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Abstract
We study the geometric modeling approach to estimating the null distribution for the empirical
Bayes modeling of multiple hypothesis testing. The commonly used method is a nonparametric
approach based on the Poisson regression, which however could be unduly affected by the
dependence among test statistics and perform very poorly under strong dependence. In this paper,
we explore a finite mixture model based geometric modeling approach to empirical null
distribution estimation and multiple hypothesis testing. Through simulations and applications to
two public microarray data, we will illustrate its competitive performance.
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1 Introduction
The empirical Bayes modeling method has proven very useful for the large-scale multiple
hypothesis testing problems, for example, the differential gene expression detection (Efron,
2003). In the empirical Bayes modeling approach, the selection of null distribution is critical
for the appropriate control of false positives (Efron, 2004, 2007a,b). Efron (2010) discussed
and illustrated in great detail the importance of adopting the empirical null distribution for
the large-scale significance analysis of current biomedical data. Very novel analytic and
geometric modeling approaches have been proposed for estimating the empirical null
distribution in the significance analysis of two-class microarrays (Efron, 2008). In the
analytical approach, a truncated normal distribution model was used to model the null
statistics. In the geometric approach, a normal distribution was used to approximate the
center of the marginal density, which is estimated non-parametrically using a splines based
Poisson regression model.

In this paper we focus on the geometric modeling approach and show that the existing
method could be unduly affected by the dependence among test statistics and perform very
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poorly under strong dependence. The commonly used Poisson regression based density
estimation could not model the tail of the marginal distribution very well, and lead to
irregular ranking of important genes based on the posterior differential expression
probability. We propose a finite mixture model based geometric approach to simultaneously
estimating the empirical null and marginal distributions. The finite mixture model is based
on the normal distribution and could estimate the distribution tail very well yielding
consistent ranking of important genes. We will illustrate its favorable performance through
simulation and application studies.

The rest of the paper is organized as follows. In Section 2, we discuss a finite normal
mixture model based geometric modeling approach to empirical null distribution estimation
and multiple hypothesis testing. We conduct a simulation study in Section 3 and analyze a
prostate and leukemia cancer microarray data in Section 4 to illustrate the proposed method.
We end with a discussion in Section 5.

2 Geometric modeling of empirical null distribution estimation
Assume the appropriate normal transformation has been applied and we have some normally
distributed test statistic zi for the hypothesis i = 1, ···, m. Assume zi has unit variance and we
are interested in detecting those zi with nonzero means. The theoretical null distribution is
the standard normal distribution N(0, 1). The dependence among test statistics could make
the theoretical null distribution a poor fit and calls for the empirical null distribution for the
appropriate control of false positives.

Following Efron (2004), we use a normal distribution  with mean μ0 and variance

 to empirically model the null statistics. A Poisson regression based nonparametric
approach has been proposed to estimate the empirical null distribution and true null
proportion θ0, and implemented in the R package ‘locfdr’ (Efron et al., 2011). Specifically
the log densities at some pre-specified points are estimated with a splines based Poisson
regression model. A quadratic regression model is then fitted to the log densities in a small
region around zero to estimate the empirical null distribution parameters. Due to the
nonparametric nature of the splines based Poisson regression, the tail of the marginal
distribution is often poorly estimated, which will affect the calculation of posterior
probability of differential expressions and often lead to irregular ranking of important genes
when combined with the parametric empirical null distribution.

We propose to approximate the marginal distribution of {zi} with a G-component finite
normal mixture model

(1)

where φ(z; μ, σ2) is the probability density function of the normal distribution N(μ, σ2).
Firstly we develop an EM algorithm (Dempster et al., 1977) for the maximum likelihood
estimation of model (1), and select G based on the BIC (Schwarz, 1978). We then explore
several approaches to geometric modeling of the empirical null distribution.

2.1 EM algorithm for model estimation
Define the class indicators, wi ∈ {1, ···, G}, following the multinomial distribution, Pr(wi =
g) = πg. Conditional on wi = g, zi follows the normal distribution N (νg, σ2). The complete
data log likelihood is
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At the b-th iteration, we firstly compute the conditional probabilities based on the current
parameter estimates

In the maximization step, for g = 1, ···, G, we compute (fixing )

We typically run the EM iteration multiple times with random initials to select the parameter
estimate with the maximum likelihood. Given the estimated marginal distribution f(z), we
discuss several geometric modeling approaches to estimating the empirical null distribution
in the following section.

2.2 Geometric modeling of empirical null distribution
The intuitive idea of geometric modeling is to match the marginal distribution and the
empirical null distribution based on some criterion, e.g., assuming similar distribution shape
or minimizing their distance etc.

