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The protected cultivation system, an alternative to open field cultivation provides opportunities such as year-17 

round crop production and improved food security especially during disasters as well as ease in automation. However, 18 

protected cultivation is limited by the hazardous work environments and skilled labor shortages 19 

thus necessitating robotic applications. Robots are mostly battery-powered, requiring regular charges depending on 20 

the task. In a multi-robot system, due to the limitation on the availability of charging infrastructure and uneven 21 

discharge rates of the robots depending on the task, it is very difficult to predict when the robots would require charging. 22 

Therefore, to maximize the continuous work time of the robots, optimal scheduling is required. Consequently, we 23 

propose a novel system for efficiently utilizing mobile robotic systems in protected cultivation by developing a 24 

scheduling system that will maximize work time and minimize concentrated energy demand. We formulated the robot 25 

scheduling problem to regularly evaluate battery charge state and optimally send the robot to the charging station. 26 

This problem was solved using an evolutionary algorithm. We considered: a) the number of available robots; b) 27 

number of charging stations; c) required work hours; d) robot battery capacity; e) robot battery charge and discharge 28 

rates; and f) the number of continuous discharge time instances. All parameters could be set to user preference. The 29 

applicability of the proposed method was demonstrated with experimental simulations using MATLAB under 30 

different cases and scenarios. These cases and scenarios demonstrated that our proposed system maximized worktime 31 

by a significant percentage and minimized the required power to charge the batteries in all situations. 32 
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1. Introduction 37 

Protected cultivation systems such as greenhouses and plant factories for growing plants in controlled environments 38 

are becoming popular recently. Cultivating in these systems has numerous benefits to the grower and global food 39 

security due to increased productivity and availability of food year-round regardless of the climatic conditions (Jensen 40 

et al., 1995, Khan et al., 2011). This is even becoming more pertinent during disasters such as the recent COVID 19 41 

global pandemic outbreak caused by the  severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)  (Wu et al., 42 

2020) where movement is restricted due to fears of rapid spread of the virus. Invariably, farm labor and trade would 43 

be substantially affected. Furthermore, the Food and Agriculture Organization of the United Nation (FAO) has warned 44 

of impending starvation and malnutrition in many countries across the globe  (FAO, 2020) . This is even more so 45 

because of the climate of many countries in temperate regions or the non-availability of land for growing essential 46 

foods with short shelf-lives such as vegetables. These make countries rely heavily on imports to meet demand of some 47 

essential foods. The FAO suggested coherent and robust plans for global food systems as a solution for disasters that 48 

restrict movement of people and goods (FAO, 2020) . Protected systems where the climate can be controlled such as 49 

greenhouse and plant factories provide a solution to these issues, by allowing the use of autonomous robotic growing 50 

systems that require limited or no physical presence.  Regardless of external factors like temperature, relative humidity, 51 

wind speed and rainfall, plants in protected cultivation systems can be grown in relatively safer conditions in which 52 

essential macro and micro requirements are provided. This increases productivity while ensuring year supply of 53 

essential foods.  54 

It is much easier to implement automation in protected systems compared to the open field with many disturbances 55 

such as lighting conditions, rain, etc. (Roldán et al., 2018). However, growing crops in a protected cultivation system 56 

has some drawbacks. For example, the use of pesticides in protected systems is much more complicated compared to 57 

open-field cultivation where there is adequate circulation of air. Other conditions like elevated temperatures and 58 

relative humidity required for optimal plant growth could also cause long-term health complications for human 59 

workers (Arundel et al., 1986, Basu, 2009). Apart from the adverse impact to the health of the workers, protected 60 

systems require repetitive tasks like harvesting and transportation which are also cumbersome and cause fatigue to the 61 

human workforce.  Due to the high capital investments required in protected cultivation, optimal growing conditions 62 

and skilled labor is required for an economically viable and sustainable system. Farmers are also facing the challenge 63 

of producing more food from less land in a sustainable way to meet the demand of the predicted 9.8 billion human 64 
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population expected by 2050 (King, 2017). With the global shortage of skilled labor especially in developed countries 65 

due to migration of young people from farming rural communities to urban areas, (Cai et al., 2006, Hertz et al., 2013), 66 

most growers are increasingly seeking to employ robotics in cultivation.  In  (Future Farming, 2019), the increased 67 

use of robots in greenhouses to mitigate labor shortage was recorded in the Netherlands. 68 

Consequently, robotic companies have keyed into developing robots for tasks in protected cultivation systems. These 69 

include inspection and treatment of plants (Acaccia et al., 2003), recognition and cutting system for sweet-pepper 70 

picking (Kitamura et al., 2005), autonomous spraying of pesticides in greenhouses (Sammons et al., 2005) and 71 

greenhouse operation (Mandow et al., 1996). According to Verified Market Research, the agricultural robot market is 72 

expected to reach $11.58 billion by 2025 (Verified Market Research, 2020) . 73 

Using robots in protected cultivation requires optimal implementation for best results. This led to different studies 74 

such as navigation techniques for mobile robots in greenhouse (González et al., 2009), path tracking of mobile robots 75 

in greenhouses controlled by slide mode variable structure (Niu et al., 2013), ultrasonic sensors for determining 76 

position and orientation of mobile robots in a greenhouse (Masoudi et al., 2010), and vision-based localization in 77 

greenhouses using a daisy-chaining approach (Mehta et al., 2008). However, there are limited studies considering 78 

rapid utilization of robots to save time, thereby lowering operation costs. Consequently, in our earlier study (Uyeh et 79 

al., 2019), we proposed efficient navigation in a greenhouse by optimizing the layout system. We developed a system 80 

to find optimal points on each bed to create an access path that would enable a reduction in the total travel time from 81 

all points in the greenhouse to the base point. The system allowed: (a) specifying bed size; (b) inputting greenhouse 82 

size; (c) specifying required space for inter-bed and rotary robot navigation; and (d) indicating base point for starting 83 

and terminating navigation.  84 

Just like in electric vehicles (EV), robots in protected cultivation are mostly battery powered. An EV’s charging 85 

scheduling strategy based on photovoltaic output prediction was proposed in (Wei et al., 2017), while (Yang et al., 86 

