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Abstract
For cancer prediction using large-scale gene expression data, it often helps to incorporate gene
interactions in the model. However it is not straightforward to simultaneously select important
genes while modeling gene interactions. Some heuristic approaches have been proposed in the
literature. In this paper, we study a unified modeling approach based on the ℓ1 penalized likelihood
estimation that can simultaneously select important genes and model gene interactions. We will
illustrate its competitive performance through simulation studies and applications to public
microarray data.

1 Introduction
One of the main research questions in microarray data analysis is cancer prediction using
gene expressions. Typical microarray data often has small sample size compared to the large
number of genes, which called for development of special statistical methods. Many
prediction methods have been proposed. Some are based on directly modeling the cancer
status using gene expressions, e.g., logistic regression based models (see Friedman et al.,
2010, e.g.) and commonly used machine learning methods including SVM and classification
tree based methods (see Vapnik, 1998; Brown et al., 2000; Breiman, 2001, e.g.) etc. While
others are based on modeling gene expressions conditional on the cancer status to indirectly
produce prediction models, e.g., linear or quadratic discriminant analyses based methods
(see Tibshirani et al., 2003; Guo et al., 2007, e.g.), which are often computationally efficient
and have very good model interpretability.

One key issue in the conditional modeling approach is the modeling of gene interactions.
Some approaches completely ignored the dependence among genes and built a simple
model. The intuition is that simple model is very stable and could provide better prediction
especially for relatively small sample size microarray data. Selecting important genes for
improved prediction is straightforward for independence based models and has been well
studied. For example, Tibshirani et al. (2003) proposed the use of soft-thresholding for
simultaneous gene selection and prediction model estimation, which can be linked to the
lasso penalized linear regression model (Tibshirani, 1996; Wu, 2006). These independence
prediction models often performed well in practice and were widely used. While others tried
to model the complete dependence among genes by using, e.g., regularized covariance or
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precision matrix (see Guo et al., 2007; Witten and Tibshirani, 2008, e.g.). When gene
dependence is modeled, how to simultaneously select important genes is not straightforward.
Often some two-step approaches are used: important genes are selected individually before
interaction modeling; or estimated gene covariance matrix is first used to obtain prediction
coefficients for all genes, which are then subject to soft-thresholding for gene selection as if
they are independent. These dependence prediction models have shown some improvement
over independence models for analyzing large-scale gene expression data. In this paper we
study a unified dependence prediction model that concisely models gene interactions and
simultaneously selects important genes. We develop very efficient computational algorithms
and illustrate its competitive performance through simulation and application studies.

In Section 2, we discuss the proposed method. And we develop efficient computational
algorithms in Section 3. Simulation studies are provided in Section 4 to study the
performance of the proposed method. We analyze two microarray data for illustration in
Section 5. Concluding remarks are provided in Section 6.

2 Sparse regularized discriminant analysis
Consider a two-class gene expression data. Denote the class indicator as Y ∈ {0, 1}, and
expressions of m genes as X. When assuming the expressions of m genes follow the
multivariate normal distribution X|Y ~ N(μ0 + Y (μ1 − μ0), Σ), we can check that

(1)

Therefore

Given the gene expressions of n observed samples, the prediction coefficients Σ−1(μ1 − μ0)
can be estimated, for example, based on some estimated covariance matrix Σ̂−1 (more details
later) and sample averages (μ̂0, μ̂1) of class 0 and 1

To build a prediction model based on only a subset of important genes, there are two widely
used variable selection approaches. In the first approach, gene dependence is ignored (i.e.,
assuming a diagonal matrix for Σ). And variable selection is applied to individual genes
separately (see Tibshirani et al., 2003, e.g.). In the second approach, gene dependence is
modeled by a non-diagonal matrix Σ. And variable selection is directly applied to Δ. For
example, Guo et al. (2007) proposed treating each component of Δ independently and
shrinking them separately based on soft-thresholding. Note that due to gene dependence, in
general Δ are not independent, and their covariance matrix can be roughly approximated by
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where ni are the sample sizes for class 0/1, and n = n0 + n1. To select important genes and
incorporate gene dependence simultaneously, we propose an estimating equation model
(modeling gene dependence) with the lasso penalty that can automatically select important
genes (Tibshirani, 1996, 2011)

(2)

where τj is some pre-selected positive weight (typically set as 1). Note that we can also
derive model (2) from the perspective of maximum penalized log likelihood estimation (see
Appendix for details).

