambda penalty fixed based on the 10-fold RMSE 
was the same for all datasets and set to 0.5. 

Based on the hypothesis that the most informative variables must be 

selected by different feature selection algorithms from different training 
sets, the intersection of selected features was defined (Fig. 6). Therefore, 
from those 12 selections (i.e., 4 training sets and 3 feature selection 
algorithms), only 5 predictors were in common. They were then 
included into the third (PLS-FS) and fourth (EN-FS) modeling ap-
proaches to develop BW prediction models. 

The RMSEcv obtained for PLS-FS was around 53 kg (Table 2). The 
RPD ranged from 1.4 to 1.5. The relative predictive error ranged from 
8.72% to 11.24% among the validation sets. The RMSEp estimated from 
those four validation sets was 60 ± 5.62 kg (Table 3). The trend of 
validation performance between datasets was similar to the one 
observed with PLS-NoMIR (Table 3). The absolute difference between 
RMSEcv and RMSEp was 7 kg (Table 3) which was lower than the one 
observed from models of PLS-NoMIR and PLS-All. Similar to PLS-All and 
PLS-NoMIR, the worse validation results were observed for herd10 
(Table 2). The external validation on Australian data (herd12) had a 
RMSE of 64 ± 0.80 kg. The standard deviation is both lower than PLS- 
NoMIR and PLS-All. These same five selected predictors were also 
included in an EN regression. RMSEcv was similar for all four data sets 
and ranged between 52 and 53 kg (Table 2). The range of RPD and the 
relative error were from 1.4 to 1.5, and 8.72% to 11.50%, respectively. 
Validation performances were similar to PLS-FS but the SD of RMSEp 
and RMSEv were lower (Table 3). Therefore, these models were the 
optimal ones: low absolute difference between RMSEcv and RMSEp, low 
mean and SD of RMSEcv and RMSEPp and low mean and SD of RMSEv. 

Besides the calibration and validation results, it is also interesting to 
assess the prediction consistency between the developed models. So, the 
16 models were applied to the 4 validation datasets. The correlation 
coefficients among predictions using the 16 models applied on the four 
validation sets were high and ranged from 0.73 to 1.00. For all 

Fig. 4. Distribution of parity (A), days in milk (B), and body weight (C), and the body weight evolution by parity (D) from the edited training data sets.  
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calibration sets, the predictions of PLS-All models using the whole 280 
predictors showed lower correlation coefficients (ranged from 0.73 to 
0.96) with predictions obtained from PLS-NoMIR, PLS-FS and EN-FS 
models. Besides the lower RMSEp, RMSEv and their corresponding 
lower SD of models developed using EN-FS approach, the prediction 
correlation among EN-FS models ranged between 0.99 and 1 also 
revealing the robustness of this kind of modeling. 

3.3. The robust model and variable importance 

All EN-FS models presented a similar regression trend. Fig. 7A il-
lustrates the relationships between predicted and real measured BW 
records (when herd7 as validation set). The slope of fitted regression line 
was 1.03, which was close to 1; the bias was − 17.92 kg. For other 
calibration sets, the slope ranged between 0.98 and 1.00; the bias varied 
from 0.35 to 11.79 kg. No obvious herds presented a special distribution 
in the population cloud (Fig. 7A). The validation prediction errors were 
higher for the high and low BW (Fig. 7A). There was no obvious region 
revealed herds had extremely poor prediction at the BW range between 
520 and 700 kg (Fig. 7A). To be more specific, the RMSEp and RMSEv 
were also estimated for 8 different 60 kg BW intervals (Fig. 7B). Clearly, 
the cows with BW lower than 400 kg or higher than 760 kg showed a 
relatively lower prediction accuracy. However, BW between 460 and 
700 kg revealed a lower RMSE. 

The variable relative importance estimated for the 5 selected vari-
ables included in the EN-FS model from the 4 datasets are given in 
Table 5. Based on the C value, the sequence of important variables was 
the parity, MIR0123, DIM, milk yield, and MIR0094. Those spectral 
points represent the MIR region of 1,396.21 cm− 1 and 1,284.36 cm− 1. 
The variability of variable importance among models were low except 
for milk yield and MIR0094 (Table 5). Finally, according to the R2 of the 
cross-validation step during the EN-FS regression based on the final 5 
selected variable, the adding of MIR contributed on average 2.13% 
(R2cv increased from around 0.53 to around 0.54) and up to 4.20% in-
formation to predict BW globally. 

