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a b s t r a c t

Splice site prediction on an RNA virus has two potential difficulties seriously degrading the performance
of most conventional splice site predictors. One is a limited number of strains available for a virus species
and the other is the diversified sequence patterns around the splice sites caused by the high mutation fre-
quency. To overcome these two difficulties, a new algorithm called Genomic Splice Site Prediction (GSSP)
algorithm, was proposed for splice site prediction of RNA viruses. The key idea of the GSSP algorithm was to
characterize the interdependency among the nucleotides and base positions based on the eigen-patterns.
Identified by a sequence pattern mining technique, each eigen-pattern specified a unique composition of
igen-pattern
ross-species strategy
rthomyxovirus

the base positions and the nucleotides occurring at the positions. To remedy the problem of insufficient
training data due to the limited number of strains for an RNA virus, a cross-species strategy was employed
in this study. The GSSP algorithm was shown to be effective and superior to two conventional methods in
predicting the splice sites of five RNA species in the Orthomyxoviruses family. The sensitivity and speci-
ficity achieved by the GSSP algorithm was higher than 99 and 94%, respectively, for the donor sites, and
was higher than 96 and 92%, respectively, for the acceptor sites. Supplementary data associated with this

or aca

n
o

b
s
T
a
t
r
v
r
1
n
l
s
s

work are freely available f

. Introduction

RNA splicing is a post-transcriptional process that often takes
lace in the pre-mRNA of eukaryotes and some viruses, such as
he influenza virus, simian virus 40, Adenovirus, and so on (Mount,
982), which removes the introns and ligates the exons to form the
rotein coding region of a gene. Splice site prediction aims to iden-
ify the potential splice sites, i.e., the junctions of exons and introns,
s the basis for further construction of the protein coding regions
omputationally or experimentally. Most conventional splice site
rediction algorithms may be classified into two categories. One

s the probabilistic approach (Burge and Karlin, 1997; Brendel and
leffe, 1998; Pertea et al., 2001; Chen et al., 2005). The other is

he neural network (NN) (Reese et al., 1997) and support vector
achine (SVM) approaches (Degroeve et al., 2002, 2005; Baten et

l., 2006). The probabilistic approaches computed the likelihood
Please cite this article in press as: Tsai, K.-N., et al., Genomic splice site p
viruses. Comput. Biol. Chem. (2008), doi:10.1016/j.compbiolchem.2008.08.

f the di-nucleotides (GT/AG) being a splice site by modeling the
ompositional characteristics of the surrounding regions with the
osition-specific or the region-wise nucleotide distributions. The
N and SVM approaches classified the di-nucleotides into splice or

∗ Corresponding author. Tel.: +886 2 33665273; fax: +886 2 33665268.
E-mail address: ming@lotus.mc.ntu.edu.tw (C.-M. Chen).
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on-splice sites by encoding the nucleotide sequence information
f the surrounding regions into high-dimensional features.

Although many conventional approaches have been shown to
e effective in predicting the splice site of several eukaryotes,
plice site prediction for an RNA virus remains a challenging task.
he difficulty mainly arises from the high mutation frequency of
n RNA virus. Most conventional approaches tended to capture
he nucleotide sequence patterns with high nucleotide occur-
ence frequencies. However, the RNA mutation frequencies, though
arying with individual genomic positions, are generally in the
ange of 10−5 and 10−3 s/nt (substitution per nucleotide) (Domingo,
997). Most individual genomes would thus differ in one or more
ucleotides from the consensus sequence of an RNA virus popu-

ation. It suggests that not only might a splice site in an RNA viral
equence have one or multiple low-frequency nucleotides in the
urrounding region, but also a new splice site might emerge due to
utation. If the low-frequency nucleotides of an RNA viral sequence

ortuitously occur at the critical base positions, which usually
ontain high-frequency nucleotides in the training sequences, the
rediction algorithm based on nucleotide sequence pattern for RNA
002

plice sites are very likely missed by the conventional approaches.
Another practical difficulty in constructing a splice site predic-

or for an RNA virus is due to the limited number of RNA virus
trains available for learning the complex dependency among the
ucleotides and base positions. Conventional approaches usually

dx.doi.org/10.1016/j.compbiolchem.2008.08.002
http://www.sciencedirect.com/science/journal/14769271
http://homepage.ntu.edu.tw/~d91548013/
mailto:ming@lotus.mc.ntu.edu.tw
dx.doi.org/10.1016/j.compbiolchem.2008.08.002
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equired a sufficient number of samples from the same population
o extract the nucleotide sequence patterns that are statistically

eaningful. Because the sequenced RNA virus strains are often
uite limited, to predict the splice sites of an emerging or a re-
merging RNA virus, it is generally impractical to use the strains
f the same RNA virus as the training data. As a consequence, the
onventional approaches may not be directly applied to the RNA
iruses, or at least may not be as effective because of these two
ifficulties.