2013) proposed a system to minimize the waiting times of EVs by charge scheduling on highways. Other studies 87 

includes optimal routing and charge scheduling of EVs (Barco et al., 2017), EV’s charging scheduling problem derived 88 

from a charging station designed to be installed in community parking (García-Álvarez et al., 2018) , delay-optimal 89 

charging scheduling of EVs with multiple charging stations (Zhang et al., 2013), and determining an optimal vehicle 90 

schedule given a set of trips (Niekerk et al., 2017). 91 
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However, in protected cultivation, the battery power consumption of robots depend on tasks and environmental 92 

conditions like temperature and relative humidity (Smart et al., 1999, Hu et al., 2004) making it difficult to predict at 93 

what point the robot would need charge. For example, a harvesting robot took between 18 and 25 seconds to harvest 94 

a ripe fruit (Shamshiri et al., 2018). The battery usage and consumption in harvesting robots can be separated into 95 

three main sections as sensing (i.e., fruit recognition), planning (i.e., hand-and-eye coordination) and acting (i.e., end-96 

effector mechanism for fruit grasping) (Murphy, 2019). Duration of each task will vary among models of robots. 97 

Furthermore, with the frequent improvement in technologies related to greenhouse robotics, it can be challenging to 98 

predict the required number of robots needed to complete a task without a scheduling system. Without scheduling, 99 

usage of robots in protected cultivation systems involve using the battery to a drainage point (baseline algorithm) and 100 

charging all robots together. This has drawbacks such as: a) same time robots charge means high power consumption 101 

and this could result in higher costs of power and transformers (Darabi et al., 2011, He et al., 2018); b) non continuation 102 

in operation in the protected system especially in a task where two different types of robots with different battery 103 

capacities are involved (for example, the harvesting and transportation tasks).  The working time of robots in a 104 

protected system mainly depends on battery status of the robots and speed to complete a task. If a greenhouse is small 105 

and the available robots can finish a task in one charge-discharge cycle, then scheduling of robots is not essential.  106 

However, in large commercial greenhouses that are commonly found in most countries, the scheduling of robots is 107 

beneficial, and can reduce operational costs.  108 

In general, optimal scheduling is required to reduce the cost of operation or to satisfy the needs of the application. 109 

Other well-known applications of scheduling includes, travelling sales man problem, swarm robots scheduling, UAV 110 

scheduling, path planning (Jin et al., 2006, Peters et al., 2018), electric vehicles charge and discharge scheduling (Yao 111 

et al., 2017), and agricultural robot scheduling (Ahsan et al., 2019) which  was limited to seedling and more of 112 

sequencing.  113 

Various scheduling techniques employed for mobile robots primarily focused on task-based scheduling. In previous 114 

studies, various scheduling problems were solved using integer linear programming (Tiotsop et al., 2020) (Cheng et 115 

al., 2019), and dynamic programming (Jin et al., 2006). Optimal scheduling problems arising in different real-world 116 

activities have been solved using classical search and optimization algorithms including linear programming methods. 117 

The difficulties often faced in solving such problems are the dimensionality of the search space, and integer restriction 118 

of the decision variables (Deb et al., 2003). For the past few decades, optimal scheduling problems have also been 119 

solved by using various nontraditional methods such as simulated annealing (Kirkpatrick et al., 1983), genetic 120 
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algorithms (Goldberg, 2006), and tabu search (Glover et al., 1998). Genetic algorithm optimization has good search 121 

capabilities for stochastic operators, are flexible with easy tunable parameters according to the type of the problem. 122 

In the current study, we solved the scheduling of robots in protected systems using the binary genetic algorithmic 123 

approach (Goldberg, 2006). 124 

The scheduling of available robots in a protected cultivation system to accomplish a task (harvesting, spraying or 125 

transportation) is complex and differs from EVs where the approximate distance a charge can cover, and information 126 

of charging stations are known.  127 

In this study focusing on protected cultivation, the objectives were to develop a system to determine: a) the optimal 128 

number of charging stations required in respect to number of robots; b) the optimal number of robots required to meet 129 

a target worktime or task; c) compute the available work hours in relation to the number of robots and battery charge 130 

and discharge rates; and d) frequently (every 15 minutes) evaluate the charge status of each robot and determine the 131 

optimal time to dispatch it for charging. 132 

 133 

2. Problem formulation and proposed method: 134 

This study focused on scheduling robots to maximize working time to complete a given task in a protected cultivation 135 

system by assuming the following scenarios: a) all the robots were identical with similar battery capacity; and b) 136 

robots have different battery capacities. As mentioned earlier, the total time a robot can operate, depends on the battery 137 

capacity and its task-based discharge characteristics. Depending on usage, the batteries require charge at the time 138 

when the current battery state of charge (SOC) falls below the minimum limit to complete the task. Consequently, the 139 

proposed system has the capabilities to be adjusted to user preference. 140 

We assumed all robots had same charge/discharge limits i.e., the minimum allowable SOC for a robot’s battery was 141 

5% and the maximum allowable SOC was 100%. When the battery of a robot reached the minimum discharge limit, 142 

it went for charging. When the robot is performing a task and active, it was considered as ‘1’ and not working condition 143 

or charging was considered as ‘0’. This scheduling problem can be considered as combinatorial and nondeterministic 144 

polynomial time hard (NP-hard). 145 

Due to the high temperature and relative humidity in protected cultivation systems, it is usually recommended that 146 

charging stations should be located outside. The location of the charging station has a direct relationship to the 147 

minimum SOC the robot should have to be triggered to go for a charge. The number of robots that can be 148 

simultaneously charged at the same time depends on the charging infrastructure or the number of charging slots 149 
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available. In addition, depending on the charging infrastructure and number of robots, it may not be possible to fully 150 

charge all the robots before the start of a new workday. Therefore, the initial SOC of the robots may be different. In 151 

addition, a limitation on the minimum continuous time instances a robot undergoes discharge (working) between two 152 

consecutive charging instances has been considered and can be specified by the user.  153 