4. Discussion 

4.1. The data sets structure and candidate predictors 

To ensure the development of a robust model, the training dataset 
must be representative of the variability existing for the trait of interest 
(i.e., BW in this study) and the predictors should be sufficient informa-
tive. According to the mean and SD (Table 1), the average coefficient of 
variation for milk yield, fat, and protein contents were of 29.27%, 
20.45% and 11.32%. This variability of the main milk components 
allowed indirectly to ensure a good milk spectral variability. The vari-
ability coefficient of BW varied between 6.30% and 14.36% in this study 
which was similar to the range of 8.17%–16.47% reported in literature 
(Koenen et al., 1999; Kuzuhara et al., 2015; McParland et al., 2015; Song 
et al., 2018; Yan et al., 2009, 2006). The datasets used can be therefore 
considered as representative of the cow population. 

Table 2 
Calibration and validation performances obtained for the 16 developed models 
predicting test-day body weight (kg) of dairy cows.  

Method ValidationHerd Herd5 
(N ¼
149) 

Herd7 
(N ¼
188) 

Herd10 
(N ¼
180) 

Herd11 
(N ¼
135) 

Model number 1 2 3 4 

PLS-NoMIR 
(Npredictors 
= 3;Parity, 
milk yield, and 
days in milk) 

N samples 1699 1656 1662 1714 
N latent 
variables 

2 2 2 2 

RMSEcv (kg) 53 53 52 53 
R2cv 0.52 0.51 0.55 0.52 
RMSEp (kg) 60 55 68 58 
RMSEv (kg) 71 70 70 69 

PLS-All 
(Npredictors 
= 280;;Parity, 
milk yield, 
days in milk, 
and 277 MIR 
spectral 
points) 

N samples 1,699 1,658 1,663 1,716 
N latent 
variables 

5 5 6 5 

RMSEcv (kg) 50 51 48 48 
R2cv 0.59 0.55 0.63 0.62 
RMSEp (kg) 59 59 64 59  

RMSEv (kg) 64 63 93 126 
PLS-FS 

(Npredictors 
= 5;Parity, 
milk yield, 
days in milk, 
and 2 MIR 
spectral 
points) 

N samples 1696 1655 1661 1713 
N latent 
variables 

2 2 2 2 

RMSEcv (kg) 53 53 52 53 
R2cv 0.54 0.52 0.55 0.53 
RMSEp (kg) 61 54 67 57 
RMSEv (kg) 64 64 64 63 

EN-FS 
(Npredictors 
= 5;Parity, 
milk yield, 
days in milk, 
and 2 MIR 
spectral 
points) 

N samples 1696 1655 1661 1713 
Lambda 0.5 0.45 0.25 0.15 
RMSEcv (kg) 53 53 52 53 
R2cv 0.54 0.52 0.55 0.53 
RMSEp (kg) 60 54 67 57 
RMSEv (kg) 65 64 64 63 

PLS-NoMIR = Partial least squares regression (PLS) included milk yield, parity, 
and days in milk; PLS-All = PLS using milk yield, parity, days in milk and 277 
MIR data; PLS-FS = PLS using the 5 variables selected by feature selection; EN- 
FS = Elastic Net regression using the 5 variables selected by feature selection; 
R2cv = 10-fold cross-validation coefficient of determination; RMSEp = root 
mean square error of validation using herd5, herd7, herd10 or herd11; RMSEv =
root mean square error estimated from herd12 (Australian data). 

Table 3 
Mean and standard deviation of cross-validation and validation root mean 
square errors (RMSE) per kind of models as well as the absolute difference be-
tween cross-validation RMSE (RMSEcv) and validation RMSE (RMSEp, RMSEv).  

Models RMSEcv RMSEp Diff_abs RMSEv 

Mean SD Mean SD Mean SD Mean SD 

PLS- 
NoMIR 

53  0.50 60  5.57 8  6.03 70  0.82 

PLS-All 49  1.57 60  2.65 11  3.88 86  29.80 
PLS-FS 53  0.50 60  5.62 7  6.05 64  0.80 
EN-FS 53  0.50 60  5.57 7  6.02 64  0.69 

RMSEcv = 10-fold cross-validation root mean square error; RMSEp = RMSE 
estimated from herd5, herd7, herd10, or herd11; Diff_abs denotes the absolute 
difference between RMSEcv and RMSEp; PLS-FS = PLS using the 5 variables 
selected by feature selection; EN-FS = Elastic Net regression using the 5 vari-
ables selected by feature selection. 

Table 4 
Parameters of the variables selection algorithms based on PLS-SRD, PLS-UVE 
and Elastic Net.  

