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Abstract

In recent years, the poly-l-proline type II (PPII) conformation has gained more and more importance. This structure plays vital roles in
many biological processes. But few studies have been made to predict PPII secondary structures computationally. The support vector machine
(SVM) represents a new approach to supervised pattern classification and has been successfully applied to a wide range of pattern recognition
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roblems. In this paper, we present a SVM prediction method of PPII conformation based on local sequence. The overall accura
he independent testing set and estimate of jackknife testing reached approximately 70%. Matthew’s correlation coefficient (M
each 0.4. By comparing the results of training and testing datasets with different sequence identities, we suggest that the perform
ethod correlates with the sequence identity of dataset. The parameter of SVM kernel function was an important factor to the pe
f this method. The propensities of residues located at different positions were also analyzed. By computingZ-scores, we found that P and
ere the two most important residues to PPII structure conformation.
2005 Elsevier Ltd. All rights reserved.
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. Introduction

The poly-l-proline is assumed to adopt basically two dif-
erent helical conformations, i.e. type I and type II polypro-
ine. Type I poly-l-proline is a right-handed helix with an
xial translation of 1.90̊A composed of 3.3 prolyl residues
er turn, linked bycis-amide bonds and adopting backbone
ihedral angles of (ϕ, ψ, ω) = (−83◦, +158◦, 0◦) (Traub and
hmueli, 1963). In theory, type I poly-l-proline is possible,
ut was never detected in nature. Type II poly-l-proline is
left-handed helix with an axial translation of 3.20Å com-

osed of three prolyl residues per turn, joined by transpeptide
onds with backbone dihedral angles of (ϕ, ψ, ω) = (−78◦,
149◦, 180◦) (Bochicchio and Tamburro, 2002).

The poly-l-proline type II (PPII) conformation used to
e considered a relatively rare and apparently uninteresting
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secondary structure. In recent years, however, it has be
known as surprisingly common and of the utmost im
tance. This structure plays vital roles in processes su
signal transduction, transcription, cell motility, and the
mune response. PPII helices are major features of colla
(Pauling and Corey, 1951) and plant cell wall proteins (Ferris
et al., 2001). Proline-rich ligands of the cytoskeletal prot
profiling (Mahoney et al., 1997), as well as those of the SH
WW, and EVH1 protein interaction domains, are boun
this conformation (Kay et al., 2000). The peptide ligands o
class II MHC molecules are also bound in the PPII con
mation (Jardetzky et al., 1996). The PPII helix is believe
to be the dominant conformation for many proline-rich
gions of sequence (PRRs) (Williamson, 1994). Sequence
not rich in proline, such as poly(lysine), poly(glutamate),
poly(aspartate) peptides, can also adopt this conform
(Woody, 1992). Around 2% of all residues in known pr
tein structures are found in PPII helices at least four resi
long (Adzhubei and Sternberg, 1993; Stapley and Crea
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1999). As many as 10% of all residues are found in the PPII
conformation, although not necessarily as part of PPII he-
lices (Sreerama and Woody, 1994). PPII helices have also
been hypothesized to be a major component of a protein at
its denatured states, giving them a role in a most fundamen-
tal process (Wilson et al., 1996; Tiffany and Krimm, 1968;
Krimm and Tiffany, 1974; Kelly et al., 2001).

Information of such important conformation cannot be de-
rived directly from amino acid sequences. Numerous studies
on PPII conformation were reported, most of which were lab-
oratory works. Few attempts have been made to predict PPII
secondary structures computationally.Siermala et al. (2000,
2001, 2003)developed a method on the basis of feed-
forward multilayer neural networks with the back propa-
gation learning algorithm to predict PPII and investigated
the preprocessing and postprocessing of neural networks
prediction.

In this paper, we tried to apply the support vector machine
(SVM) to reveal the hidden correlation between PPII and lo-
cal sequence. The SVM method, initially proposed byVapnik
(1995), is a very effective method for general-purpose pattern
recognition. It is a learning system that uses a hypothetical
space of linear functions in a high dimensional feature space
trained with a learning algorithm based on an optimization
theory implementing a learning bias derived from statisti-
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2. Materials and methods

2.1. PDB List

The Protein Data Bank (PDB) (Berman et al., 2000)
code list was used in this work, which was provided
by a protein sequence culling server called PISCES
(http://www.fccc.edu/research/labs/dunbrack/pisces) (Wang
and Dunbrack, 2003). All structures in the list had a resolu-
tion better than 2.5̊A. Sequence identity between each pair
of the sequences in the list was less than 25%. TheR-factor
was less than 0.25. The list was generated on 2 January 2004.
The number of chains in each list was 2567.