The objective of the problem was to minimize the charge time of robots i.e., maximizing the worktime of each robot 154 

so that the overall worktime to complete a given task was reduced. The scheduling constraints that were needed to be 155 

satisfied were: a) maintain minimum battery level; b) ensure maximum charge limit; c) dispatch only the maximum 156 

number of robots allowed for charging at any one time; and d) execute the minimum continuous instances of discharge 157 

(Tdis). 158 

The objective functions modelled for the current scheduling problem consisted of the parameters related to battery 159 

characteristics and initial battery SOCs. The different charge and discharge characteristics of batteries usually depend 160 

on the usage, type of battery, operating temperature, and their charge and discharge rates. The discharge time of the 161 

robot’s battery may depend on the state of the crop or availability of crop.  162 

Major parameters that affect the scheduling process are: 163 

1. number of robots (N) 164 

2. number of charging stations (m) 165 

3. state of charge of the robot (SOC) 166 

4. minimum duration the robot needs to continuously work before going for charge (Tdis) = 1,2 and 3. 167 

The objective function of maximizing the working time of robots is given in Equation (1) subject to Equations (2), (3) 168 

and (4). 169 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 (∑ ∑ 𝑆𝑛
𝑡

𝑁

𝑛=1

𝑇

𝑡=1

)                                                                      (1) 170 

Subjected to   171 
 𝑛𝑐

𝑡 ≤ 𝑚                                       (2) 172 
 173 

𝜃𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶𝑛
𝑡 ≤ 𝜃𝑚𝑎𝑥                     (3) 174 

 175 

∑ ∑[𝑍𝑛(𝑏𝑖) − 𝑍𝑛 (𝑎𝑖) − 1 ≥ 𝑇𝑑𝑖𝑠]                                             (4)

|𝑍𝑛|

𝑖=1

𝑁

𝑛=1

 176 

 177 
where N is number of robots, m is number of charging stations; T is the total number of scheduling instances for the 178 

given task and time (T = 24/48/72 for 6/12/18 hours, respectively for one scheduling instance of 15 minutes), t is time 179 

index for evaluating SOC, 𝑆𝑛
𝑡  is state of robot n at time index t, state vector =[𝑆𝑛

1, 𝑆𝑛
2, 𝑆𝑛

3, … . . 𝑆𝑛
24], 𝑆𝑂𝐶𝑛

𝑡  is battery 180 
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SOC of robot n at time t, 𝑛𝑐
𝑡  is number of robots that need charging at time t,  𝜃𝑚𝑖𝑛 is the minimum discharge limit of 181 

battery, and 𝜃𝑚𝑎𝑥 is maximum charge limit of battery.  𝑍𝑛 = {(𝑎, 𝑏) ∈ 𝑇, 𝑆𝑛 
𝑎 = 𝑆𝑛 

𝑏 =  0 & ∏ 𝑆𝑛 
𝑗𝑏−1

𝑗=𝑎+1 = 1} is a set of 182 

ordered pairs (a, b), a and b are integers that represents the time instances as demonstrated in Figure 1.  183 

In Figure 1, the vector (Zn) represents a prospective schedule of robot n, where 0 and 1 represent the charging and 184 

discharging (working) states of robot, respectively. Zn = {(a1, b1) (a2, b2) (a3, b3)} and ordered pair (ai, bi) gives 185 

information on the number of continuous working time instances (1’s) between two charging time instances (0’s). 186 

 187 

Figure 1. Prospective scheduling vector of robot n 188 

An additional continuity constraint (Equation 4) is included to satisfy the smooth charge or discharge operation for 189 

robots by considering a user-specified input (Tdis). Since the size of the protected system and the dynamics of robots 190 

(speed and accelerations) varies among growers, and type of robots, respectively, two constraints (Equations 3 and 4) 191 

were formulated and implemented to incorporate the dynamics with robot utilization. The constraint related to the 192 

minimum state of charge (SOC) (Equation 3) prompts the robot to go for a charge when the SOC is below a preset 193 

threshold. For example, in (Arad et al., 2020), the authors developed a first-of-its-kind commercial sweet pepper 194 

harvesting robot with varying durations to carry out sub-tasks such as platform movement, fruit and obstacle 195 

localizations, fruit harvesting, etc. Based on these, it is difficult to estimate at what point the robot would need to 196 

charge and efficiently plan its travel. Equation 4 (continuous discharge time instances (Tdis)) constraints the robot to 197 

work for a minimum amount of time (Tdis) between two charging instances. In other words, once in a charging state, 198 

the robot continues to remain in a charging state until its SOC reaches a level that is enough to work for at least Tdis 199 

scheduling instances. 200 

Between two charging instances, the minimum working time of a robot should be at least Tdis. The speed, acceleration, 201 

and task of the robot have a direct relationship with the discharge rate of the robot battery. Consequently, depending 202 

on the size of the protected system, the robot should continuously have sufficient power (SOC) to travel for events 203 

such as harvesting, spraying, charging, discharge of products, pesticide refilling, etc. Further, if the Tdis is not 204 

implemented, then a robot scheduled to be charged would return to work immediately after SOC reaches the preset 205 

minimum threshold (𝜃𝑚𝑖𝑛). However, the robot would be forced to go back to charging after a short period of work, 206 