Method1 ValidationHerd Herd5 
(N ¼
149) 

Herd7 
(N ¼
188) 

Herd10 
(N ¼
180) 

Herd11 
(N ¼
135) 

Number of 
Models 

822 551 549 551 

PLS-SRD N samples 1,689 1,654 1,643 1,707 
N predictors 114 138 61 106  
N latent 
variables 

5 5 6 5 

PLS-UVE N samples 1,696 1,657 1,661 1,712 
N predictors 106 120 69 116  
N latent 
variables 

5 5 4 5 

EN N samples 1,696 1,656 1,663 1,711 
N predictors 67 62 73 62  
Penalty 
parameter 

λ = 0.5 λ = 0. 5 λ = 0.5 λ = 0.5  

1 PLS = Partial least squares regression; SRD = Sum of Ranking Difference; 
UVE = Uninformative Variable Elimination; EN = Elastic Net. 
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Due to the interest of knowing the test-day BW at an individual level 
for management and breeding purposes, there is a need to try to predict 
this trait with predictors that are easily available on field by DHI orga-
nizations. So, it is why this study focused on the use of milk yield, DIM 
and parity as well as the milk MIR spectrum as predictors. These cow’s 
characteristics related predictors were not chosen randomly. Indeed, 
these traits routinely recorded by DHI at cow level were positively 
related to BW. The correlation coefficients with measured BW were 0.12 
for milk yield, 0.67 with parity, and 0.20 for DIM. Similar correlation 

values were already reported in the literature. For instance, Song et al. 
reported correlation coefficients of BW with parity and DIM equal to 
0.81 and 0.18, respectively (Song et al., 2018). Although the correlation 
value between DIM and BW is not as high as the one observed with 
parity, this trait is valuable to be included in a prediction model as it is 
indirectly related to the pregnancy status of a cow (Song et al., 2018; 
Zhang et al., 2020). Moreover, the energy reallocation occurring after 
new calving cows (i.e., first days in milk) leads to a negative energy 
balance leading to a mobilization of body reserves (Soyeurt et al., 2019) 
influencing BW. Parity with its high correlation with BW is incontestably 
a relevant predictor. BW increased until the fourth parity and then 
stayed stable (Fig. 4D). This trend was expected as the cow’s body keep 
growing until they got mature (i.e., normally stop at fourth or fifth 
parity) (Artegoitia et al., 2013; Mellado et al., 2011; Ray et al., 1992). 
Other authors reported the interest of using DIM and parity to predict 
BW as well (Enevoldsen and Kristensen, 1997; Kuzuhara et al., 2015). 
Along with the growth of cow’s body, the increase of mammary volume 
from primiparous to multiparous of a healthy cow always result in an 
increase of milk yield (Davis and Hughson, 1988), explaining the posi-
tive relationship observed between milk yield and measured BW. The 
regression including those predictors (i.e., PLS-NoMIR) had a RMSEcv 
(53 kg; Table 3) similar to the value of 56 kg reported by Soyeurt et al. 
(2019) based on a model including parity, milk yield, DIM and test 
month. Even if these models seem to present satisfactory prediction 
performances on cross-validation and herd validation, the application of 
them on Australian data provided worse results suggesting a poor model 
transferability. 

It is known that the milk composition can be related to the energy 
balance of the cow which is also related to the BW changes of a dairy 
cows (Friggens et al., 2007). Therefore, using the milk MIR spectral data 
reflecting the global milk composition as additional predictors is rele-
vant to predict test-day BW. The modeling already proposed by Soyeurt 
et al. (2019) was not robust enough. Indeed, the absolute differences 
between RMSEp and RMSEcv were globally higher for PLS-All compared 
to the PLS-NoMIR models (Table 3). Moreover, the SD of RMSEcv and 
RMSEv were more than 3 times higher than the ones observed for PLS- 

Fig. 5. The trend of RRM value across the model number for the 4 tested calibration sets (A = first dataset until D = fourth dataset; the red arrow shows the optimal 
model). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Intersection of groups of selected variables among the PLS-SRD, PLS- 
UVE and EN feature selections and the four calibration sets. 
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NoMIR suggesting the absence of robustness for those models. This 
could be related to the presence of uninformative variables in the model 
(Gottardo et al., 2016). 

4.2. Feature selection and predictive model performance evaluation 

4.2.1. Feature selection and the optimal predictors 
Kalivas and Palmer (2014) reported that a harmonious model 

Fig. 7. The observed and predicted body weight of the calibration and validation herds (herd7) based on the Elastic Net regression using the final 5 selected variables 
(A); The validation root mean square error distribution across different body weight stage (interval = 60 kg; B). 

Table 5 
The relative importance of selected variables of the partial least squares regression models using different calibration sets.  