To overcome the potential problems caused by the high muta-
ion frequency, a new splice prediction algorithm, called Genomic
plice Site Prediction (GSSP) Algorithm, was proposed for RNA
iruses in this paper. The GSSP algorithm aimed to discover the
igen-patterns, each of which was a nucleotide sequence pattern
hat specified a unique composition of the base positions and the
ucleotides occurring at the positions. It was assumed that the
ucleotides in an eigen-pattern exert the required binding forces

or the splicing process. To identify all eigen-patterns, the basic
dea of the proposed GSSP algorithm was to explore the inter-
ependency among the nucleotides and base positions by using
he sequence pattern mining techniques. Not only could the GSSP
lgorithm capture the nucleotide sequence patterns with high
ucleotide occurrence frequencies, but also it could extract those

ow-frequency patterns with a minimum support.

. Methods and Materials

.1. RNA Viruses and Cross-species Training Data

The RNA viruses tested in this study were the five species in the
rthomyxoviridae family, i.e., Influenza A virus, Influenza B virus,

nfluenza C virus, Infectious salmon anemia virus, and Thogoto
irus. Acquired from NCBI database, the virus sequences tested
ere composed of segments 7 and 8 of influenza A virus, segment
of the influenza B virus, segment 7 of the influenza C virus, seg-
ent 7 of the infectious salmon anemia virus, and segment 6 of the

hogoto virus. For conciseness, these six segments were denoted as
FA7, IFA8, IFB8, IFC7, ISAV7 and Tho6, respectively. The number of
plice sites for each species was summarized in Table 1. Because the
umbers of strains available for the species in the Orthomyxoviri-
ae family were quite limited, we proposed a cross-species strategy
nd suggested using the nucleotide sequences around the splice
ites of Drosophila as the training data (http://www.fruitfly.org/).

.2. Proposed Algorithm

The key idea of the GSSP algorithm was to find out all eigen-
Please cite this article in press as: Tsai, K.-N., et al., Genomic splice site p
viruses. Comput. Biol. Chem. (2008), doi:10.1016/j.compbiolchem.2008.08

atterns from the training data based on sequence pattern mining.
n eigen-pattern specified a unique set of base positions in the
icinity of a splice site and the nucleotide occurring at each posi-
ion. Each eigen-pattern was assumed to exert sufficient binding

able 1
he numbers of real and false splice sites in the data sets for Drosophila, Influenza
irus, Infectious salmon anemia virus (ISAV) and Thogoto virus

pecies Donor site Acceptor site

Real False Real False

rosophila 757 2,993 757 2,466
FA7 3286 152,493 3286 252,847
FA8 3501 102,938 3501 249,091
FB8 176 8,239 176 15,073
FC7 100 2,982 100 5,718
SAV7 5 342 5 338
ho6 4 191 4 296
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orces for the splicing process. Pyrimidine-rich phenomenon is
ften observed in the near-upstream region of an acceptor in ver-
ebrates, invertebrates, plants, and viruses (Senapathy et al., 1990).

oreover, most base positions in this region have no exclusive pref-
rence for either nucleotide C or T. We hypothesized what governs
he formation of binding force for splicing process of an acceptor
s the class of purine or pyrimidine, not the type of nucleotides at
ach base position of an eigen-pattern. Therefore, sequence bina-
ization was performed before eigen-patterns were mined by the
SSP algorithm for the prediction of acceptors.

.2.1. Consensus Sequence
The consensus sequence in this study refers to a window of

ucleotide sequence with the most frequently found nucleotide at
ach base position around a splice site. As the basis of the GSSP algo-
ithm, the consensus sequence was constructed from the training
ata, i.e., the nucleotide sequences of Drosophila. The windows of
he consensus sequence for the donor site and acceptor site were
enoted by (D1, D2) and (A1, A2), respectively. D1 and A1 were
egative numbers, the absolute values of which were equal to the
umbers of nucleotides before GT and AG, respectively. D2 and A2
ere positive numbers standing for the numbers of nucleotides

rom GT and AG, respectively, to the right end of the windows,
ncluding GT and AG.