2.2. Localization of PPII structures

The DSSP method (Kabsch and Sander, 1983) was
employed to compute the secondary structures of the
PDB files consistently. In this paper, we employed the
method ofAdzhubei and Sternberg (1993)and Siermala
et al. (2001)to localize the PPII structures. After various
experiments, the local sequence of 13-residue length is ap-
propriate (Siermala et al., 2001). In order to choose local
sequences for SVM, we used the windowing technique 1 de-
scribed bySiermala et al. (2001). The local sequence was
c ition,
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al learning. Intuitively, the SVM method learns the bou
ry between samples belonging to two classes by ma

he input samples into a high dimensional space, and
ng a separating hyper-plane in this space (seeFig. 1). This
yper-plane, termed optimal separating hyper-plane (O

s chosen in a way to maximize its distance from the c
st training samples. As a supervised machine learning
ology, the SVM approach is attractive because it is b
n an extremely well-developed statistical learning th
SLT) and has superior performance in practical applica
Vapnik, 1995, 1998). It has been widely used in biologic
elds, especially in prediction of protein structure (Cai et al.
000, 2002a,b, 2003; Ding and Dubchak, 2001; Hua and
001a,b; Zavaljevski et al., 2002; Sun et al., 2003; Kim
ark, 2004; Wang et al., 2004).

ig. 1. Two classes denoted by circles and disks, respectively, are
on-separable in the input space. SVM constructs the optimal sepa
yperplane (OSH) (continuous line) which maximizes the margin bet

wo classes by mapping the input space into a high dimensional spa
eature space. The mapping is determined by a kernel function. Su
ectors are the circle and disks crossed by the broken lines.
onsidered in the PPII class when the middlemost pos
.e. the seventh position, of the window was one pos
n the PPII structure (Fig. 2). Finally, from the PDB lis
ith sequence identity less than 25%, we gained 10,72
al sequences, which were considered in the PPII class
61,006 local sequences, which were considered in the
PII class, respectively. (The list and local sequence
vailable by E-mail.)

.3. Training and testing data sets

In this research, 20 residues were coded as
ectors composed of only 0 and 1 (A= 100000· · ·000,
= 010000· · ·000, · · ·, Y= 000000· · ·001). So each 13

esidue local sequence was denoted by a vector of
its. 1 and−1 denoted the PPII class and non-PPII cl

ig. 2. The grey positions indicate PPII structures. This windowing
ique accepts a local sequence of the exact window of 13-residue len

he PPII class if the local sequence’s middlemost position, i.e. the se
osition, was one position in the PPII structure.

http://www.fccc.edu/research/labs/dunbrack/pisces/
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Table 1
The numbers of the local sequences in the training and testing data set with
sequence identity less than 25%

Training set

PPII class 7152
Non-PPII class 7152

Total 14304

Testing set
PPII class 3576
Non-PPII class 3576

Total 7152

respectively. Because the non-PPII class local sequences
were much more numerous than the PPII class local se-
quences, the non-PPII class local sequences, whose number
was equal to that of the PPII class local sequences, were
randomly chosen from all. The final numbers of the local se-
quences in the training and testing data sets are summarized in
Table 1.

2.4. Implementation of SVM

We downloaded the SVMlight, (ftp://ftp-ai.cs.uni-
dortmund.de/pub/Users/thorsten/svmlight/current/svm
light windows.zip), which was an implementation of
Vapnik’s support vector machine for the problem of pattern
recognition, for the problem of regression, and for the
problem of learning a ranking function (Joachims, 1999). To
set a kernel on constructing one SVM binary classifier for
PPII/non-PPII class local sequences, we selected the poly-
nomial kernel function to train the SVM. The polynomial

kernel function was defined asK(�a, �b) = (s�a× �b+ c)
d

with
the parameterss, c, the default value in SVMlight, d= 2–8.