Variables relative importance(%) Herd5 Herd7 Herd10 Herd11 Mean SD CV C value(Mean/SD) Importance ranking 

Parity  100.00  100.00  100.00  100.00  100.00  0.00  0.00 ∞ 1 
MIR0123  12.11  12.49  11.15  11.67  11.86  0.57  4.84 2066.72 2 
Days in milk (days)  40.88  41.38  43.74  45.74  42.93  2.25  5.24 1908.92 3 
Milk yield (kg/d)  19.51  17.01  23.58  25.56  21.41  3.87  18.07 553.34 4 
MIR0094  5.76  0.18  1.53  3.68  2.79  2.45  87.98 113.66 5  
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requires a suitable balance of bias and variance to gain an optimal 
performance. However, using too few informative variables will lead to 
under-fit and the model is therefore not complex enough to capture the 
variability in the samples; whereas, adopting too many variables will 
result in an over-fitted model which is too specific to the calibration set 
used and presents therefore a poor predictive ability (Lavine, 2003). So, 
an optimum compromise must be found. In this context, a total of 3 
different feature selection algorithms were employed in this study as the 
working hypothesis was that if a predictor is selected by different feature 
selection algorithms, the probability to highlight an informative vari-
able is high. By using 4 different calibration sets, we have also reinforced 
this idea because the variable must be also selected from all datasets. By 
this way of doing, only 5 predictors were in common from the 12 se-
lection procedures done in this study. There were then included in PLS 
and EN regressions. Both models (PLS-FS and EN-FS) had similar cross- 
validation and herd validation performances compared to PLS-NoMIR 
but a largely better validation performance on the Australian data 
(Table 3) suggesting a good transferability of those models. Moreover, as 
SD of RMSEv was slightly lower (while the SD of RMSEp was equal to 
PLS-NoMIR) for EN-FS, this model was assumed to be the most optimal 
model to predict test-day BW for dairy cows. In conclusion, the elimi-
nation of uninformative variables allows to keep the most informative 
variables and reduce the effect from noisy variables (Cai et al., 2008; 
Centner et al., 1996) leading to a better transferability of those models 
(i.e., mean and SD of RMSEv; Table 3). The low correlation found be-
tween predictions made using PLS-All approach and other approaches (i. 
e., using selected predictors) confirmed the presence of noisy 
information. 

It is interesting to notice that the number of variables were different 
following the feature selection algorithms used and ranged from 61 to 
138. However, at the end, by realizing the intersection of feature se-
lection algorithms across training sets, only 5 variables (Parity, DIM, 
milk yield, and 2 MIR points) were used. This reduction of predictor 
number means that using only one feature selection algorithm and one 
dataset were not sufficient and would lead to an over-fitting of the 
model. Normally PLS algorithm should deal with that (Wold et al., 
2001). Indeed, by fixing its LVs by taking into account the variability of 
predictors and the trait to be predicted, PLS could result in a low ab-
solute regression coefficient of uninformative variable. However, this 
was not observed in this study. This could be related to the size of the 
dataset. Maybe by increasing the number of records, the PLS should 
improve its ability to recognize the most informative variables. This is 
why the use of a repeatability file (such as predicted BW as an indicator) 
composed of spectra without reference value could be interesting 
(Soyeurt et al., 2019; Vanrobays et al., 2015) and to test the selection of 
the whole MIR spectral points as well. 

4.2.2. The predicted and observed body weights as well as the predictor 
importance 

The relationship between the observed BW and the ones predicted 
using EN-FS records revealed the goodness of the calibration model 
(Fig. 7A). No obvious herd effect was visible on this graph. This can be 
explained by the high robustness of the EN-FS revealing by the small 
difference between RMSEp and RMSEcv. Furthermore, the information 
from the calibration herds have a good representativeness to the vali-
dation herd, especially in the models when leaving out herd5 and herd7 
(lower RMSEp and RMSEv). Meanwhile, as we can observe from the 
fitted line of the predicted BW versus the real measured BW in Fig. 7A, 
the cows having extreme BW had a relative lower prediction perfor-
mance. As reported by Thomas and Ge (2000), the representativeness 
and structure of a calibration set affect the accuracy of a predictive 
model. So, this phenomenon could be explained by the BW variability of 
the calibration set as there were a low amount of high and low BW in the 
calibration set (Fig. 4C). But the cows with a moderate BW had a better 
prediction accuracy. 

