
A Method of Microarray Data Storage Using Array Data Type

Lam C. Tsoia and W. Jim Zhengb,*
aBioinformatics Graduate Program, Hollings Cancer Center, Medical University of South Carolina, 135
Cannon Street, Suite 303, Charleston, SC 29425

bDepartment of Biostatistics, Bioinformatics and Epidemiology, and Bioinformatics Core Facility, Hollings
Cancer Center, Medical University of South Carolina, 135 Cannon Street, Suite 303, Charleston, SC 29425

Abstract
A well-designed microarray database can provide valuable information on gene expression levels.
However, designing an efficient microarray database with minimum space usage is not an easy task
since designers need to integrate the microarray data with the information of genes, probe annotation,
and the descriptions of each microarray experiment. Developing better methods to store microarray
data can greatly improve the efficiency and usefulness of such data. A new schema is proposed to
store microarray data by using array data type in an object-relational database management system
– PostgreSQL. The implemented database can store all the microarray data from the same chip in an
array data structure. The variable length array data type in PostgreSQL can store microarray data
from same chip. The implementation of our schema can help to increase the data retrieval and space
efficiency.

Keywords
Microarray; database schema; array data type; PostgreSQL

1. Introduction
The number of available public microarray databases is dramatically increasing as the cost of
computer hardware decreases (Galperin 2006). However, the development of a good
microarray database can only be achieved through a well-designed relational schema, which
helps the system to manage the data effectively, and increases the data retrieval speed. In current
microarray database (Ball et al. 2005; Cheung et al. 2002; Killion et al. 2003; Sherlock et al.
2001), it is common for a relational schema of a microarray database to consist of tables to
store the accession number and description of gene (GENE table), the description of the chip
(CHIP table), the probe name and the expression value (DATA table), and the experiment
information (EXPERIMENT table). The schemas for most of the databases would tend to store
the probe's expression value of each experiment in a record (a row) in the table DATA. For
instance, in the Stanford (Ball et al. 2005; Sherlock et al. 2001) and Longhorn microarray
databases (Killion et al. 2003), each expression value identified by the experiment and the
probe set (probe's name) is stored as a record (each Expression Value Per Record, EVPR). For

* Corresponding author. Tel: +1 843 876-1123, Fax: +1 843 876-1126, Email addresses: Lam C. Tsoi – E-mail: tsoi@musc.edu, W. Jim
Zheng* – E-mail: zhengw@musc.edu.
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Comput Biol Chem. Author manuscript; available in PMC 2009 July 13.

Published in final edited form as:
Comput Biol Chem. 2007 April ; 31(2): 143–147. doi:10.1016/j.compbiolchem.2007.01.004.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



example, if we use Y98 (Affymetrix), a chip with 9335 probe sets to study the gene expression
of yeast (Saccharomyces cerevisiae), performing 8 experiments will yield 9335×8=74680
records in the table DATA. The exponential growth of microarray data will eventually makes
the table extremely large and becomes unmanageable (Sarkans et al. 2005). As a result,
alternative method has been proposed in ArrayExpress to store expression values in NetCDF
format and keep the whole microarray data as BLOBs in the database (Sarkans et al. 2005). In
the schema like SMD, for a researcher to query all the expression values of a particular probe
set such as AFFX-MurIL2 from Y98, the system would have to run through each experiment
done on the Y98 to find the correct probe set. On the other hand, the query has to go through
the BLOBs in NetCDF format and find the right record when query ArrayExpress database,
or the NetCDF has to be pre-computed to store expression values in the data warehouse. Since
the experiments performed using the same chip will have the same number of records, here we
propose a new schema by using the array data type to store the expression values of microarray
experiments, which will increase the efficiency of space usage and data retrieval.

