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Abstract

In recent years, the poly-proline type Il (PPII) conformation has gained more and more importance. This structure plays vital roles in
many biological processes. But few studies have been made to predict PPIl secondary structures computationally. The support vector machine
(SVM) represents a new approach to supervised pattern classification and has been successfully applied to a wide range of pattern recognitior
problems. In this paper, we present a SVM prediction method of PPII conformation based on local sequence. The overall accuracy for both
the independent testing set and estimate of jackknife testing reached approximately 70%. Matthew’s correlation coefficient (MCC) could
reach 0.4. By comparing the results of training and testing datasets with different sequence identities, we suggest that the performance of this
method correlates with the sequence identity of dataset. The parameter of SVM kernel function was an important factor to the performance
of this method. The propensities of residues located at different positions were also analyzed. By cofgetirgsg, we found that P and G
were the two most important residues to PPII structure conformation.
© 2005 Elsevier Ltd. All rights reserved.

Keywords: Poly-L-proline type Il; Support vector machine; Local sequeEsgore; Protein structure

1. Introduction secondary structure. In recent years, however, it has become
known as surprisingly common and of the utmost impor-
The polyi-proline is assumed to adopt basically two dif- tance. This structure plays vital roles in processes such as
ferent helical conformations, i.e. type | and type Il polypro- signal transduction, transcription, cell motility, and the im-
line. Type | polyi-proline is a right-handed helix with an  mune response. PPII helices are major features of collagens
axial translation of 1.98 composed of 3.3 prolyl residues (Pauling and Corey, 19%and plant cell wall proteinderris
per turn, linked bycis-amide bonds and adopting backbone et al., 200). Proline-rich ligands of the cytoskeletal protein
dihedral angles of4, ¥, w) =(—83°, +158, 0°) (Traub and profiling (Mahoney et al., 1997as well as those of the SH3,
Shmueli, 1963 In theory, type | polye-proline is possible, ~ WW, and EVH1 protein interaction domains, are bound in
but was never detected in nature. Type |l polprgline is this conformationay et al., 200]. The peptide ligands of

a left-handed helix with an axial translation of 32@om- class Il MHC molecules are also bound in the PPII confor-
posed of three prolyl residues per turn, joined by transpeptidemation Jardetzky et al., 1996 The PPII helix is believed
bonds with backbone dihedral angles of ¢, w)=(-78, to be the dominant conformation for many proline-rich re-
+149, 180°) (Bochicchio and Tamburro, 20p2 gions of sequence (PRRg)V{liamson, 1994. Sequences

The polyi-proline type Il (PPII) conformation used to  notrich in proline, such as poly(lysine), poly(glutamate), and
be considered a relatively rare and apparently uninterestingpoly(aspartate) peptides, can also adopt this conformation
(Woody, 1992. Around 2% of all residues in known pro-
* Corresponding author. Tel.: +86 510 5880679; fax: +86 510 5869645, t€in structures are found in PPII helices at least four residues
E-mail addresswml_yh@yahoo.com.cn (M.-L. Wang). long (Adzhubei and Sternberg, 1993; Stapley and Creamer,
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1999. As many as 10% of all residues are found in the PPIl 2. Materials and methods

conformation, although not necessarily as part of PPII he-

lices (Sreerama and Woody, 1994PPIl helices have also  2.1. PDB List

been hypothesized to be a major component of a protein at

its denatured states, giving them a role in a most fundamen- The Protein Data Bank (PDB)Bérman et al., 2000

tal process\Vilson et al., 1996; Tiffany and Krimm, 1968; code list was used in this work, which was provided

Krimm and Tiffany, 1974; Kelly et al., 2001 by a protein sequence culling server called PISCES
Information of such important conformation cannot be de- (http://www.fccc.edu/research/labs/dunbrack/pis¢#gang

rived directly from amino acid sequences. Numerous studiesand Dunbrack, 20Q3All structures in the list had a resolu-

on PPIl conformation were reported, most of which were lab- tion better than 2.B. Sequence identity between each pair

oratory works. Few attempts have been made to predict PPllof the sequences in the list was less than 25%. RHfector

secondary structures computationajermala et al. (2000,  was less than 0.25. The list was generated on 2 January 2004.