2.5. Prediction system assessment

To measure the performance of the SVM classifier, we
d

, pre-

lass,

class,
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ivity,
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Sensitivity= TP

TP+ FN

Total accuracy= TP+ TN

TP+ TN + FP+ FN

MCC = TP× TN − FP× FN√
(TP+ FN)(TP+ FP)(TN+ FP)(TN+ FN)

The jackknife/leave-one-out procedure is an objective and
rigorous testing procedure, but it is also very time-consuming,
so we set parameterx= 1 in SVMlight to efficiently compute
jackknife/leave-one-out estimates of the error rate, the sensi-
tivity, and the specificity.

This estimator is based on the general leave-one-out
method, but requires an-order-of-magnitude-less computa-
tion time due to particular properties of the SVM. In par-
ticular, it does not require actually performing re-sampling
and retraining, but can be applied directly after training the
learner on the training set (Joachims, 2000).

2.6. Computing Z-score

To investigate the correlation between the PPII struc-
ture formation and the different residue at different position
around the structure,Z-score was defined as:

Z
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S 4.51
S 8.98
T 8.41
efined four numbers, first:

TP: the number of local sequences observed PPII class
dicted PPII class (true positive);
TN: the number of local sequences observed non-PPII c
predicted non-PPII class (true negative);
FP: the number of local sequences observed non-PPII
predicted PPII class (false positive);
FN: the number of local sequences observed PPII c
predicted non-PPII class (false negative).

We can measure the performance by using sensit
pecificity, total accuracy, and Matthew’s correlation c
cient (MCC), which can provide a better summary of p
ormance in this case (Matthews, 1975; Baldi et al., 2000).

pecificity= TP

TP+ FP
i(a) = ni(a) −Npi(a)

σi(a)

i(a) =
√
Npi(a)[1 − pi(a)]

hereni(a) stood for the number of times residuea is located
t positioni; N stood for the total number of PPII class lo
equences;pi(a) stood for the probability residuea that is
ocated at positioni in all local sequences including PP
nd non-PPII class.σ i(a) stood for the standard deviatio

f Zi(a) > 0, the residuea at positioni is in favor of PPII
tructure formation, ifZi(a) < 0, unfavorable. IfZi(a) = 0, the
orrelation is not statistically significant.

. Results

.1. Prediction accuracy of SVM classifier

Success rates of correct prediction of the SVM classi
ith different parameterd for the independent testing data
re depicted inTable 2. The jackknife estimates of the to

able 2
esults of prediction for the independent testing dataset with sequenc

ity <25% and different SVMlight parameterd

2 3 4 5 6 7 8

pecificity (%) 69.84 71.11 73.19 74.19 74.54 74.53 7
ensitivity (%) 66.36 65.74 64.07 61.97 59.54 58.11 5
otal accuracy (%) 68.85 69.52 70.30 70.20 69.60 69.13 6

ftp://ftp-ai.cs.uni-dortmund.de/pub/users/thorsten/svm_light/current/svm_light_windows.zip
ftp://ftp-ai.cs.uni-dortmund.de/pub/users/thorsten/svm_light/current/svm_light_windows.zip
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Table 3
Estimates of jackknife testing with sequence identity <25% and different
SVMlight parameterd

d 2 3 4 5 6 7 8

Specificity (%) 70.44 71.66 73.18 74.18 74.75 74.51 73.18
Sensitivity (%) 66.89 65.25 63.59 60.95 59.31 58.53 56.35
Total accuracy (%) 69.41 69.72 70.14 69.87 69.64 69.25 67.85

Table 4
MCC for the independent testing dataset with sequence identity <25% and
different SVMlight parameterd

d MCC

2 0.377
3 0.391
4 0.409
5 0.410
6 0.400
7 0.392
8 0.380

accuracy, the sensitivity, and the specificity are depicted in
Table 3. MCC for the independent testing dataset different
SVMlight parameterd is depicted inTable 4.

3.2. Z-score

The distribution of theZ-scores for each amino acid as
a function of its position in the PPII segments in the down-
loaded PDB list is reported inFig. 3. Most of the values of
Z-scores were very close to each other, so most curves in the
figure overlapped each other. All the data could be found in
supplementary material.

3.3. Comparison with prediction results of a profile
hidden Markov model

We also set up a profile hidden Markov model of PPII
structure by the HMMER 2.3.1 package (Eddy, 1998). The
aligned PPII local sequences were used to build a model for
global alignment using the ‘hmmbuild’ program in the HM-
MER package. It was critical to tune the architecture prior
parameter since the default setting failed to give a model
with correct PPII structures. Those details would be described
in another paper. This method was also based on local se-
quences. The prediction results for the dataset with sequence

Fig. 3. Z-scores computed of different residues at different positions, re-
spectively, with the sequences identity less than 25%.

identity less than 25% are summarized inTable 5. From those
results, it was obvious that the SVM method performance
was better than the performance of profile hidden Markov
model.