2. Material and Methods
Our database is implemented in PostgreSQL, an object-relational open-source database
management system (DBMS) that can be freely downloaded at http://www.postgresql.org/. In
order to compare the performances of EVPR and our proposed array-data type schemas, we
created the tables and attributes that would be necessary for each type of schema (Results), and
uploaded all the information of chip, probset, and gene, and the experimental results to both
schemas. The two databases were implemented using PostgreSQL in a PC with Pentium(R) 4
CPU (2.4GHz) and 1.00GB of ram. Microarray data from eight experiments of chip Y98 were
used, and another seven experiments with artificially generated experiment data (by random
number) were added. We also included two additional chips (called Y99 and C50), which also
have 9335 probsets, with 15 (for Y99) and 20 (for C50) sets of artificially generated experiment
data. The overview of the number of records needed for each table of the two schemas is shown
in Table 1. We tested the performance of our schema by comparing the query times of retrieving
different types of query to that of the schema storing each expression value per record (EVPR),
and the core tables for this schema is shown in Fig. 1B. The SQL commands used to test the
databases' performance are shown in Table 2.

3. Results
3.1. Microarray data storing in array data type schema

PostgreSQL supports most SQL commands and different data types, including array data type.
In PostgreSQL, array data type can have a variable length and allow index access, so it can be
used efficiently to store data. Figure 1A shows the relational diagram of the schema, and it
consists of four tables: MICROARRAY, CHIP, GENE and EXPERIMENT. In our schema, the
table MICROARRAY stores all the expression values from a probe set as one record, so Y98
will only have 9335 records in the table. Therefore, the number of records corresponding to a
chip is the same as the number of probes of that chip, regardless of the number of experiments
performed using the chip. The data type of the attribute MICROARRAY_DATA is a one-
dimensional array that stores the expression values from all experiments done on the chip.
Therefore, if we have 8 experiments done on a chip, each record array for the attribute
MICROARRAY_DATA will have 8 values, one from each experiment. We would expect
different chips to be used different numbers of time, and the PostgreSQL can accommodate
this by allowing attributes of a table to be defined as a variable-length array data type. As a
result, the array for MICROARRAY_DATA for each record in the table will have different
array lengths. In Figure 1C, the left table shows 3 example records from table
MICROARRAY. The first two records are from two probes of Y98. If there were 8 experiments

Tsoi and Zheng Page 2

Comput Biol Chem. Author manuscript; available in PMC 2009 July 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.postgresql.org/


done on this chip, there are 8 array entries in the attribute MICROARRAY_DATA. Let Y99
be another chip we have in our database, and it has a probe named Y99_probe_1. Assuming
only 3 experiments were done on this chip; we thus have 3 array entries in
MICROARRAY_DATA for the Y99's record.

In Figure 1C, the right table shows a portion of the table EXPERIMENT. Each record in the
table EXPERIMENT is defined by the primary key EXPERIMENT_ID, so the first 8 records
from this table correspond to chip Y98. In this table, the attribute INDEX could be understood
as the “index number” of a particular experiment data on MICROARRAY_DATA, and is used
to retrieve the corresponding array entry. The 8 records in the table EXPERIMENT would have
the INDEX filled with 0-7 respectively (since the array entry starts with 0). If a researcher
wants to retrieve all the data from an experiment using Y98, then the system will use the INDEX
and CHIP_ID (i.e. Y98) from the table EXPERIMENT to query the corresponding entry of
MICROARRAY_DATA in the table MICROARRAY. For example, if the researcher wants to
query all the expression values in the Y98's experiment Wt-4-2. The SQL command will be:

select (MICROARRAY. PROBSET_ID, MICROARRAY. MICROARRAY_DATA
[EXPERIMENT. INDEX]) from MICROARRAY, EXPERIMENT where MICROARRAY.
CHIP_ID = EXPERIMENT. CHIP_ID and EXPERIMENT. EXP_ID= ‘Wt-4-2’;

Note that we now have “one to many” relationships for tables pairs CHIP--MICROARRAY
and CHIP--EXPERIMENT. This is because each record in the table MICROARRAY is derived
from one record in CHIP, but is composed of many experiments. Also, each record in the table
EXPERIMENT uses one chip, and it appears in many records in the table MICROARRAY.

3.2. Practical usages of array data type schema
Another useful query is to identify all the genes in the database that has an expression value
greater than a threshold. The data can be queried out as follow:

Select MICROARRAY.CHIP_ID, PROBSET_ID, EXP_ID, GENE_ID,
MICROARRAY_DATA[EXPERIMENT.INDEX] from MICROARRAY, EXPERIMENT
where MICROARRAY.CHIP_ID=EXPERIMENT.CHIP_ID and MICROARRAY_DATA
[EXPERIMENT.CHIP_ID] > x.