2001, 2003)developed a method on the basis of feed- The number of chains in each list was 2567.

forward multilayer neural networks with the back propa-

gation learning algorithm to predict PPIl and investigated 2 o | gcalization of PPII structures

the preprocessing and postprocessing of neural networks

prediction. The DSSP methodK@bsch and Sander, 1983vas

In this paper, we tried to apply the support vector machine employed to compute the secondary structures of the
(SVM) to reveal the hidden correlation between PPIl and lo- ppp files consistently. In this paper, we employed the
cal sequence. The SVM method, initially proposed/apnik method of Adzhubei and Sternberg (1993)nd Siermala
(1995) is a very effective method for general-purpose pattern gt g). (2001)to localize the PPII structures. After various
recognition. It is a learning system that uses a hypothetical experiments, the local sequence of 13-residue length is ap-
space of linear functions in a high dimensional feature Spacepropriate Giermala et al., 2001 In order to choose local
trained with a learning algorithm based on an optimization sequences for SVM, we used the windowing technique 1 de-
theory implementing a learning bias derived from statisti- g¢riped bySiermala et al. (2001)The local sequence was
cal learning. Intuitively, the SVM method learns the bound- considered in the PPII class when the middlemost position,
ary between samples belonging to two classes by mapping; e. the seventh position, of the window was one position
the input samples into a high dimensional space, and seekin the PPII structureRig. 2). Finally, from the PDB list
ing a separating hyper-plane in this space (sSee 1). This with sequence identity less than 25%, we gained 10,728 lo-
hyper-plane, termed optimal separating hyper-plane (OSH), ca| sequences, which were considered in the PPII class, and
is chosen in a way to maximize its distance from the clos- 561 006 local sequences, which were considered in the non-

est training samples. As a supervised machine leamning tech-ppy| class, respectively. (The list and local sequences are
nology, the SVM approach is attractive because it is basedyyajlaple by E-mail.)

on an extremely well-developed statistical learning theory
(SLT) and has superior performance in practical applications
(Vapnik, 1995, 1998 It has been widely used in biological
fields, especially in prediction of protein structu€zef et al.,
2000, 2002a,b, 2003; Ding and Dubchak, 2001; Hua and Sun
2001a,b; Zavaljevski et al., 2002; Sun et al., 2003; Kim and
Park, 2004; Wang et al., 20p4

2.3. Training and testing data sets

In this research, 20 residues were coded as 20-D
‘'vectors composed of only 0 and JA£100000--000,
C=010000--000, ---, Y=000000--001). So each 13-
residue local sequence was denoted by a vector of 260
bits. 1 and—1 denoted the PPII class and non-PPIl class,
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Fig. 1. Two classes denoted by circles and disks, respectively, arelinear 1 2 3 4 5 6 7 & 9 10 11 12 13
non-separable in the input space. SVM constructs the optimal separating

hyperplane (OSH) (continuous line) which maximizes the margin between Fig. 2. The grey positions indicate PPII structures. This windowing tech-
two classes by mapping the input space into a high dimensional space, thenique accepts a local sequence of the exact window of 13-residue length in
feature space. The mapping is determined by a kernel function. Support the PPII class if the local sequence’s middlemost position, i.e. the seventh
vectors are the circle and disks crossed by the broken lines. position, was one position in the PPII structure.
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Table 1 o TP
The numbers of the local sequences in the training and testing data set withSensitivity= TP+ EN
sequence identity less than 25% +
Training set TP 4 TN
PPII class 7152 Total accuracy= TP+ TN+ FP+ FN
Non-PPII class 7152
Total 14304 MCC — TP x TN — FPx FN
. ~ J(TP+ FN)(TP+ FP)(TN+ FP)(TN+ FN)
Testing set
PPII class 3576 The jackknife/leave-one-out procedure is an objective and
Non-PPIl class 3576 rigorous testing procedure, butitis also very time-consuming,
Total 7152 so we set parameter= 1 in SVMi9Mt to efficiently compute