Gene covariance matrix estimation based on the large scale expression data with small
sample size has been a very challenging problem. Typically some type of regularization is
often required to obtain a nonsingular covariance matrix estimate. Variety of methods have
been proposed and studied in the statistics and machine learning field (e.g., Hansen et al.,
1992, Zou et al., 2006, Bickel et al., 2008, Jenatton et al., 2010). Many of them are
motivated by and developed for estimating a sparse covariance or precision matrix, and
typically involve very intensive computations. Another commonly used approach is to use a
weighted average of sample covariance matrix and some diagonal matrix as studied at Guo
et al. (2007). In this paper, our main purpose is to incorporate gene dependence through
some covariance matrix into the prediction model. We adopt a principal component analysis
(PCA) based approach proposed by Tipping and Bishop (1999) mainly for its computation
efficiency. In addition it also leads to very efficient computational algorithms for the
proposed prediction model as described in the next section. Specifically it assumed a
structured covariance matrix that can be derived from a mixed model representation

where the random effects design matrix R is of dimension m × q and constrained to be

column independent, ,∀j ≠ k. Tipping and Bishop (1999) derived a very efficient

algorithm for maximum likelihood estimation of R and  based on the eigen value
decomposition of the sample covariance matrix. Let X̃ be the observed gene expressions of
dimension n × m with class mean subtracted from each gene. Denote its singular value
decomposition as

where V0 is an m × (n − 2) sub-orthogonal matrix, , and E0 is a diagonal matrix
of dimension n − 2, E0 = diag(e1, ···, en−2) with |e1| ≥ ··· ≥ |en−2| The maximum likelihood
estimate of q-dimensional PCA covariance matrix is then
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where V consists of the first q columns of V0, vj is the j-th column of V0, and

We can further check that

In a closely related paper, Witten and Tibshirani (2008) proposed estimating gene
covariance matrix by penalizing, e.g., the ℓ2 norm of inverse covariance matrix Σ−1, and built
prediction model by selecting important genes before covariance modeling or, penalizing the
ℓ1 norm of Σ−1μ0 and Σ−1μ1 for sample prediction.

In the following section, we develop very efficient computational algorithms for estimating
the proposed model based on the iterative coordinate descent approach (Friedman et al.,
2010).

3 Computational algorithm for efficient model estimation
We consider minimizing a more general ℓ1 penalized estimating equation model as follows

where Δ = (δ1, ···, δm)T, W is an q × m matrix and U = diag(u1, ···, um). We have

Therefore in the iterative coordinate descent update, we have
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where L1 is the lasso soft-thresholding operator (Tibshirani, 1996). In the update formula, uj

and  are fixed and can be pre-computed. Whenever βj is changed, we update the
residual vector ri of length q

where  are the previous/current estimates respectively. Computationally this is
equivalent to a lasso regression with q observations and m covariates, which can be solved
very efficiently based on the previous iterative coordinate descent approach (q is typically
much smaller than sample size n).

Specifically for the previous model, we have

With some large λ, all βj will be shrunken down to zero with the gradient vector being

Therefore we have for any λ ≥ λ0, β̂j = 0, ∀j, where λ0 = maxj |Zj/τj| When estimating
models for a sequence of λ, we use the solution from larger λ as a warm starting point for
the next smaller λ, which often can improve the algorithm convergence and dramatically
reduce the computation time. For the proposed algorithm, we empirically find that the
computation time scales linearly with the sample size n and number of genes m, and
exponentially with the covariance matrix dimension q (see the Application section for more
details).

In the next section, we conduct simulation studies to compare the performance of the
proposed method (denoted as SRDA for `sparse regularized discriminant analysis’) to two
representative methods: the ‘nearest shrunken centroid’ classifier proposed by Tibshirani et
al. (2003) (denoted as NSC) assuming gene independence and the `shrunken centroid
regularized discriminant analysis’ method proposed by Guo et al. (2007) (denoted as
SCRDA) modeling gene dependence with a regularized sample covariance matrix.

4 Simulation study
We simulated the expressions of m = 5000 genes for 25 case and 25 control samples with
10% of genes being differentially associated with the sample class. We simulated those
nonzero δj from a normal distribution N(0,0.3). The covariance matrix Σ = DRD has a
compound symmetry correlation matrix R with correlation parameter ρ and variance D =

diag{σ1, ···, σm}. The variance of each gene  was simulated from the chi-square
distribution with 3 degrees of freedom. Then we obtain the effect size by multiplying Σ and
Δ = (δ1, ···, δm)T.