In this case all the genes with expression value greater than x will be selected. The uniqueness
of each entry is identified by the combination of CHIP_ID, EXPERIMENT_ID and
PROBSET_ID.

The removal of records in the database is also straightforward. Since the entries in the array
are only meaningful with valid index and experiment information from the EXPERIMENT
table. Deleting an entry in the EXPERIMENT table will wipe out the possibility of using the
corresponding expression value stored in the array data type in the MICROARRAY table. An
additional auxiliary table can be used to keep track of deleted index value for each chip type.
When a new experiment result enters into the database, the entry can recycle the removed index
in the EXPERIMENT table, and update the value in the corresponding field of array data type
in the MICROARRAY table. Therefore, only minimum operation is needed and it won't affect
any other entries in either the MICROARRAY or EXPERIMENT table.

3.3. Efficiency in querying data
The result of the query time is shown in fig. 2, and it suggests that our schema is more efficient
when probe annotations are included in the query results (Query 1, 3, 4b), which are common
when doing microarray analysis. Query 3b retrieve the expression values that are greater than
a threshold (without the probe annotation), and the array type schema (although it has to go

Tsoi and Zheng Page 3

Comput Biol Chem. Author manuscript; available in PMC 2009 July 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



through iterations in MICROARRAY_DATA) is almost as efficient as in EVPR (which is just
searching record by record). The data we can retrieve from query 4 is well-suited for doing
microarray analysis from different experimental data, since every row is showing all the
experimental values of a given probe. Although the index of each experiment has to be known
before doing this query, researchers would not need to structure the output again as in the query
4b. However, it is not easy for EVPR to produce data directly like this as in query 4.

4. DISCUSSION
The implementation of the microarray database using our proposed model requires the DBMS
to support array data type. Out of the most commonly used DBMS of microarray databases,
SQL server and MySQL do not support this data type while PostgreSQL and Oracle now
support variable-length array. By using array data type to store all the experimental results of
the probe, the storage size and the performance of the database can be greatly reduced by
keeping annotation and expression value in the same table. This increased efficiency makes
this approach highly suitable for a research community that wants to develop specific
microarray database at small or large scale. Processing queries will also be more efficient since
the number of records in the table MICROARRAY is minimized, and accessing the array by
index is very fast (Fig. 2). Also, the variable-length array property supported by the DBMS is
well-suited to our model since we can allow chips with different demands (number of
experiments done on the chip) to be stored in the same database. These measures are important
for microarray databases, since the use of such databases typically involves retrieving large
amounts of data by joining different tables for further analysis. In addition, storing normalized
and analyzed data in our relational model will allow flexible comparisons across different chips
or platforms at individual gene levels.

As pointed out by Stoeckert et al. (Stoeckert et al. 2002), it is essential for researchers to have
a detailed understanding of the database structures if they want to import the data from other
databases to their local database. Our proposed relational schema is easy to understand, as the
major tables only consist of CHIP, GENE, EXPERIMENT, and MICROARRAY. Each record
in the table MICROARRAY can stand alone as a unique probe set (independent of the
experiments done on it), and the attribute INDEX acts as a key feature in our model to link the
table EXPERIMENT and MICROARRAY. For chips that have existing records, new data can
be uploaded to the database by adding new entries to MICROARRAY_DATA.

In the EVPR model, the common primary keys for table that stores the expression data are the
EXPERIMENT_ID and PROBESET_ID, which defines one expression value in each record.
Since it is redundant to store the descriptions of probes in this table, table PROBE (see Fig.
1B) would be needed to store all the probes' descriptions. This model slows down the retrieval
process if we query all the readings and descriptions of the probes in a chip (see Fig. 2 queries
1, 3, 4b), since it requires information from two tables (Data and Probe), and the computer
system has to search and join the information for each record. On the contrary, we store the
expression values and the descriptions of probes in the same table in our relational model.
Therefore, the system does not have to go through the joining process, and this effectively
increases the querying speed.