jackknife/leave-one-out estimates of the error rate, the sensi-
. tivity, and the specificity.
respectively. Because the non-PPII class local sequences This estimator is based on the general leave-one-out

were much more numerous than the PPII class local se- . .
method, but requires an-order-of-magnitude-less computa-
guences, the non-PPII class local sequences, whose numbe[r

ion time due to particular properties of the SVM. In par-
was equal to that of the PPII class local sequences, WeCcular, it does not require actually performing re-samplin
randomly chosen from all. The final numbers of the local se- ' g yp 9 piing

: . . .~ .and retraining, but can be applied directly after training the
guences inthe training and testing data sets are summarized in - .
Table 1 learner on the training seldachims, 2000

2.4. Implementation of SVM 2.6. Computing Z-score
To investigate the correlation between the PPII struc-

ght A .
We downloaded the SVM™, ~(ftp://ftp-ai.cs.uni ture formation and the different residue at different position

dortmund.de/pub/Users/thorsten/slight/current/svm ) i
: . . . . . around the structur&-score was defined as:
light. windows.zip), which was an implementation of
Vapnik’s support vector machine for the problem of pattern Zi(a) = ni(a) — Npi(a)
recognition, for the problem of regression, and for the =" 7 oi(a)
problem of learning a ranking functioddachims, 1999 To
set a kernel on constructing one SVM binary classifier for 4,(4) = \/Np:(a)[1 — pi(a)]
PPIl/non-PPIl class local sequences, we selected the poly- _ o
nomial kernel function to train the SVM. The polynomial ~Whereni(a) stood for the number of times residaes located
. . S L= d . at positioni; N stood for the total number of PPII class local
kernel function was defined &4a, b) = (sa x b+ ¢) with - . :
. wht sequencesp;(a) stood for the probability residua that is
the parameters, c, the default value in SVI#"t, d=2-8. L ) .
located at positiori in all local sequences including PPII
and non-PPIll classri(a) stood for the standard deviation.
If Z(a)>0, the residue at positioni is in favor of PPII
structure formation, i%;(a) <0, unfavorable. IZ;(a) =0, the
correlation is not statistically significant.

2.5. Prediction system assessment

To measure the performance of the SVM classifier, we
defined four numbers, first:

TP: the number of local sequences observed PPII class, pre-

dicted PPII class (true positive); 3. Results

TN: the number of local sequences observed non-PPlII class,

predicted non-PPII class (true negative); 3.1. Prediction accuracy of SVM classifier

FP: the number of local sequences observed non-PPlI class,

predicted PPII class (false positive); Success rates of correct prediction of the SVM classifiers
FN: the number of local sequences observed PPII class,with different parameted for the independent testing dataset
predicted non-PPII class (false negative). are depicted ifTable 2 The jackknife estimates of the total

We can measure the performance by using sensitivity, 1. »
s:p-ecificity, total accuracy, anq Matthew's correlation coef- resuits of prediction for the independent testing dataset with sequence iden-
ficient (MCC), which can provide a better summary of per- tity <25% and different SVNE" parameted
formance in this caseMatthews, 1975; Baldi et al., 200 d 2 3 4 5 6 7 8

Specificity (%) 69.84 7111 7319 7419 7454 7453 7451
L T Sensitivity (%) 66.36 6574 64.07 61.97 59.54 5811 58.98
Specificity= —=——= T FP Total accuracy (%) 68.85 69.52 70.30 70.20 69.60 69.13 68.41
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Table 3 25
Estimates of jackknife testing with sequence identity <25% and different 20 ol

SVMIight parameted " /\\
d 2 3 4 5 6 7 8 @10

Specificity (%) 70.44 7166 73.18 74.18 7475 7451 73.18
Sensitivity (%) 66.89 65.25 63.59 60.95 59.31 5853 56.35
Total accuracy (%) 69.41 69.72 70.14 69.87 69.64 69.25 67.85