We used 5-fold cross validation to select an optimal λ based on validation error rate from
100 evenly spaced points from λmax to 0 on the log scale, where λmax is the value of λ that
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would penalize all βj to zero. The optimal value of q was chosen from (1, 11, 21, 30, 40, 50).
1000 case and 1000 control samples were simulated separately to compute prediction errors.
We conducted simulations for ρ = (0.25, 0.5, 0.75) representing weak to strong gene
interactions. The average prediction errors over 30 simulations are shown in Table 1.
Overall we can see that the proposed SRDA has competitive performance. By appropriately
modeling the gene dependence, the proposed SRDA could genuinely benefit from
commonly observed gene interactions: it shows better predictions for stronger gene
dependence. NSC in general is adversely affected by strong gene dependence due to its
independence assumption. SCRDA improved upon NSC by partially incorporating gene
interactions. However it shows increased prediction errors with increasing gene dependence
partly due to its ad hoc gene interaction modeling.

In the next section we analyze two microarray data with relatively weak and strong gene
interactions respectively to illustrate the performance of the proposed method.

5 Application to public microarray data
We analyze the breast cancer (West et al., 2001) and prostate cancer (Singh et al., 2002)
microarray data. The breast cancer data consists of 49 tumor samples with genes measured
using the Affymetrix hu6800 genechip (including around 7000 probes). The tumors are
divided into two groups based on estrogen receptor status: 24 positive and 25 negative. The
prostate cancer data consists of 50 normal and 52 tumor prostate tissue samples with genes
measured using the Affymetrix hgu95av2 genechip (including around 12000 probes). For
each data, we used all genes for sample prediction. In addition, we also tried sample
prediction only using those genes with annotated molecular functions in the Gene Ontology
(GO, Ashburner et al., 2000), which leads to around 3500 and 5500 probes respectively for
the breast cancer and prostate cancer data. This gives us a range of medium to large-scale
prediction problems. We compared the performance of the proposed SRDA to SCRDA and
NSC.

Figure 1 shows the histogram of all gene pairwise correlations for the breast cancer and
prostate cancer microarray data. Similar patterns are observed for pairwise correlations only
from those genes with annotated molecular functions in GO (data not shown). The prostate
cancer data has very strong gene interactions with many nonzero correlations. For the breast
cancer data, the gene dependence is relatively weak with many correlations clustering

around zero. Let  be the computed gene pairwise correlations. Assuming normal

distribution for gene expressions, we can check that  follows the t-
distribution with n − 3 degrees of freedom, where n is the total sample size (see Kutner et
al., 2004, e.g.). We apply the normal transformation zi = Φ−1(Tn−3(ti)), where Φ =Tn−3 are
the normal and t-distribution functions. When correlation is truly zero, zi follows the
standard normal distribution. However the computed pairwise gene correlations are strongly
correlated with each other, the standard normal distribution might not fit the null data very
well. Since majority of the correlations are close to zero for the breast cancer microarray
data, we can fit an empirical null distribution (Efron, 2007). The estimated nonzero
correlation proportion is 4% for breast cancer data. For prostate cancer data, majority of the
correlations are not zero and the empirical null estimation approach does not work well.
Instead we roughly estimate the nonzero correlation proportion as follows. We compute the
t-statistic ti and corresponding p-value pi based on the t-distribution with 99 degrees of

freedom. We then estimate the nonzero correlation proportion as ,
which is 85% for prostate cancer data. For each gene, we then count the number of its
significant correlations with other genes that are ranked in the top 4%/85% for the breast and
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prostate cancer data. The number of significant correlations ranges from 0 to 1500 for the
breast cancer data and 1000 to 11000 for the prostate cancer data. Figure 2 shows the
histogram of the number of significant gene correlations. For the breast cancer data, majority
of genes have very small number of interactions with other genes, while for the prostate
cancer data, majority of genes have interactions with many other genes.

We use cross validation to estimate the classification errors for three methods. Specifically
each time we randomly select one third of the samples as a testing set and apply 5-fold cross
validation on the remaining samples to build the prediction model, which is then used to
predict the testing set. For all methods, we use the same testing set and repeat the cross
validation 50 times to estimate the average classification errors.

Table 2 summarizes the cross validation results. For each data, we reported the classification
errors for using all genes (denoted as “all”) and only using those genes with annotated
molecular functions in GO (denoted as “GO.mf”). In addition, we also reported the
computed significance values for testing the proposed method performed better than the
other two methods using the paired sign test based on the binomial distribution. Prostate
cancer data has very strong gene dependence. Both SRDA and SCRDA explicitly
incorporate gene interactions in the model and have much smaller prediction error than NSC
that treated genes independently. Breast cancer data shows relatively weak gene
dependence, and we observed smaller difference between SRDA/SCRDA and NSC. Overall
SCRDA performed well especially under strong gene interactions. And the proposed SRDA
performed favorably compared to SCRDA and NSC.