We approximate f(z) around zero with the empirical null distribution  by
matching their moments. Specifically we expand log f(z) at zero into a quadratic function

where

We then estimate
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Alternatively we can use a linear regression model based on those observations in A0 (a
small interval around zero: we selected A0 to contain the 10% smallest absolute test
statistics in the simulation and application studies) to estimate αj

We can also minimize the Kullback-Leibler (KL) distance (Kullback and Leibler, 1951)

between f(z) and the normal distribution  constrained in the region A0

Next we conduct simulation studies to compare the Poisson regression based geometric
approach (denoted as ‘locfdr’) to the mixture model based central matching (denoted as
‘mcm’), linear regression (denoted as ‘mlr’), and KL distance minimization approach
(denoted as ‘mkl’).

3 Simulation Study
We simulate 20 blocks, each with 500 test statistics following the multivariate normal
distribution with a compound covariance matrix, where the marginal variance is 1 and
covariance is ρ. Different blocks are simulated independently. For each block, 100(1−θ0)%
have the mean values simulated from a scaled Beta distribution, 2 × Beta(2, 2) + 1, and the
rest have zero mean values. We then randomly change the sign of zi with probability of 0.5
to create both positive and negative correlations.

Here we report the results over 500 simulations for θ0 = 0.9 and ρ = (0, 0.25, 0.5, 0.75) to
investigate the performance under relatively weak to strong dependence. In each simulation,
we compute the ‘oracle’ estimates with the mean and standard error computed based on the
sample mean and variance of the set of 100θ0% true null statistics. For the locfdr and
mixture model based estimates, we compute the mean squared errors of their difference
from the oracle estimates. We also compare the false discovery rate (FDR, Benjamini and
Hochberg, 1995) for the top ranked 50/100 statistics, denoted as FDR50 and FDR100. Table
1 summarizes the results. Figure 1 compares the FDR for both methods. We can see that the
locfdr approach is unduly affected by the strong dependence among statistics, especially the
null proportion and variance estimates. The locfdr approach tends to detect more false
positives under relatively strong dependence. While the mixture model based approaches are
less affected by the test statistics dependence, and have relatively stable performance under
all dependence structures. Overall the mixture model based approaches perform very
favorably compared to the locfdr approach. Figure 2 compares the estimated local FDR,
which is essentially the posterior probability of non-differential expression. The proposed
approach has relatively more consistent estimation of the local FDR compared to the locfdr.
When there are strong dependence among the test statistics, the locfdr has some irregular
local FDR estimates in the tails, which is partially due to the nonparametric marginal density
estimation unable to fit well the extreme tail probabilities.

In the next section, we analyze the pairwise gene correlations in a prostate cancer microarray
data (showing very strong interactions), and detect differential expressions in a leukemia
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microarray data (with relatively weak interactions). We compare the proposed mixture
model based method to the locfdr.

4 Application to prostate and leukemia cancer microarray data
The prostate cancer microarray data (Singh et al., 2002) consists of 50 normal and 52 tumor
prostate tissue samples with genes measured using the Affymetrix hgu95av2 genechip. We
analyze the data using those genes with annotated molecular functions in the Gene Ontology
(Ashburner et al., 2000), which leads to 5570 genes and K = 15509665 pairwise
correlations.

Denote  as the sample correlations. Figure 3 shows its histogram for the prostate
cancer microarray data. In general we can see many significantly non-zero correlations
clustering around 1 and −1. When assuming normal distribution for the gene expressions,

the statistic  follows the t-distribution with 99 degrees of freedom. We
analyze the normally transformed statistic, zk = Φ−1{T99(tk)}, where Φ(·)/T99(·) are the
standard normal and t-distribution function with 99 degrees of freedom. The theoretical null
distribution of zk is the standard normal distribution. The pairwise sample correlations are
strongly correlated with each other. The fitted mixture model selected 10 components based
on the BIC. For both approaches, A0 is chosen to contain the smallest 10% absolute

correlations. Table 2 compares the estimated empirical null distributions and , the
estimated FDR when declaring the 1.6 × 106 top ranked correlations as significant
(approximately 10% of all correlations). Figure 4 shows the histogram of the transformed Z-
statistics for the prostate cancer microarray data. The superimposed lines are estimated
locfdr and mixture model based null distributions. Overall they provide similar fit around
the center of the histogram. The histogram is a nonparametric estimate of the marginal
distribution, and the fitted empirical null distribution should be smaller than the marginal
distribution. The mixture model based approaches fit the tail of the histogram better than the
locfdr, which tends to over estimate the tail of the null density.

The leukemia microarray data compared the gene expressions of 20 Mll-AF9 knockin and
23 wild type mice in four cell types (Chen et al., 2008). We analyzed 36,734 genes with
unigene annotations among the 45,101 genes measured using the Affymetrix murine 430 2.0
genechip. We compare the Mll-AF9 and wild type expression differences with the following
additive effects model

where {x1j, ···, xnj} are the expression values of gene j, yi is the indicator for the Mll-AF9 /
wild type, and (z1i, z2i, z3i) are three indicators for the cell types. We use the empirical

Bayes approach to further improve the estimation of  (Smyth, 2004). The normal
transformed t-statistic for βj is analyzed for detecting differential expressions. The three
approaches based on the normal mixture model yield similar results, and we list the mcm
results (denoted as ‘nmix’) in the following.