9 
 

which would not be efficient especially in large commercial protected cultivation systems. Consequently, when 207 

charging, it should gain enough power to perform work for at least the set Tdis. This would help save time for the robot 208 

to travel a long distance to charge and return to carry out a negligible amount of work and expend another long time 209 

to travel back for a charge. The inbuilt navigation system of robots especially in protected cultivation systems helps 210 

the robot estimate the distance from its position to where it needs to travel for tasks or charge (Arad et al., 2020). In 211 

our previous study (Uyeh et al., 2019), we developed a layout system for rapid robot navigation in a protected 212 

cultivation system. This was because, unlike other situations where path planning could be implemented, the scenario 213 

in a protected cultivation system is complex since the location of the tasks the robots need to carry out is constantly 214 

unknown and the usage of the battery varies in tasks to be performed each day. This is because mobile robots in 215 

protected cultivation system are required to navigate down every aisle to perform a task, and it is difficult to predict 216 

at which point the robot will need to return to the start point, to offload or refill for transportation and spraying 217 

schedules, respectively or battery charges. For efficient navigation, a layout with access paths that would enable a 218 

reduction in the total travel time from any point to the base point would be required. The developed system in this 219 

study could ensure maximization of total work time in a protected cultivation system, and avert situations where robots 220 

are waiting to charge. 221 

The modeling for SOC estimation for every scheduling interval with battery characteristics, (i) fixed rate of charge 222 

/discharge, and (ii) variable charge/discharge depending on efficiency of charge/discharge are given in Equations (5) 223 

and (6) 224 

i) Robots with Fixed charge and discharge rate: 225 

𝑆𝑂𝐶𝑛
𝑡 = 𝑆𝑂𝐶𝑛

𝑡−1 + (𝜃𝐶ℎ 𝑎𝑟𝑔 𝑒 × (1 − 𝑆𝑛
𝑡 )) − (𝜃𝑑𝑖𝑠𝑐ℎ 𝑎𝑟𝑔 𝑒 × (𝑆𝑛

𝑡))                          (5) 226 

ii) Robots with variable charge and discharge rates: 227 

,max ,max

1 (1 ) ( )
c c d

t t t tn n s n s

n n n ncap cap d

n n n

p T p T
SOC SOC S S

B B





      
        

   
                       (6) 228 

 229 

Where: 𝑆𝑛
𝑡  is state of robot ‘n’ at time ‘t’ and ‘t – 1’ (0 = charging; 1 = working); 𝑆𝑂𝐶𝑛

𝑡 and 𝑆𝑂𝐶𝑛
𝑡−1 is the state of 230 

charge of robot ‘n’ at time ‘t’ and ‘t-1’; 𝐵𝑛
𝑐𝑎𝑝

 is battery capacity of robot ‘n’; 𝜂𝑛
𝑐  𝑎𝑛𝑑 𝜂𝑛

𝑑 are the efficiencies of charge 231 

and discharge of robot ‘n’ battery which varies with temperature; 𝑃𝑛
𝑐,𝑚𝑎𝑥  𝑎𝑛𝑑 𝑃𝑛

𝑑,𝑚𝑎𝑥
 are the maximum allowable 232 

charge and discharge rates of robot ‘n’ battery and 𝑇𝑠 = is the sampling time of 0.25 (that is: 15 min = 25%) 233 
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The Battery parameters such as 𝜂𝑛
𝑐  and 𝜂𝑛

𝑑, 𝑝𝑛
𝑐,𝑚𝑎𝑥

 and 𝑝𝑛
𝑑,𝑚𝑎𝑥

 are directly affected by the working time of the batteries. 234 

These parameters depend on the type of battery and the environmental conditions where it is used. Therefore, in this 235 

study, we considered the variation in efficiencies of charge and discharge of batteries.  236 

2.1. Search algorithm  237 

Genetic Algorithm (GA) is a stochastic population-based optimization algorithm based on Darwin’s theory of 238 

evolution (Beasley et al., 1993, Mirjalili, 2019). In GA, a group of prospective solutions to the optimization problem 239 

referred to as population, evolve over the iterations to converge to the optimal solution of the optimization problem 240 

defined by an objective function (Equation 1) and a set of constraints (Equations 2 ~ 4). The population evolves by 241 

producing new solutions, referred to as offspring population, by exploiting the information present in the population. 242 

The offspring population is produced from the parent population through variation operators referred to as mutation 243 

and crossover. Mutation produces a new solution by the perturbation of an existing solution. Crossover produces one 244 

or two different individuals by combining the information present in two different solutions of the population 245 

(Mallipeddi et al., 2011). Further, the solutions in the parent and offspring populations compete to enter the next 246 

generation which is determined through the selection operator. The goal of the selection operator is to promote 247 

solutions that better suit the environment defined by the objective and constraint functions of the optimization problem 248 

to future generations. In other words, the population dynamics follow the basic rule of evolution “survival of the 249 

fittest”. The process of producing new solutions from the current population of solutions and enforcing selection 250 

repetitively forces the population to converge to an optimal solution. 251 

In summary, the major steps in GA are a) initialization of population; b) the individuals in the population evolve over 252 

a given number of generations through operations such as mutation, crossover, and selection. The parameters of GA 253 

are fine-tuned depending on the problem. Consequently, we coded and fine-tuned these parameters (initial population, 254 

the maximum number of generations which is also a termination criterion, probability of mutation, and crossover rates) 255 

and evaluated the populations (solutions) on the objective function in Equation 1 which was to maximize the working 256 

time of the robots subjected to Equations 2 to 4. The process is repeated (iterations) until the stopping criteria are met 257 

which is the maximum number of generations. 258 

The flow chart of the GA used as search algorithm to solve the problem is given in Figure 2. Primarily, Np 259 

chromosomes are initialized. Each chromosome has D genes (dimensions) and are initialized randomly with ‘0’ or ‘1’. 260 

Until the termination criteria are met, each chromosome is evaluated on the objective function. Selection, crossover, 261 
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and mutation are performed during each iteration. The optimal solution obtained represents the best schedule for the 262 

robots, which also gives the individual operation times of robots for the given charge/discharge characteristics.  263 

The proposed scheduling problem was solved using the binary GA. Roulette Wheel based selection between single, 264 

double, and uniform crossover and binary mutation were used. The implementation was done in MATLAB 2019® 265 

(Mathworks, 2019), with 64-bit Windows 10, 3.4 GHz CPU and 24 GB RAM.  266 

 267 

Start

 

    
 

Is termination criteria met?