Z-sco
g
=

Table 4 Position
MCC for the independent testing dataset with sequence identity <25% and — & F —a—L —a—1 —e—M —e—V
different SYM9" parameted — %S —E—P =ehe=T ceclhrrA cegerY
ceche-eH .....)(....Q ven@eae N seepeea K ceeglee: D
d MccC ---a--E ——-—C —---W —-a-R G
2 0.377
3 0.391 Fig. 3. Z-scores computed of different residues at different positions, re-
4 0.409 spectively, with the sequences identity less than 25%.
5 0.410
6 0.400 . . . .
7 0.392 identity less than 25% are summarizedable 5 From those
8 0.380 results, it was obvious that the SVM method performance

was better than the performance of profile hidden Markov

model.
accuracy, the sensitivity, and the specificity are depicted in

Table 3 MCC for the independent testing dataset different

SVMIi9ht parameted is depicted inTable 4 4. Discussion

3.2. Z-score PPII conformation is a type of important but rare sec-
ondary structure of proteins. Although increasing amount of
The distribution of theZ-scores for each amino acid as research work on PPII has been reported, no accurate method
a function of its position in the PPII segments in the down- for predicting PPII segments was published. In this study,
loaded PDB list is reported Iﬁlg 3. Most of the values of we present a novel prediction method by SVM. Total accu-
Z-scores were very close to each other, so most curves in theracy for the independent testing set and estimate of jackknife
figure overlapped each other. All the data could be found in testing both reached approximately 70%. MCC could reach

supplementary material. about 0.4. The parameters of kernel function obviously influ-
enced the final performance of the SVM method. The best

3.3. Comparison with prediction results of a profile results were obtained with SV parameterd=4. The

hidden Markov model results obtained through this study indicated that the SVM

method would become a powerful tool for predicting PPII

We also set up a profile hidden Markov model of PPIl conformation. If additional information was added to SVM
structure by the HMMER 2.3.1 packageddy, 1998. The or more appropriate kernel function was adopted, combined
aligned PPII local sequences were used to build a model forwith other methods, the performance could be better.
global alignment using the ‘hmmbuild’ program in the HM- It is difficult to compare our method with the neural net-
MER package. It was critical to tune the architecture prior works method by Siermala et al. because we cannot obtain
parameter since the default setting failed to give a model some important parameters of their neural networks, such as
with correct PPII structures. Those details would be describedthe weights and biases. Their results appeared slightly better
in another paper. This method was also based on local sethan ours, buttheir datasets were much smaller than ours. The
quences. The prediction results for the dataset with sequenceaverage sequence identity of their sequences was 30-40%.

Table 5
The prediction results for the dataset with sequence identity <25% by using the profile hidden Markov model of PPII structure

Architecture prior parameter

0.90 0.95 0.99

Sp* (%) Sé (%) Total accuracy (%) MCC Sp (%) Se (%) Total accuracy (%) MCC Sp (%) Se (%) Total accuracy (%) MCC

Cut-off score

-7 739 29.1 59.4 0.236 73.7 28.8 59.3 0.233 77.6 26.6 59.5 0.251
—8 64.8 55.3 62.6 0.255 66.1 52.6 62.8 0.261 68.5 50.7 63.7 0.284
-9 548 88.4 57.8 0.197 56.3 82.7 59.3 0.209 58.2 77.9 60.9 0.231

2 Sp stands for specificity; Se stands for sensitivity.
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Table 6 25
Z-scores of residues, which were beyond the low/high thresheid5) 20 PN
Favor of PPII Not favor of PPII 15 /,W/ \\El\
o
G4(5.378) P(15.157) G(—5.367) g
Gs(5.400) R(20.423) G(—7.252) N\
G11(5.196) R(14.738) G(—5.060)
P5(9.665) Ro(8.436)
By convention X;(Z) stood for the residu¥ at positioni. The value in the
brackets was the comput&escore. Position
—a—F —4— —A—] —%—M —6—V
. . ) ] —%—5 —8B—pP —-A—T --8-A --4--Y
Even the high threshold of 65% was applied to obtain maxi- o X -_-g-_'\r:, e o e o - 2

mum amount of data in their resear&idrmala et al., 2001
And the sequence identity between each pair of the sequence
in our datasets was less than 25%.