Figure 5 shows the estimated FDR for detecting differential expressions. In general, we can
see that the proposed nmix can detect more significant genes than the locfdr. Controlling
FDR at 0.1, the nmix identified 223 significant genes, while 165 genes are detected by the
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locfdr. Figure 6 compares the local FDR estimation for both methods. The local FDR is the
posterior probability of non-differential expression and should be strictly between 0 and 1.
The nmix approach has a more consistent estimate of the local FDR, while the locfdr
approach has some irregular estimate in a positive interval.

For the top ranked significant genes identified by each method, we analyze their enrichment
of the KEGG pathways (Ogata et al., 1999). Controlling FDR at 0.1 for the enrichment
significance, there were 13 significantly enriched KEGG pathways for the top 223 genes
selected by the nmix, and 3 significantly enriched KEGG pathways for the top 165
significant genes selected by the locfdr. Table 3 and 4 summarize the detailed enrichment
results. The number of genes column listed two numbers: the first is the total number of
pathway genes (measured in the leukemia cancer data) and the second is the number of
pathway genes ranked in the top 223/165 by each method. All the identified significantly
enriched KEGG pathways have been studied and linked to leukemia (see, e.g., Cerny et al.,
1971; Her and Zor, 1991; Walther et al., 1998; Perry et al., 1998; Mohle et al., 1998;
Thomas and Anglaret, 1999; Puig-Kroger et al., 2000; Valentin et al., 2001; Zhao et al.,
2004; Kandilci and Grosveld, 2005; Rizo, 2006; Gallay et al., 2007; Ramsay and Gribben,
2009; Dang et al., 2010; Heddleston et al., 2012).

5 Discussion
As clearly demonstrated at Efron (2010), the empirical null distribution is critical for the
appropriate control of false positives in the significance analysis of current large-scale
biomedical data. The proposed three geometric modeling methods based on the mixture
model are easy to implement and have shown very competitive performance in the
simulation and application studies. Overall the central moment matching approach has the
best performance. It can be very easily computed and does not need any tuning parameter
selection. When we do not have very strong dependence among the test statistics, the linear
regression and KL distance approaches have comparable performance as the central moment
matching.
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Highlights

1. A flexible modeling approach to estimate empirical null distribution for
appropriate control of false positives

2. Detailed simulation studies demonstrating the very competitive performance of
the proposed method

3. Applications to two microarray data illustrating the favorable performance of
the proposed method
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Figure 1.
Estimated FDR over 500 simulations
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Figure 2.
Estimated local FDR over 500 simulations
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Figure 3.
Pairwise gene correlations for the prostate cancer data
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Figure 4.
Pairwise gene correlations for the prostate cancer data
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Figure 5.
Estimated FDR of differential expression detection for the leukemia data
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Figure 6.
Estimated local FDR of differential expression detection for the leukemia data
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Table 2

Empirical null distribution and FDR estimates for prostate cancer data.

θ̂0 μ̂0 σ̂0

locfdr 0.696 −0.233 4.887 0.354

mcm 0.524 −0.141 3.658 0.054

mlr 0.550 −0.159 3.834 0.079

mkl 0.557 −0.161 3.887 0.087
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Table 3

Significantly enriched KEGG pathways for the top 223 genes identified by the nmix.

KEGG pathway # genes p-value locfdr p-value

leukocyte transendothelial migration 244/8 2.0e-5 5.0e-3

biosynthesis of unsaturated fatty acids 37/3 7.5e-5 6.2e-4

glycine serine and threonine metabolism 51/3 2.6e-4 2.2e-2

regulation of actin cytoskeleton 477/9 7.3e-4 2.1e-2

inositol phosphate metabolism 128/4 1.1e-3 2.0e-2

tight junction 268/6 1.3e-3 1.4e-3

phosphatidylinositol signaling system 178/4 4.7e-3 4.7e-2

glioma 178/4 4.7e-3 8.7e-3

hematopoietic cell lineage 111/3 4.8e-3 1.6e-3

cell adhesion molecules cams 255/5 4.8e-3 1.1e-1

vibrio cholerae infection 112/3 4.9e-3 1.4e-2

long term potentiation 180/4 5.0e-3 4.8e-2

calcium signaling pathway 367/6 7.4e-3 6.5e-3
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Table 4

Significantly enriched KEGG pathways for the top 165 genes identified by the locfdr.

KEGG pathway # genes p-value nmix p-value

biosynthesis of unsaturated fatty acids 37/2 6.2e-4 7.5e-5

tight junction 268/5 1.4e-3 1.3e-3

hematopoietic cell lineage 111/3 1.6e-3 4.8e-3
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