Acknowledgments
We would like to thank Chuming Chen for providing the technical support, Annie Simpson and Dr. Wenle Zhao for
the valuable advice and suggestions. We also would like to thank Dr. Ashley Cowart for providing microarray data
to populate our relational model in PostgreSQL. This work was partly supported by grants GC-3609-04-43766CM,
and by a Hollings Cancer Center/Medical University of South Carolina Department of Defense grant “Translational
Research on Cancer Control and Related Therapy” (Subcontract GC-3319-05-4498CM). L.C.T. is supported by NLM
training grant 5-T15-LM007438-02.

Tsoi and Zheng Page 4

Comput Biol Chem. Author manuscript; available in PMC 2009 July 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



References
Ball CA, Awad IA, Demeter J, Gollub J, Hebert JM, Hernandez-Boussard T, Jin H, Matese JC, Nitzberg

M, Wymore F, Zachariah ZK, Brown PO, Sherlock G. The Stanford Microarray Database
accommodates additional microarray platforms and data formats. Nucleic Acids Res 2005;33:D580–
582. [PubMed: 15608265]

Cheung KH, White K, Hager J, Gerstein M, Reinke V, Nelson K, Masiar P, Srivastava R, Li Y, Li J,
Zhao H, Li J, Allison DB, Snyder M, Miller P, Williams K. YMD: a microarray database for large-
scale gene expression analysis. Proc AMIA Symp 2002:140–144. [PubMed: 12463803]

Galperin MY. The Molecular Biology Database Collection: 2006 update. Nucleic Acids Res 2006;34:D3–
5. [PubMed: 16381871]

Killion PJ, Sherlock G, Iyer VR. The Longhorn Array Database (LAD): an open-source, MIAME
compliant implementation of the Stanford Microarray Database (SMD). BMC Bioinformatics
2003;4:32. [PubMed: 12930545]

Sarkans U, Parkinson H, Lara G, oezcimen A, Sharma A, Abeygunawardena N, Contrino S, Holloway
E, Rocca-Serra P, Mukherjee G, Shojatalab M, Kapushesky M, Sansone S, Farne A, Rayner T, Brazma
A. The ArrayExpress gene expression database: a software engineering and implementation
perspective. Bioinformatics 2005;21:1495–1501. [PubMed: 15564302]

Sherlock G, Hernandez-Boussard T, Kasarskis A, Binkley G, Matese JC, Dwight SS, Kaloper M, Weng
S, Jin H, Ball CA, Eisen MB, Spellman PT, Brown PO, Botstein D, Cherry JM. The Stanford
Microarray Database. Nucleic Acids Res 2001;29:152–155. [PubMed: 11125075]

Stoeckert CJ Jr, Causton HC, Ball CA. Microarray databases: standards and ontologies. Nat Genet
2002;32(Suppl):469–473. [PubMed: 12454640]

Tsoi and Zheng Page 5

Comput Biol Chem. Author manuscript; available in PMC 2009 July 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1. Using array data type to store microarray data
The top shows the schemas of the microarray databases: A) is the schema that uses array data
type; B) is the schema that stores expression value per row (EVPR) C) A diagram to illustrate
how microarray data are stored in the array data type schema. The left table is the table
MICROARRAY, and the table EXPERIMENT is on the right. In the table MICROARRAY, two
example probes from chip Y98 and one example probe from chip Y99 are shown. The attribute
MICROARRAY_DATA is an array data type, with variable array length. The table
EXPERIMENT shows the eight experiments done on Y98 and three experiments done on Y99.
The attributes EXP_DESCRIPTION and EXP_DATE are not shown here. The arrows show
the relationship between the two tables. For the probes from chip Y98, the first entries in
MICROARRAY_DATA correspond to the experiment Wt-4-1; and for Y99 the third entries
of MICROARRAY_DATA are the expression data from experiment Y99-exp-3.

Tsoi and Zheng Page 6

Comput Biol Chem. Author manuscript; available in PMC 2009 July 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2. Performance comparisons between the two schemas
The query time needed for each type of query are plotted to direct compare the performance
of two schemas. The array based schema is either comparable to or better than the EVPR based
schema. The core tables used and the number of rows in each table are shown in Table 1, and
the types of queries (1, 2, 3, 3b, 4 and 4b) are shown in Table 2. Each query was performed 5
times and the standard errors were calculated.