YES

NO

Flow chart of the proposed Binary GA optimal scheduling of robots

Input N, m, Tdis, Battery SOC limits, 

Task duration, Scheduling time interval 

Read the battery 

charge and discharge 

rates 

Set number of chromosomes (Np), 

generations, mutation and 

crossover probabilities 

Generation g =1: G 

Initialize Population (Np)

Evaluate objective function

(max working time of robots)
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Figure 2. Flowchart of the search genetic algorithm 269 
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The parameters of the optimization algorithm were set as: 271 

a. Population size (NP): 500 272 

b. Maximum number of generations (termination criteria): 500 273 

c. Probability of crossover (Pc): 1.0 and 274 

d. Mutation and Crossover rates: 0.8 and 0.3, respectively. 275 

 276 

3. Experimental design and simulations 277 

Simulations were performed to demonstrate the applicability of the proposed method to schedule robots in a protected 278 

cultivation system. Two Cases of robot scheduling (Cases 1 and 2) were considered. These Cases were designed to 279 

investigate when all the robots start a workday with a 100% level of battery charge (Case 1) and random levels of 280 

battery charge (Case 2). These two Cases were evaluated in four Scenarios (Scenarios 1, 2, 3, and 4) to investigate 281 

different capacities of batteries. 282 

a.   Battery characteristics 283 

Two different types of battery characteristics and variations with 1) 100% SOC, and 2) random levels of SOC. The 284 

batteries considered in this study were classified based on their efficiencies (Battery-University, 2017, Eftekhari, 285 

2017). Their efficiencies were as follows: efficiency of charge = 0.9, efficiency of discharge = 0.99 and efficiency of 286 

charge = 0.8, efficiency of discharge = 0.6. Batteries with 100% SOC and random levels of SOC were selected to 287 

investigate what would happen when a grower has a shorter workday and resources to fully charge the batteries and 288 

when the workday is long and no time to fully charge the batteries before the start of another workday, respectively.  289 

b. Power requirement for charging batteries 290 

 Scenarios for the given two cases of initial SOCs of robots.  291 

i) Fixed rate of charge and discharge of 5% for each scheduling instance t. (i.e., for 15min) 292 

ii) Variable rates of charge/discharge that depend on efficiencies of charge/discharge of robot batteries. 293 

iii) Number of robots (N = 5, 10 or 15),  294 

iv) Number of charging stations  295 

v) Initial SOCs of batteries 296 

vi) Instances for discharge (Tdis: 1 to 3). 297 

For the two cases (Cases 1 and 2), the initial SOCs used in the experimental simulations are presented in Table 2. We 298 

considered 6, 12 and 18 hours as total operation hours. However, any duration and number of robots could be entered 299 
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by the user for scheduling. The charge and discharge of robots were evaluated for every instance of scheduling with 300 

time frame of 15 minutes. Therefore, the total number of scheduling instances required were T = 24, 48 and 72. 301 

The power required for charging during the task for one scheduling instance can depend on the scenario and initial 302 

SOCs of robots. The calculation of power for charging a single instance for each robot is given below.  303 

For the 5 robots, the power needed to charge for one scheduling instance can be calculated as follow: 304 

Scenario 1: for each scheduling instance (t) the power required to charge 𝜃𝑐ℎ𝑎𝑟𝑔𝑒 =5% (fixed) of an 8-kW robot 305 

battery is, Preq = 8 kW × 5/100 = 0.4 kW 306 

For Scenarios 2, 3 & 4, the rate of charge was calculated using the part of the Equation (7) and (8). 307 

 i.e.,     𝜃𝐶ℎ 𝑎𝑟𝑔 𝑒 =
𝜂𝑛 

𝑐 × 𝑝𝑛
𝑐,𝑚𝑎𝑥

×𝑇𝑠

𝐵𝑛
𝑐𝑎𝑝    (7) 308 

𝜂𝑛
𝑐 = {

0.9, 𝑓𝑜𝑟 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 2 𝑎𝑛𝑑 3
0.8, 𝑓𝑜𝑟 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 4

     (8) 309 

From the above settings 𝜃𝐶ℎ 𝑎𝑟𝑔 𝑒 = 4.5% for Scenario 2 and 3 and 𝜃𝑐ℎ𝑎𝑟𝑔𝑒 = 4% for Scenario 4. The power required 310 

to charge a robot’s battery depends on the battery’s capacity. In Scenario 2, the robot batteries with capacity of 8 kW 311 

are used. In Scenarios 3 and 4, robots with 8, 16, and 48 kW are used. 312 

In Scenario 2, for each one scheduling instance (t), the power required to charge,  𝜃𝑐ℎ𝑎𝑟𝑔𝑒 = 4.5% of an 8-kW robot 313 

battery was Preq = 0.36 kW. 314 

In Scenario 3, for each one scheduling instance (t) the power required to charge  𝜃𝑐ℎ𝑎𝑟𝑔𝑒 , 4.5% of 8-, 16-, and 48-315 

kW robot batteries (Preq) were 0.36 kW, 0.72 kW, and 2.16 kW, respectively 316 

In Scenario 4, for each one scheduling instance (t) the power required (Preq) to charge  𝜃𝑐ℎ𝑎𝑟𝑔𝑒 , 4 % of 8-, 16-, and 317 

48-kW robot batteries were 0.32 kW, 0.64 kW, and 1.92 kW, respectively. The power required for scheduling at 318 

different scenarios are given in Table 1.  319 

  320 
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Table 1. Power required to charge robot batteries with different characteristics for one scheduling instance 321 

Robot  Scenario 1 

𝜃𝑐ℎ𝑎𝑟𝑔𝑒 = 5% 

Scenario 2 

𝜃𝑐ℎ𝑎𝑟𝑔𝑒 = 4.5% 

Scenario 3 

𝜃𝑐ℎ𝑎𝑟𝑔𝑒 = 4.5% 

Scenario 4 

𝜃𝑐ℎ𝑎𝑟𝑔𝑒 = 4% 

N 𝐵𝑛
𝑐𝑎𝑝

 

(kW) 

Preq  

(kW) 
𝐵𝑛

𝑐𝑎𝑝
 

(kW) 