To describe the correlation between residues and PPII
structureZ-scores were computed in this study. Similar work
was done bySiermala et al. (2001)They found that amino

acids G, H, L, N, P, S, V, and ¥ were prevalent in the PPIl presented here a SVM prediction method of poly-

structures, whereas G was under-represented by scruumzmgproline type Il conformation based on local sequence. The

féequenf[:les 0]; dlfferelnt sﬂr?mko tﬁuds mlthelrt. se:jetﬁe:j dqta. parameter of SVM kernel function was important to the per-
y Spectrum ot neural network, th€y again hoticedthat amino ¢, 6 of the method. The propensities of residues located

?mds G_’ D, N’lY’ a:n(lj V\égve?:e under-representedin PPl struc- at different positions were also analyzed. By compuffrg
ur(;s Glermatge a tQ df idu at position. Th score, we found that P and G were the two most impor-
y conventionX;(Z) stood for residu& at positioni. The tant residues to PPII structure conformation. Our data are

value mthe b_racl_<etvyas the compuﬁdcore. Fronfrig. 3of useful in future studies of theoretical prediction of protein
Z-score distribution, if the low/high threshold &fscore was structures

simply extended-5/+5, PPII-forming propensity of these
residues could be found clearly. The results were depicted in
Table 6 Z-score reflected the influence of the residue abun-
dance on PPII formation. From the computed results, P and
G were the two most important residues to PPII structure.
If the 4th position was G and the 6th—10th positions were
Ps, the PPII-forming propensity became high. If the seventh
and eighth positions were Gs, then the local sequence would
generally not be in a PPII conformation. So P was still very
important to PPII structure though not indispensable. This
was consistent with previous work Biucker et al. (2003)P

has the highest measured PPI-forming propensity. G propen- Supplementary data associated with this article can be

sity was correlated with its location. PPII-forming propensity found, in the online version, aloi:10.1016/j.compbiolchem.
of G was relatively high when located the immediately pre- 5, ’02 002 '

ceding position of PPII and low when located the middle
position. This was not entirely consistent with the result ob-
tained byRucker et al. (2003)But we are not able to scan
the datasets simply against a PROSITE-like motif such as
XXXGXPPPPP(P' D)(P' D) or XXXGXPPPPP(P' D)(P' D, Adzhubei, A.A., Sternberg, M.J.E., 1993. Left-handed polyproline Il he-
E) sinceZ-score simply reflects PPII-forming propensity of lices commonly occur in globular proteins. J. Mol. Biol. 229, 472-493.
the residues at different positions and does not indicates theBaldi, P.,, Brunak, S., Chauvin, Y., Andersen, C.A.F., Nielsen, H., 2000.

existence of some motif which consists of those residues with ~ Assessing the accuracy of prediction algorithms for classification: an
the highestZ-score overview. Bioinformatics 16, 412—-424.

. . . Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weis-
We also computed-scores of different residues at differ- sig, H., Shindyalov, I.N., Bourne, P.E., 2000. The protein data bank.

ent positions, respectively, with the predicted PPIl and non-  Nucleic Acids Res. 28, 235-242.
PPIl structure sequences by SVM. It was found that the distri- Bochicchio, B., Tamburro, A.M., 2002. Polyproline Il structure in pro-
bution of theZ—scoreleig. 4) was similar to that oP-scores teins: identification by chiroptical spectroscopies, stability, and func-

. . : . tions. Chirality 14, 782-792.
CompUted with all the sequencesin the ||§tj._(. 3)' This sug Cai, Y.D., Lin, S.L., Chou, K.C., 2003. Support vector machines for pre-
gested that the SVM method had grasped the character of the diction of protein signal sequences and their cleavage sites. Peptides

PPII class local sequences. 24, 159-161.

?—ig. 4. Z-scores computed of different residues at different positions, respec-
tively, with the predicted PPII and non-PPII structure sequences by SVM.

5. Summary
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