Tsoi and Zheng Page 7

Comput Biol Chem. Author manuscript; available in PMC 2009 July 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Tsoi and Zheng Page 8

Table 1
Simulated data in the PostgreSQL for two different schemas
The core tables in each of the schema and the number of records needed to store the data are shown

Table Number of Rows

Expression Per Row CHIP 3

PROBE 28005

EXPERIMENT 50

GENE 6776

DATA 466750

Array type CHIP 3

EXPERIMENT 50

GENE 6776

MICROARRAY 28005

Comput Biol Chem. Author manuscript; available in PMC 2009 July 13.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Tsoi and Zheng Page 9

Table 2
SQL queries used to compare the performance of two schemas

Query SQL for Array Type SQL for EVPR

1. Retrieve the (chip_id, probset_id,
gene_id, expression values,
probe_description, experiment_id)
of given genes over ALL
experiments:

select (microarray.chip_id, probset_id, gene_id,
microarray_data[index], probe_description, exp_id) from
microarray, experiment where (gene_id=’YAL005C’ or
gene_id=’YAL001C’ or gene_id=’NC_001142’) and
microarray.chip_id=experiment.chip_id;

select (smd_data.chip_id, smd_data.probset_id, gene_id,
microarray_data, probe_description, exp_id) from smd_data,
smd_probe where (smd_probe.gene_id=’YAL005C’ or
smd_probe.gene_id=’YAL001C’ or
smd_probe.gene_id=’NC_001142’) and
smd_probe.probset_id=smd_data.probset_id and
smd_probe.chip_id=smd_data.chip_id;

2. Retrieve the (chip_id, probset_id,
gene_id, expression values,
probe_description, experiment_id)
over 7 experiments (of chip Y98)
where the probe_description has the
key word “protein membrane”

select (microarray.chip_id, probset_id, gene_id,
microarray_data[index], probe_description, exp_id) from
microarray, experiment where exp_id like ’Y98-Time-%’
and probe_description like ’%membrane protein%’ and
microarray.chip_id=experiment.chip_id;

select (smd_data.chip_id, smd_data.probset_id, gene_id,
microarray_data, probe_description, exp_id) from smd_data,
smd_probe where exp_id like ’Y98-Time-%’ and
probe_description like ’%membrane protein%’ and
smd_probe.probset_id=smd_data.probset_id and
smd_probe.chip_id=smd_data.chip_id;

3. Retrieve the probe that has
expression value greater than a
threshold

select (microarray.chip_id, probset_id, microarray_data
[index], probe_description, exp_id) from microarray,
experiment where
microarray.chip_id=experiment.chip_id and
microarray_data[index] > 1500;

select (smd_data.chip_id, smd_data.probset_id,
microarray_data, probe_description, exp_id) from smd_data,
smd_probe where microarray_data > 1500 and
smd_probe.probset_id=smd_data.probset_id and
smd_probe.chip_id=smd_data.chip_id;

3b. Retrieve the probe that has
expression value greater than a
threshold (the display excluds
probe_description)

select (microarray.chip_id, probset_id, microarray_data
[index], exp_id) from microarray, experiment where
microarray.chip_id=experiment.chip_id and
microarray_data[index] > 1500;

select (chip_id, probset_id, microarray_data, exp_id) from
smd_data where microarray_data > 1500;

4. To retrieve 7 experiments data
from a chip for microarray analyses
(each row shows the expression
values of a probe from all 7
experiments). It requires the users
to get the index of the experiments
first.

select (chip_id, probset_id, microarray_data[8],
microarray_data[9], microarray_data[10],
microarray_data[11], microarray_data[12],
microarray_data[13], microarray_data[14],
probe_description) from microarray where
chip_id=’Y98’;

Not available

4b. To retrieve 7 experiments data
from a chip for microarray analyses
(each row represents one expression
record)

select (microarray.chip_id, probset_id, microarray_data
[index], probe_description, exp_id) from microarray,
experiment where microarray.chip_id=’Y98’; and exp_id
like ’Y98-Time-%’;

select (smd_data.chip_id, smd_data.probset_id,
microarray_data, probe_description, exp_id) from smd_data,
smd_probe where smd_data.chip_id=smd_probe.chip_id and
smd_data.probset_id=smd_probe.probset_id and exp_id like
’Y98-Time-%’;

Comput Biol Chem. Author manuscript; available in PMC 2009 July 13.