Preq  

(kW) 
𝐵𝑛

𝑐𝑎𝑝
 

(kW) 

Preq  

(kW) 
𝐵𝑛

𝑐𝑎𝑝
 

(kW) 

Preq  

(kW) 

1 8 0.4 8 0.36 8 0.36 8 0.32 

2 8 0.4 8 0.36 8 0.36 8 0.32 

3 8 0.4 8 0.36 16 0.72 16 0.64 

4 8 0.4 8 0.36 16 0.72 16 0.64 

5 8 0.4 8 0.36 48 2.16 48 1.92 

 322 

c. Scenarios to evaluate battery capacities 323 

The efficiency of the proposed algorithm was shown with the following scenarios for the two cases of initial SOCs of 324 

robots. 325 

Scenario #1: Robots with fixed rates of charge and discharge = 5% 326 

Scenario #2: Robots with same capacities (8 kW) (efficiency of charge = 0.9, efficiency of discharge = 0.99) 327 

Scenario #3: Robots with different capacities (efficiency of charge = 0.9, efficiency of discharge = 0.99) 328 

Scenario #4: Robots with different capacities (efficiency of charge = 0.8, efficiency of discharge = 0.6) 329 

The scenarios included different battery capacities, charge, and discharge efficiencies.  330 

In Scenario 1, the robot will charge and discharge 5% of its battery if it is charging or working for a duration of 15-331 

minutes (one scheduling interval). The state of operation was represented with ’0’ and ‘1’ for charging and working, 332 

respectively.  333 

In Scenarios 2, 3, and 4, as described by equation (7), we considered variable charge and discharge patterns that were 334 

dependent on the efficiency of charge and discharge, maximum allowable charge, and discharge (𝜂𝑐𝑛 𝜂𝑑𝑛 𝑝𝑐, 𝑚𝑎𝑥𝑛) 335 

of robot batteries.  336 

In Scenario 2, we assumed the robots had an equal battery capacity of 8 kW each.  337 

In Scenarios 3 & 4, we performed the simulations with variable standard battery capacities (Yao et al., 2017).  338 

The battery percentage increase for every 15 minutes (single instance) is 5%. However, we considered scenarios where 339 

the battery starts aging or the batteries of other robots do not have similar efficiencies resulting in less charge 340 

percentages such as 4.5% and 4% for a single instance. 341 

The selection of the capacities and initial SOC considered for 5, 10 and 15 robots in this study are shown in Table 2. 342 

  343 



15 
 

Table 2. Experimental design using two different initial states of charge of robots and random battery capacities 344 

Robots 

No. 

 

Battery capacities (kW) 

Initial state of charge (%) 

Case 1  Case 2 

5  

robots 

10 

robots 

15 

robots 

5  

robots 

10 

robots 

15 

robots 

5  

robots 

10 

robots 

15 

robots 

1 8 8 8 100 100 100 100 100 100 

2 8 8 8 100 100 100 75 90 85 

3 16 16 16 100 100 100 50 80 80 

4 16 16 16 100 100 100 25 70 75 

5 48 17 17 100 100 100 5 60 70 

6  17 17  100 100  50 65 

7  18 18  100 100  40 60 

8  18 18  100 100  30 55 

9  30 20  100 100  20 50 

10  48 25  100 100  10 45 

11   30   100   40 

12   35   100   35 

13   40   100   30 

14   45   100   25 

15   48   100   20 

 345 

To demonstrate improvement of our proposed method for scheduling the robots, we performed simulations using a 346 

base line algorithm where the robots charge and discharge pattern was well-known. The robot works until the battery 347 

discharges completely and sent for full charge (i.e., 100% SOC). 348 

 349 

4. Simulation results 350 

This study considered two Cases of robot scheduling (Cases 1 and 2). These Cases were designed to investigate when 351 

all the robots start a workday with 100% level of battery charge (Case 1) and random levels of battery charge (Case 352 

2). Furthermore, four Scenarios (Scenarios 1, 2, 3, and 4) were considered to investigate different capacities of 353 

batteries. 354 

4.1. Scheduling of robots in protected cultivation system 355 

a. Scheduling of robots in protected cultivation system with baseline algorithm 356 

In a commercial protected cultivation system, the work time of the robots would not be optimal because of the charge 357 

needs of the robots. Additionally, a greater number of robots may need charging at the same time and consequently, 358 

the variable cost of the protected system will increase from power initialization and increase in the cost of installing 359 

the required number of charging stations. A baseline scheduling system is described in Figure 3. 360 
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 361 
Figure 3. Robot discharge and charge curves using a baseline algorithm  362 

 363 
Other drawbacks of a conventional scheduling using a baseline algorithm is a disruption in operation. For example, 364 

the harvesting task requires both the harvesting and transportation robots to be simultaneously working. Without an 365 

efficient scheduling system, it is most likely for at least one of the robots to run out of charge. An example can be seen 366 

considering a scenario of fixed charge and discharge rate of 5% (Scenario 1) for five robots with different initial charge 367 

levels (Case 1 and Case 2). In this case, robots 1 to 5 have initial charges of 100% in Case 1, whereas 100, 75, 50, 25, 368 

5 for Case 2.  For Case 1, each robot works for the first 19 instances and the total working scheduling instances of all 369 

the robots are 95. After that, all the robots will undergo charging as their battery SOC would be less than the minimum 370 

allowable limit. Thus, the robots will require battery charge at the same time where the number of stations equals that 371 

of the robots or one at a time. This will lead to high power requirement and or delay in finishing a given task.  372 

 373 

b. Scheduling of robots in protected cultivation system with single instance for battery discharge (Tdis =1)  374 