.2.2. Sequence Pattern Mining
Sequence pattern mining aimed to discover the co-occurring

ucleotide patterns with reasonable supports embedded in a set of
equence data. A sequence s of length l was expressed as s = 〈s1, s2,
. ., sl〉. For donor sites, sj∈{A,T,C,G} and for acceptor sites, sj∈{Y,R}.
sequence pattern P of length l was expressed as P = 〈p1,p2, . . ., pl〉.

or donor sites, pj ∈ {A, T, C, G, Ā, T̄, C̄, Ḡ, d} and for acceptor sites,

j ∈ {Y, R, Ȳ, R̄, d}, where X̄ represented “not-X” and d “don’t care”,
.e., any nucleotide. If every sj in s could be represented by the cor-
esponding pj of P or equal to pj, we might say either sequence
matched with sequence pattern P, or sequence pattern P repre-

ented sequence s.
An eigen-pattern was a minimally supported sequence pat-

ern (MSSP), which was defined based on the training sequence
atabase, ˝, containing the real splice sites. For each sequence pat-
ern P, support(P|˝) was defined as the number of sequences that

atched with sequence pattern P in ˝. If support(P|˝) ≥ min sup,
e called sequence pattern P a MSSP, where min sup was the given

mallest number of sequences.
The first step of the GSSP algorithm was to generate the candi-

ate sequence patterns. Given a set of training sequence data and
pre-specified min sup, the mining process started from the con-

truction of a binary tree, each node of which defined a sequence
attern, using the consensus sequence. Suppose the consensus
equence was denoted by s = 〈s1, s2, . . ., sl〉. The root node of the
inary tree, which was at level-0 of the tree, defined the initial
equence pattern, 〈d, d, . . ., d〉, where “d” denoted “don’t care”.
ecursively, we supposed that the sequence pattern of a level-i node
as 〈s1, . . . , s̄i, d, . . . , d〉 and it was a MSSP. Then, two child nodes,
hich were at level-(i + 1), would be generated from this level-i
ode with the sequence patterns of 〈s1, . . . , s̄i, si+1, d, . . . , d〉 and
s1, . . . , s̄i, s̄i+1, d, . . . , d〉, respectively. Any of these two level-(i + 1)
odes could further spawn two child nodes only if its sequence pat-
ern was a MSSP. If the sequence pattern of a level-i node was not a
rediction algorithm based on nucleotide sequence pattern for RNA
.002

SSP, this level-i node would be removed from the binary tree. This
ecursive process would continue until all level-(l − 1) nodes with
SSP’s had generated their two child nodes at level-l according

o the last nucleotide of the consensus sequence and these level-
l nodes had been determined if they should remain in the tree

dx.doi.org/10.1016/j.compbiolchem.2008.08.002
http://www.fruitfly.org/
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epending on if they were MSSP’s. When the recursive process ter-
inated, all remaining sequence patterns of the leaf nodes were

onsidered as the candidate sequence patterns.
The second step was to generate the unraveled sequence pat-

erns. In this step, the candidate sequence pattern in every leaf
ode was unraveled according to all X̄ ’s in the pattern. Suppose
candidate sequence pattern was 〈s1, C̄, . . . , T̄, . . . , sl〉. Accord-

ng to C̄, three sequence sub-patterns would be generated, i.e.,
s1, A, . . . , T̄, . . . , sl〉, 〈s1, G, . . . , T̄, . . . , sl〉 and 〈s1, T, . . . , T̄, . . . , sl〉.
hen, the ratio of the support of each sup-pattern and the support of
s1, C̄, . . . , T̄, . . . , sl〉 was computed. If the largest ratio was greater
han a pre-specified ratio, min ratio, the sequence sub-pattern with
he largest ratio was retained, where 0 ≤ min ratio ≤ 1. Similarly,
hree sequence sub-patterns could be generated according to T̄ .
he sequence sub-pattern with the largest ratio, which was greater
han min ratio, was retained. Suppose the retained sequence sub-
atterns were 〈s1, A, . . . , T̄, . . . , sl〉 and 〈s1, C̄, . . . , C, . . . , sl〉. The
nraveled sequence pattern was defined to be 〈s1, A, . . . , C, . . . , sl〉.