The five selected variables were the parity, MIR0123, DIM, milk 

yield, and MIR0094. The mean and SD of relative variable importance 
values, and C value calculated from the EN-FS models showed that those 
first two predictors were the most important in all models. By averaging 
the relative variable importance values calculated for DIM, this pre-
dictor was the third more important and it was very close to MIR0123 
which is related to the MIR region at 1,396 cm− 1. Not like the first three 
predictors, the variability of the milk yield relative variable importance 
values and the C value suggested that the importance of this trait can 
fluctuate between models. Similar trend was observed for the last pre-
dictor, MIR0094, which is related to the MIR region at 1284.36 cm− 1. 
These two MIR spectral data were located in the MIR spectral region 
related to the carbohydrates and organic acids (Bittante and Cecchinato, 
2013; Picque et al., 1993). This could be related to the fact that the milk 
carbohydrate-related contents or fatty acids reflect partly the status of 
energy metabolism of body which influences the BW changes (Ducháček 
et al., 2012; Yan et al., 2006). The highlighting of parity, DIM and milk 
yield as important predictors of BW is in agreement with the findings 
mentioned in the first part of this discussion about the traits significantly 
related to BW (Enevoldsen and Kristensen, 1997; Kuzuhara et al., 2015; 
Song et al., 2018). The interest of using MIR information as additional 
predictors was confirmed in this study. In the past, McParland et al. 
(McParland et al., 2015) and Soyeurt et al. (2019) reported also the 
potential interest of using MIR spectra to predict BW changes or BW. 
However, in this study, the part of the explained BW variability brought 
by MIR data up to 4.20% was lower than the 11.67% reported by 
Soyeurt et al. (2019). Moreover, the current study revealed also the 
interest of adding MIR data to enhance the model robustness and 
transferability. 

4.2.3. Accuracy of the predictive models 
The RPD values for the EN-FS models averaged at 1.5, suggesting 

that the predicted BW is more an indicator of this trait. Indeed, a RPD 
between 1.5 and 2.0 representing a discrimination of low and high value 
of dependent variance (Saeys et al., 2005). However, although the value 
of RPD between 1.5 and 2.0 showed limited prediction accuracy, the 
prediction results could be accepted in a breeding view point (Chen 
et al., 2011). So, the RPD obtained in the current study around an 
average value of 1.5 indicating the usefulness of the models developed in 
this study to predict the body weight as least to distinguish the light and 
the heavier ones, and could be useful especially in the breeding pro-
grams. For instance, this predicted BW could be used in a breeding goal 
to measure the maintenance requirements (Koenen et al., 1999). 

The RMSEp around 60 kg for the EN-FS representing 8.72%–11.46% 
of the real BW for different validation sets. This level of accuracy is 
acceptable, since, not like a certain research experiment, the measure-
ment of BW in commercial farms, is also affected by many aspects like 
the measurement period (i.e., before or after milking of a cow, before or 
after feeding etc.) and the calibration of the weighing scale. In this study, 
no protocol was fixed to collect the BW records. Therefore, a certain 
uncertainty exists around the reference BW values used. However, it is 
important to notice that the accuracy obtained from 3-D camera or BCS 
regression methods ranged around 40 kg–50 kg regarding the cross- 
validation (Haile-Mariam et al., 2014; Kuzuhara et al., 2015). 
Although the prediction error isn’t as small as the daily body weight 
changes (around 1 kg) resulted from body reserves mobilize (Jensen 
et al., 2015), whereas this extreme small changes appears normally 
during the early lactation stage (Gibb et al., 1992). So, in the current 
study, the accuracy of predicted BW is at least meaningful at global herd 
level. In this view, the mean live BW is often used in field to determine a 
global decision such as the nutritional requirement of a herd related to 
the goodness management of maintenance. So, from the breeding and 
herd level nutrient determination view, the residual of BW prediction, in 
the current study, using the selected models met the usage requirement 
practically. 
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5. Conclusion 

This research confirmed the feasibility of predicting an indicator of 
test-day BW at an individual cow level using traits routinely recorded by 
DHI such as parity, days in milk, milk yield, and even animal confor-
mation types. The use of the intersection of groups of variables using 
PLS-SRD, PLS-UVE and EN feature selection algorithms allowed to 
improve the model robustness and its transferability to another brand of 
spectrometers. The selection of parity, DIM, milk yield, MIR0094 and 
MIR0123 were logical based on the relationships between measured BW 
and those traits found in the literature. Even if PLS algorithm is normally 
able to deal with uninformative variables, this study showed the interest 
of realizing an elimination of uninformative variables before the final 
modeling. Moreover, in the context of this study, we demonstrated that 
the use of one feature selection algorithm and one data set was not 
sufficient to isolate the most informative variables. The EN-FS models 
developed in this study could be easily implemented into a routine DHI 
framework allowing to the creation of a large level database of BW in-
dicator. However, the herd specific BW evolution features could be 
considered in the future studies. 
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