The battery discharge and charge curves are presented in Figure 4a, b, c, and d for Scenarios 1, 2, 3 and 4, respectively 375 

for 5 robots. In Scenario 1 where robots had fixed rates of charge and discharge of 5%, there were more robots 376 

continuously working at Case 1 compared to Case 2 showing the positive impact of initial full charge. A similar trend 377 
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was observed in Scenarios 2, 3 and 4 despite differences in their battery capacities and efficiencies. A further analysis 378 

of the optimal number of charging stations required for the different cases and scenarios are shown in Table 3. We 379 

observed here that the scenarios did not have considerable impact on the number of charging stations required 380 

compared to cases and number of robots. Despite the scenarios differing significantly, the number of stations were the 381 

same for five robots in Scenario 1, 2 and 3 and increased by an extra charging station in Scenario 4. However, as the 382 

number of robots increased to 10, the optimal number of charging stations remained the same in Scenario 1, 2 and 3 383 

but drastically increased by 150% to 5 in Scenario 4 (Table 3). With a further increase in number of robots, all 384 

scenarios in Case 1 recorded different increases in the number of charging stations. In Case 2, a similar trend in the 385 

optimal number of charging stations required at the different scenarios was observed. Scenarios 1, 2 and 3 had similar 386 

numbers of optimal charging stations compared to Scenario 4 (Table 3) for 5, 10, and 15 robots with only a charging 387 

station increased at 5 robots and 50% at 10 robots which was much lower compared to Case 1. This could be because 388 

Scenarios 1, 2, and 3 had a higher charge capacity of 4.5% and above compared to Scenario 4 with 4%. Further, 389 

Scenario 4 here showed 80% increase in the required optimal number of charging stations from Scenarios 1 to 3. Our 390 

analyses showed that the efficiency of charge and discharge of the batteries contributed significantly to the optimal 391 

number of charging stations required in optimally scheduling at single instance of battery discharge (Tdis=1). 392 

 393 
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 394 

(a) 395 

 396 
(b) 397 
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 398 
(c) 399 

 400 

 401 
(d) 402 

Figure 4. Battery SOC curves and robot charges (Δ) for individual robots with required optimal (minimum) number 403 
of charging stations (m) for Cases 1 and 2 at Tdis=1; Scenario 1 (a); Scenario 2 (b); Scenario 3 (c) and Scenario 4 (d) 404 

 405 
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Table 3. Optimal number of charging stations required for scheduling 6 hours (24 Instances) task 406 

Initial 

SOCs 

Optimal (minimum) number of charging stations required when Tdis=1 

Scenario 1 Scenario 2 & Scenario 3 Scenario 4 

5 

robots 

10 

robots 

15 

robots 

5 

robots 

10 

robots 

15 

robots 

5 

robots 

10 

robots 

15 

robots 

Case 1 1 2 3 1 2 4 2 5 7, (>6) 

Case 2 2 4 5 2 4 5 3 6 9, (>6) 

 407 

c. Scheduling of robots in protected cultivation system with Tdis > 2  408 

Individual working states of robots, battery SOC and robot charge and discharge curves are presented in Figure 5 for 409 

scheduling at three instances of discharge (Tdis=3) for 5 robots. We discussed the results of only three continuous 410 

instances of discharge here and presented a complete analysis in the subsection below. Although there was a different 411 

trend in the optimal number of charging stations between single instance of battery continuous discharge (Tdis=1) and 412 

three instances of battery continuous discharge (Tdis=3), we observed a similar trend of the impact of the initial battery 413 

SOC on the working state of the robots. In Scenario 1 where the robots had fixed rates of charge and discharge of 5%, 414 

there were also more continuously working of robots in Case 1 compared to Case 2 (Figure 5). A similar trend was 415 

observed in the other scenarios even with disparity in their battery capacities and efficiencies. However, as mentioned 416 

above, the number of instances affected the optimal number of charging stations (Table 4). In scheduling with three 417 

continuous instances of battery discharge before charge, a distinct pattern was recorded for the optimal number of 418 

charging stations in all scenarios. This is presented in Table 4. The first three scenarios in this instance of battery 419 

continuous discharge at Case 1 recorded similar optimal number of charging stations at 5 robots just like in the 420 

scheduling of the single instance of continuous discharge (Tdis = 1). A similar optimal number of charging stations 421 

required in 10 robots for Scenarios 1 and 2 and a reduction by one in Scenario 3 and 100% increase from Scenarios 1 422 

and 2 to Scenario 4 were observed. A further 200% increase in the number of optimal charging stations from Scenario 423 

3 to 4 were recorded. The scenarios also differed in the optimal number of charging stations for 15 robots with a 100% 424 

increase from the least number of charging stations (Scenarios 2 and 3) to the highest (Scenario 4). In Case 2, there 425 

were some similarities in between the two cases but a high number of optimal stations required at 15 robots for 426 

Scenario 4. In this instance of battery discharge (Tdis= 3), it was difficult to conclude on what exactly affected the 427 

optimal number of charging stations, suggesting that when the complexity of constraints increases, predictions will be 428 

challenging without enough scheduling simulations.  429 
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 430 
(a) 431 

 432 
(b) 433 

 434 
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 435 
(c) 436 

 437 
(d) 438 

Figure 5. Battery SOC curves and robot charges (Δ) for individual robot with required optimal (minimum) number 439 
of charging stations (m) for Cases 1 and 2 at Tdis=3; Scenario 1 (a); Scenario 2 (b); Scenario 3 (c) and Scenario 4 (d) 440 



23 
 

Table 4. Optimal number of charging stations required for scheduling 6 hours task (24 Instances) and Tdis = 3 441 