The third step of the GSSP algorithm was to determine the eigen-
atterns from the candidate sequence patterns and the unraveled
equence patterns. For each pair of candidate and unraveled
equence patterns, denoted by Pc and Pu, respectively, in theory,
he unraveled sequence pattern had a higher specificity, whereas
he candidate sequence pattern tended to have a better sensitivity.
et ˝ and ˚ denote the training sequence sets of the real splice sites
nd the false splice sites, respectively. To determine which of the Pc

nd Pu was better, we computed rc = support(Pc|˚)/support(Pc|˝)
nd ru = support(Pu|˚)/support(Pu|˝). If rc < ru and rc < Tfr, Pc was
efined as an eigen-pattern, where Tfr was a pre-specified thresh-
ld. If ru < rc and Tfr < rc, Pu was defined as an eigen-pattern.

With the eigen-patterns, we could easily determine if a test
plice site was a real splice site or a false one by checking
f the sequence around the test splice site matched with any
igen-pattern. However, since the eigen-patterns were mined from
rosophila rather than from the RNA viruses, to account for the
enetic difference among species, a tolerance was allowed in deter-
ining if a test sequence matched with an eigen-pattern. We

llowed up to Nm mismatching base positions when we concluded
hat a test sequence matched with an eigen-pattern. If a test
equence matched with more than one eigen-pattern, the eigen-
attern with the smallest number of mismatching base positions
as selected. Once the donors and acceptors had been predicted

eparately, we further performed a minimal donor–acceptor pair-
heck, i.e., we checked if each acceptor site had at least one donor
ite in its upstream. If not, the predicted acceptor site was removed.
his was based on the biological phenomenon that the donor and
cceptor sites should appear in pairs.

Since there was no way to know the optimal Nm value, the
trategy that we had taken to determine Nm was to increase the
ensitivity as much as possible while controlling the specificity in
n acceptable range. More specifically, the value of Nm was decided
s follows. Before the minimal donor–acceptor pair-check, starting
rom 0, we increased Nm gradually. For each Nm value, we computed
he positive ratio, which was defined as the ratio of the positive
umber and the total number, where the positive number was the
umber of predicted splice sites and the total number was the total
umber of test splice sites. It should be noted that the positive
umber and the total number for the donor and the acceptor sites
ere calculated separately. Supposed that the positive ratio was

reater than 15% when Nm = Ne. We would carry out the minimal
Please cite this article in press as: Tsai, K.-N., et al., Genomic splice site p
viruses. Comput. Biol. Chem. (2008), doi:10.1016/j.compbiolchem.2008.08.

onor–acceptor pair-check for the splice sites predicted by letting
m = Ne − 1, Ne − 2, . . ., 1, in the descending order. The iterative pro-
ess terminated when the positive ratio first became less than 10%
fter the minimal donor–acceptor pair-check, which defined the Nm

mployed by the GSSP algorithm. Therefore, the specificity could be
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ontrolled in the range of 90–100%. Of course, the threshold, 10%,
ould be changed as desired.

.3. Performance Analysis

The performance of the proposed GSSP algorithm was evalu-
ted using the five species of RNA viruses in the Orthomyxoviridae
amily. To compare with the conventional approaches, we had cho-
en SplicePredictor (Brendel and Kleffe, 1998) and NNsplice (Reese
t al., 1997) for comparison. The performance figures computed for
ach algorithm were sensitivity and specificity, which were defined
s TP/(TP + FN) and TN/(TN + FP), respectively, where TP, TN, FP and
N stood for true positive, true negative, false positive and false
egative. True positive means that a real splice site was predicted
s a splice site.

. Results and Discussion

The difficulties of splice site prediction on RNA viruses lay in
he limited number of strains available for a species and the diver-
ified sequence patterns around the splice sites caused by the
igh mutation frequency. Both difficulties made most conventional
pproaches ineffective in predicting the slice sites of RNA viruses.
he former led to the problem of insufficient training data, whereas
he latter degraded those conventional approaches counting on the
igh nucleotide occurrence frequency around the splice sites. To
ope with these two difficulties, the proposed GSSP algorithm was
arameterized to account for the cross-species variation in eigen-
atterns. For example, the larger the Nm was, the larger the variation
as allowed. Moreover, the idea of eigen-patterns provided a new

pproach to identifying the important sequence patterns around
plice sites but probably with nucleotides of low-occurrence fre-
uencies.