In addition we also empirically evaluate the computing time of the proposed algorithm based
on the prostate cancer data. We implemented the algorithm in C that is called from R, and
timed all computations using the R ‘system.time’ function in a Linux workstation with 3
GHz Intel CPU and 8 GB memory. Firstly using all 102 samples and 12000 genes, we
evaluate the time used to compute all solutions for 100 equally spaced λ values as a function
of the covariance matrix dimension q. The total computing time ranges from 1 to 36 seconds
for q = 9 to 99. The first plot in figure 3 shows the computing time on the log scale. The
superimposed dashed gray line is the fitted linear model of log time versus q. Using all
genes, we then randomly sample N prostate samples, 3 × q = N − 3, and evaluate the time
used to compute all solutions for 100 equally spaced λ values. The total computing time
ranges from 10 to 35 seconds for N = 20 to 100. The second plot in figure 3 shows the
computing time (on the original scale). The superimposed dashed gray line is the fitted
linear model of time versus N. Finally using all 102 samples, we randomly sample M genes,
and evaluate the time used to compute all solutions for 100 equally spaced λ values. The
total computing time ranges from 6 to 30 seconds for M = 2000 to 10000. The third plot in
figure 3 shows the computing time (on the original scale). The superimposed dashed gray
line is the fitted linear model of time versus M. We have repeated the random sampling
many times and similar patterns have been observed. Overall we can see that the
computation time scales linearly with the sample size and number of genes, and
exponentially with the covariance matrix dimension.

6 Discussion
For large-scale gene expression data, how to model gene interactions and simultaneously
select important genes pose unique challenges for prediction model building. When treating
genes independently, we can apply soft-thresholding to estimate prediction model and select
important genes simultaneously. However when modeling gene interactions, selecting
important genes has been often performed separately after prediction model estimation. In
this paper, we propose modeling gene interactions concisely with a PCA structured
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covariance matrix, which provides a principled approach to general large-scale dependence
modeling. We adopt the lasso penalized likelihood estimation approach for unified
prediction model estimation and important gene selection. Very efficient computational
algorithms are also developed based on the iterative coordinate descent approach. The
proposed method performed competitively in our simulation and application studies.
Currently we have included all pairwise gene interactions in the proposed prediction model.
Potentially we could improve the prediction by simplifying the gene covariance structure
using some prior information. For example, public gene pathway or annotations often
contain curated biological knowledge regarding gene molecular function and interaction
information, which could be incorporated into statistical models for improved inference. We
are currently exploring this approach and will report the results elsewhere in the future. In
the current approach, we have adopted the PCA based covariance matrix for gene
dependence modeling mainly for its computation efficiency. Genes in a system often exhibit
some sparse interaction patterns, and it will be worthwhile to empirically compare the
relative prediction performance of incorporating various regularized/sparse covariance/
precision matrix estimation approaches into the proposed method through extensive
simulation and application studies. We will report the results elsewhere in the future.
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Appendix

Maximum penalized log likelihood estimation
Denote xij as the expressions of sample i = 1, ···, n and gene j = 1, ···, m. Let yi ∈ {0, 1} be
the sample class. Denote the prediction coefficients as β = Σ−1(μ1 − μ0), and hence we have
μ1 = μ0 + Σβ. The penalized log likelihood is proportional to

which can be checked proportional to

where , n1 = n − n0 and

We can easily check that

and maximizing penalized log likelihood is equivalent to
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where
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Highlights

1. A unified modeling approach that simultaenously analyzes gene interactions and
selects important genes for improved prediction of microarrays.

2. Very efficient computational algorithms developed for model estimation and
selection.

3. demonstrate the very competitive performance of the proposed method.
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Figure 1.
Pairwise gene correlations
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Figure 2.
Number of significant gene correlations

Li and Wu Page 13

Comput Biol Chem. Author manuscript; available in PMC 2013 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Computing time with respect to covariance matrix dimension q, number of samples/genes
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Table 1

Average prediction errors (%) over 30 simulations (listed within parenthesis are standard errors).

ρ 0.25 0.5 0.75

SRDA 9.2 (1.5) 8.5 (2.1) 8.4 (2.4)

NSC 15.6 (2.8) 25.3 (3.9) 28.4 (4.1)

SCRDA 9.9 (1.3) 13.9 (2.8) 20.9 (5.2)
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