4. Discussion

PPII conformation is a type of important but rare sec-
ondary structure of proteins. Although increasing amount of
research work on PPII has been reported, no accurate method
for predicting PPII segments was published. In this study,
we present a novel prediction method by SVM. Total accu-
racy for the independent testing set and estimate of jackknife
testing both reached approximately 70%. MCC could reach
about 0.4. The parameters of kernel function obviously influ-
enced the final performance of the SVM method. The best
results were obtained with SVMlight parameterd= 4. The
results obtained through this study indicated that the SVM
method would become a powerful tool for predicting PPII
conformation. If additional information was added to SVM
or more appropriate kernel function was adopted, combined
with other methods, the performance could be better.

It is difficult to compare our method with the neural net-
works method by Siermala et al. because we cannot obtain
s ch as
t etter
t s. The
a 40%.

T
T using

(%) MCC

C
.8 0.251
.6 0.284
.7 0.231
able 5
he prediction results for the dataset with sequence identity <25% by

Architecture prior parameter

0.90 0.95

Spa (%) Sea (%) Total accuracy (%) MCC Sp (%) Se

ut-off score
−7 73.9 29.1 59.4 0.236 73.7 28
−8 64.8 55.3 62.6 0.255 66.1 52
−9 54.8 88.4 57.8 0.197 56.3 82

a Sp stands for specificity; Se stands for sensitivity.
ome important parameters of their neural networks, su
he weights and biases. Their results appeared slightly b
han ours, but their datasets were much smaller than our
verage sequence identity of their sequences was 30–

the profile hidden Markov model of PPII structure

0.99

Total accuracy (%) MCC Sp (%) Se (%) Total accuracy (%)

59.3 0.233 77.6 26.6 59.5
62.8 0.261 68.5 50.7 63.7
59.3 0.209 58.2 77.9 60.9
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Table 6
Z-scores of residues, which were beyond the low/high threshold (−5/+5)

Favor of PPII Not favor of PPII

G4(5.378) P7(15.157) G7(−5.367)
G5(5.400) P8(20.423) G8(−7.252)
G11(5.196) P9(14.738) G9(−5.060)
P6(9.665) P10(8.436)

By convention,Xi (Z) stood for the residueX at positioni. The value in the
brackets was the computedZ-score.

Even the high threshold of 65% was applied to obtain maxi-
mum amount of data in their research (Siermala et al., 2001).
And the sequence identity between each pair of the sequences
in our datasets was less than 25%.

To describe the correlation between residues and PPII
structure,Z-scores were computed in this study. Similar work
was done bySiermala et al. (2001). They found that amino
acids G, H, L, N, P, S, V, and Y were prevalent in the PPII
structures, whereas G was under-represented by scrutinizing
frequencies of different amino acids in their selected data.
By spectrum of neural network, they again noticed that amino
acids G, D, N, Y, and W were under-represented in PPII struc-
tures (Siermala et al., 2003).

By convention,Xi(Z) stood for residueXat positioni. The
value in the bracket was the computedZ-score. FromFig. 3of
Z-score distribution, if the low/high threshold ofZ-score was
simply extended−5/+5, PPII-forming propensity of these
residues could be found clearly. The results were depicted in
Table 6. Z-score reflected the influence of the residue abun-
dance on PPII formation. From the computed results, P and
G were the two most important residues to PPII structure.
If the 4th position was G and the 6th–10th positions were
Ps, the PPII-forming propensity became high. If the seventh
and eighth positions were Gs, then the local sequence would
generally not be in a PPII conformation. So P was still very
i This
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Fig. 4. Z-scores computed of different residues at different positions, respec-
tively, with the predicted PPII and non-PPII structure sequences by SVM.

5. Summary

We presented here a SVM prediction method of poly-l-
proline type II conformation based on local sequence. The
parameter of SVM kernel function was important to the per-
formance of the method. The propensities of residues located
at different positions were also analyzed. By computingZ-
score, we found that P and G were the two most impor-
tant residues to PPII structure conformation. Our data are
useful in future studies of theoretical prediction of protein
structures.
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