The parameters of the GSSP algorithm included a consensus
equence window, min sup, Tfr, min ratio, and Nm. While the
ptimal parameter values were different for different species,
e had chosen to use the same parameter values, except Nm,

or all five species in this study. The performance reported for
ach species may be further improved by using other parame-
er values. The value of Nm was dependent on the ratio of the
ositive number to the total number. More precisely, the param-
ters of donor sites were set to (Dt1, Dt2) = (3,4), min sup = 1, Tfr = 2,
in ratio = 0.8, Nm = 0. The parameters of acceptor sites were set

o (At1, At2) = (17,1), min sup = 1, Tfr = 2, min ratio = 0.8. The value of
m varied with species. For IFA7, IFA8, IFB8, IFC7, ISAV7 and Tho6,
m was set to 3, 3, 4, 3, 3 and 3, respectively.

The performances achieved by the GSSP, NNsplice and SplicePre-
ictor algorithms were summarized in Tables 2 and 3, for donor and
cceptor predictions, respectively, for all five species. In these two
ables, “Sen” and “Spe” stood for sensitivity and specificity, respec-
ively. All three algorithms had achieved similar specificities for the
ve species of RNA viruses in the Orthomyxoviridae family. How-
ver, the proposed GSSP algorithm had better sensitivities than the
NSplice and SplicePredictor. More specifically, for the prediction
f donor sites, the proposed GSSP algorithm was able to attain sensi-
ivity higher than 99% and specificity higher than 94% for the tested
pecies. The GSSP algorithm was clearly superior to the NNSplice
n the prediction of the donor sites of IFA8 and ISAV7. In particu-
ar, the NNSplice was not able to predict any of the donor sites of
SAV7. In comparison with the SplicePredictor, the GSSP algorithm
rediction algorithm based on nucleotide sequence pattern for RNA
002

ar outperformed its counterpart in predicting the donor sites of
FA7, IFA8, IFB8, and IFC7. The SplicePredictor could barely identify
onor sites of the influenza A virus. For the prediction of acceptor
ites, the GSSP algorithm achieved sensitivity higher than 96% and
pecificity higher than 92%. While the GSSP algorithm and NNSplice

dx.doi.org/10.1016/j.compbiolchem.2008.08.002
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Table 2
The performances of the GSSP, NNSplice, and SplicePredictor algorithms on the donor sites of the five RNA viruses in the Orthomyxoviridae family

Species GSSP NNSplice SplicePredictor

Sen (%) Spe (%) Sen (%) Spe (%) Sen (%) Spe (%)

IFA7 99.63 94.86 99.48 95.56 0 98.84
IFA8 99.8 99.13 66.32 96.39 0.94 98.84
IFB8 99.43 99.9 98.3 97.6 4.55 92.28
IFC7 100 99.9 100 100 58 98.56
ISAV7 100 97.66 0 91.5 100 100
Tho6 100 97.38 100 94.76 100 98.43

Table 3
The performances of the GSSP, NNSplice, and SplicePredictor algorithms on the acceptor sites of the five RNA viruses in the Orthomyxoviridae family

Species GSSP NNSplice SplicePredictor

Sen (%) Spe (%) Sen (%) Spe (%) Sen (%) Spe (%)

IFA7 96.1 96.73 99.97 95.95 45.13 99.94
IFA8 99.89 96.9 99.91 96.11 37.79 99.83
IFB8 98.86 93.01 95.45 96.76 97.16 96.11
I 00
I 00
T 00
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FC7 100 92.86 1
SAV7 100 97.93 1
ho6 100 95.95 1

ad comparable sensitivities, the GSSP algorithm was obviously
uperior to the SplicePredictor in predicting the acceptor sites of
FA7, IFA8, IFC7, and ISAV7.