Initial SOCs 

Optimal (Minimum) number of charging stations required when Tdis = 3 

Scenario 1 Scenario 2  Scenario 3 Scenario 4 

N=5  N=10  N=15  N=5  N=10  N=15  N=5  N=10  N=15  N=5  N=10  N=15  

Case 1 1 3 5 1 3 4 1 2 4 
3 6 8 

Case 2 2 5 7 3 5 8 3 6 8 

4 7 Infeasible 

For <10 

4.2.1. Total robot working time, number of robots and required charging power for Case 1 442 

In evaluating the total working time, required charging power and number of robots between baseline algorithm and 443 

our proposed method for Case 1 in a single instance of battery discharge, various observations were made. This further 444 

necessitates scheduling in protected cultivation system. In all instances of scheduling (24, 48 and 72 Instances) our 445 

proposed method provided better solutions. In 24 Instances, scheduling instances of single instance of battery 446 

continuous discharge (Tdis=1) (Figure 6a), about 15% increase was recorded in the total working instances at 15 robots 447 

and about 11% and 2% at 10 and 5 robots, respectively. A similar trend was seen at all cases indicating that as the 448 

number of robots increases, especially in commercial protected cultivation systems, the worktime of the robot would 449 

be drastically increased. This trend was seen at all the scheduling of scenarios and instances in Case 1, single instance 450 

of battery continuous discharge (Tdis=1) with as much as about 66% increase recorded at 72 Instance-Scenario 4. 451 

In the power required to charge the batteries, 40% decrease was recorded between the proposed method and baseline 452 

algorithm at 15 robots, 43% and 64% for 10 and 5 robots, respectively. Significant decrease in the power required to 453 

charge the batteries were observed in all the instances and scenarios in scheduling at Case 1, single instance of battery 454 

continuous discharge (Tdis=1). This will save costs for initialization and installation of a bigger transformer.  455 

In two and three instance scheduling of battery continuous discharge (Tdis = 2 and 3) (Figure 6b and c), there was no 456 

significant improvement in total working time and charging power required in some scenarios like 48 Instances-457 

scenario for both two and three instances of battery continuous discharge (Tdis = 2 and 3), and 24 Instances-Scenario 458 

2 for two instances of battery continuous discharge (Tdis= 2). However, there was recorded improvement in all other 459 

scenarios with drastic reduction in the power required to charge the batteries at 15 robots of 24 Instances-Scenario 1 460 

in two instance of battery continuous discharge (Tdis= 2) where about 43% reduction was obtained. A similar 461 

percentage reduction was also recorded in single and three instances of battery continuous discharge (Tdis= 1 and 3) 462 

in this case. Here, we learnt that all factors which include battery SOC, battery efficiencies, worktime and instances 463 

of battery discharge have impact on the percentage improvements that would be recorded for increasing worktime and 464 

that for reducing required charge power. 465 
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 470 
(b) 471 

 472 

 473 
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474 

 475 
(c) 476 

 477 
Figure 6. Total working instances and power requirements for scheduling robots at various scenarios for baseline algorithm and proposed method for Case 1; Tdis 478 

= 1 (a); Tdis = 2 (b); and Tdis = 3 (c)479 
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4.2.2. Total robot working time, number of robots and required charging power for Case 2 480 
 481 
In Case 2, with the SOC of the robots varying, the improvements in total work time varied between instances, scenarios 482 

and minimum continuous discharge instances (Tdis). Unlike Case 1, the scenarios with more improvement in total 483 

working instances and reduction in power requirement differed. In this case, more worktime improvement was 484 

recorded in 5 robots 24 Instances-Scenario 1, 2, 3 and 4 with an improvement of about 69%, 108%, 72% and 100%, 485 

respectively (Figure 7a). A similar trend was observed regardless of the minimum continuous discharge scenarios (Tdis 486 

= 2 and 3) (Figure 7b and c) at 24 Instances with other instances at 48 and 72 not showing such improvement.  This 487 

clearly shows that since the batteries in Case 2 had different SOC, a scheduling for a shorter work instance would 488 

result in more improvements. Furthermore, even though there was no significant difference in the improvements in 489 

the total working instances in the two and three continuous discharge scenarios (Tdis = 2 and 3), in both Case 1 and 2, 490 

the more the continuous battery discharge scenario, the more benefit it will be in real life. This is because, in a practical 491 

protected cultivation system as discussed earlier, the charging stations are usually situated outside because of the high 492 

temperature and humidity content inside the protected cultivation facility. Consequently, higher minimum discharge 493 

scenarios will benefit from the time saved in travelling to and from the charging station. 494 

For the power required to charge the battery in this case, we also observed more reductions in required power to charge 495 

the batteries at the 24 Instances in all the scenarios at all the minimum discharge scenarios (Tdis = 1 to 3). About 43% 496 

power reduction was recorded in 24 Instances Scenarios 1 and 2. About 46% and 37% reduction in power required to 497 

charge the batteries were recorded in Scenarios 3 and 4. These percentage reductions were obtained in the 15 robots 498 

scheduling which also was the scheduling with the most significant reduction. A similar trend was recorded in the two 499 

and three continuous discharge scenarios (Tdis = 2 and 3). All scenarios and instances showed the proposed method 500 

outdid the baseline algorithm. 501 
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 503 
(a) 504 
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 507 
(b) 508 

 509 
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 510 

 511 
(c) 512 

 513 
Figure 7. Total working instances and power requirements for scheduling robots at various scenarios for baseline algorithm and proposed method for Case 2; Tdis 514 

= 1 (a); Tdis = 2 (b); and Tdis = 3 (c)515 
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5. Conclusion 516 

We developed a system for optimal scheduling of robots in a protected cultivation system such as greenhouses to 517 

maximize work time and support uninterrupted operation. We observed that the number of working hours of a robot 518 

depended on its initial charge and had a direct impact on the optimal number of charging stations required. Also, the 519 

speed of the robot and the size of the protected cultivation system had a direct relationship to the minimum SOC the 520 

robot battery needs to have at every given time. Therefore, to account for that, we incorporate a constraint the imposes 521 

the minimum SOC on the robot. Furthermore, the more continuous instances of discharge (Tdis) the robots need to 522 

work before going to charge would benefit growers in saving time spent from frequent travels to and from the charging 523 

station in large commercial protected systems when the charging location is located outside. However, in small 524 

systems, the Tdis would not have a significant impact on extending the work hours and the robot should be allowed to 525 

go to charge at any time. This is because the reduction in robot travel time for charges would no longer be a factor. 526 

Overall, we recorded improvements in robot work time and reduction in charge power and stations required in the 527 

proposed method as robot numbers increased compared to the conventional baseline algorithm.  528 
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