The superior performance achieved by the GSSP algorithm
ight be primarily attributed to the idea of using the sequence

attern mining technique to mine the eigen-patterns. An eigen-
attern was a co-occurring pattern specifying not only the critical
ositions, but also the position-specific nucleotides. The critical
ositions and the position-specific nucleotides referred to the
ucleotide positions and the nucleotides at these positions in
he surrounding region of the di-nucleotides GT/AG, which were
ssumed to provide sufficient binding force for forming a splice
ite. This idea had two potential advantages. The first advantage
as that the complex dependency among the nucleotides within

he surrounding region, which is a high-order function of posi-
ions and nucleotides, might be modeled by a set of eigen-patterns.
ach eigen-pattern represented a unique data dependency, which
as made up of nucleotides and their critical positions. Note

hat different eigen-patterns might have different critical posi-
ions. The second advantage was using the sequence pattern

ining technique allowed us to find the eigen-patterns of low
ucleotide occurrence frequencies but with high confidences.
n the other hand, the nucleotides frequency, at each position,
layed an important role in both the NNSplice and the Spli-
ePredictor. Those splice sites with low-frequency nucleotides in
he vicinity tended to be easily missed even though both algo-
ithms were much more sophisticated than simply counting the
ucleotide frequencies. More detailed analyses on the perfor-
ance of the GSSP algorithm may be found in the Supplemental
ata at http://homepage.ntu.edu.tw/∼d91548013/Supplementary
ata.pdf.

To check the applicability of the GSSP algorithm to other species
f RNA viruses, we had applied the GSSP algorithm to the human
mmunodeficiency virus type 1 (HIV-1). HIV-1 was chosen because
t was a highly important RNA virus and had 8 different strains,

hich was a reasonable sample size statistically. Note that the
umbers of different strains available are mostly smaller than 8
Please cite this article in press as: Tsai, K.-N., et al., Genomic splice site p
viruses. Comput. Biol. Chem. (2008), doi:10.1016/j.compbiolchem.2008.08

or the RNA viruses currently. As a result, the numbers of real
nd false HIV-1 donor sites used were 14 and 3351. The sensitiv-
ty and specificity attained by the GSSP algorithm for the donor
ite were 100 and 93.97%, respectively. The numbers of real and
alse HIV-1 acceptor sites used were 14 and 8004. The sensitiv-

m
i
o
m
d

96.33 58 98.58
98.5 60 98.83
95.55 100 99.33

ty and specificity attained by the GSSP algorithm for the acceptor
ite were 100 and 91.14%, respectively. The performances partially
upported that the GSSP algorithm might be used for various RNA
iruses.

Since RNA viruses are known to infect vertebrates, which means
he viruses exploit the spliceosomes in their vertebrate hosts, one
easonable choice for training data would be the human nucleotide
equences. Nevertheless, our study showed that the performances
chieved by using Drosophila as the training data was better than
hose by using human nucleotide sequences. While the real rea-
on requires further investigation, one possible explanation may
e that not all human splice sites are connected to RNA viruses.
sing all human nucleotide sequences as the training data may
ring in unnecessary noises in pattern mining process. On the
ther hand, Drosophila has recently been considered as a reason-
ble model for studying the interactions between RNA viruses and
ost cells. For examples, RNA viruses, such as Flock house virus and

nfluenza virus, has been shown to be suppressors of RNA silencing
n Drosophila via mediating nucleic acid-based antiviral response
Li et al., 2002, 2004). RNA virus infection mechanism has been
nvestigated in Drosophila (Adamson et al., 2005; Chotkowski et al.,
008). Drosophila RNAi screen model has been employed to iden-
ify host genes, which are essential for influenza virus replication
Hao et al., 2008).

. Conclusions

A new algorithm, called GSSP algorithm, was proposed for
he splice site prediction of RNA viruses in this paper. The
niqueness of the GSSP algorithm consisted in its idea of char-
cterizing the interdependency among the nucleotides and base
ositions based on the eigen-patterns. Compared with the conven-
ional approaches, the GSSP algorithm was shown to have similar
pecificities but much better sensitivities than its counterparts,
specially in the prediction of donor sites. In addition, the GSSP
lgorithm had the advantage of identifying the splice sites with
rediction algorithm based on nucleotide sequence pattern for RNA
.002

ultiple nucleotides of low-occurrence frequency in the vicin-
ty of the GT/AG di-nulceotides. It is a phenomenon frequently
bserved around the splice sites of the RNA viruses due to the high
utation frequency. Moreover, the capability of cross-species pre-

iction rendered the GSSP algorithm a powerful tool to predict the

dx.doi.org/10.1016/j.compbiolchem.2008.08.002
http://homepage.ntu.edu.tw/~d91548013/Supplementary_data.pdf
http://homepage.ntu.edu.tw/~d91548013/Supplementary_data.pdf
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trains.
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