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Abstract

The ability of Mycobacterium tuberculosis (Mtb) to survive in low oxygen environments enables

the bacterium to persist in a latent state within host tissues. In vitro studies of Mtb growth have

identified changes in isocitrate lyase (ICL) and malate synthase (MS) that enable bacterial

persistent under low oxygen and other environmentally limiting conditions. Systems chemical

biology (SCB) enables us to evaluate the effects of small molecule inhibitors not only on the

reaction catalyzed by malate synthase and isocitrate lyase, but the effect on the complete

tricarboxylic acid cycle (TCA) by taking into account complex network relationships within that

system.

To study the kinetic consequences of inhibition on persistent bacilli, we implement a systems-

chemical biology (SCB) platform and perform a chemistry-centric analysis of key metabolic

pathways believed to impact Mtb latency. We explore consequences of disrupting the function of

malate synthase (MS) and isocitrate lyase (ICL) during aerobic and hypoxic non-replicating

persistence (NRP) growth by using the SCB method to identify small molecules that inhibit the

function of MS and ICL, and simulating the metabolic consequence of the disruption.

Results indicate variations in target and non-target reaction steps, clear differences in the normal

and low oxygen models, as well as dosage dependent response. Simulation results from singular

and combined enzyme inhibition strategies suggest ICL may be the more effective target for
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chemotherapeutic treatment against Mtb growing in a microenvironment where oxygen is slowly

depleted, which may favor persistence.
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1. Introduction

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is able to

persist in host tissues in a non-replicating persistence (NRP) or latent state, with 2 billion

people estimated to serve as a reservoir for the bacterium [Jasmer et al., 2002]. This presents

a challenge in the treatment of TB and latent TB specifically, which has a re-activation rate

of ten percent for individuals with normal immune systems, higher for those with

compromised immune systems. Previous and current studies of Mtb attempt to identify and

analyze mechanisms that enable the bacterium to survive within a presumably low oxygen,

low nutrient, and acidic microenvironment created as a result of host-response to infection

[Cosma, et al. 2003; Deb, et al. 2009; Schnappinger, et al. 2006]. Researchers have used

theoretical models and quantitative analysis of Mtb metabolism and latency-associated

biochemical pathways to integrate empirical data into models that can provide additional

insight on how various mechanisms interact to enable the bacilli to survive under harsh

physiological conditions [Belta, et al. 2003; Beste, et al. 2007; Singh and Ghosh, 2006].

Computational models that analyze the impact of enzyme inhibition on Mtb fatty acid and

iron metabolism pathways, and consequentially on Mtb growth, have been developed using

dynamic flux balance analysis methods to capture the metabolic consequences of inhibition

[Fang et al., 2009; Fang et al., 2011]. Improving and expanding the level of chemistry

awareness in these models through the inclusion of cheminformatics and pharmacokinetics

data in theoretical models and analysis platforms will allow scientists to explore possible

means for disrupting metabolic mechanisms that enable Mtb persistence. Systems chemical

biology (SCB), the integration of systems biology and chemical biology [Oprea, et al 2007],

and computational systems biology, recently described in [Oprea, et al. 2011], provide tools

for developing SCB platforms for analysis of biological systems. In this work we use the

SCB methodology to study the interruption of malate synthase and isocitrate lyase in Mtb

during aerated growth and low oxygen growth resulting in non-replicating persistence

(Figure 1).

These two enzymes are part of Mtb’s glyoxylate bypass, a particularly attractive therapeutic

target due to the importance of this pathway to Mtb survival during a persistent infection and

the absence of this pathway in mammalian cells [Smith, et al., 2003]. Combining our

understanding of metabolic pathways that contribute to Mtb survival with information on

how small molecules and chemotherapeutic agents disrupt these pathways will aid in the

development of more effective methods to counter and reduce TB associated fatalities.
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1.1 Metabolism and Mtb Persistence

Studies of Mtb metabolism indicate that the glyoxylate bypass, which consists of two

reaction steps catalyzed by isocitrate lyase (ICL, gene icl) and malate synthase (MS, gene

glcB), is a key metabolic pathway that may enable Mtb to adapt to low nutrient conditions

and low oxygen or hypoxic conditions [Smith, et al. 2003; Wayne and Hayes, 1996; Wayne

and Sohaskey, 2001]. During growth on glucose, the tricarboxylic acid cycle (TCA) cycle

uses carbon moieties produced through glycolysis to generate reducing agents (NADH,

FADH2) that are used to produce cellular energy in the form of ATP by way of the electron

transport chain (ETC) and oxidative phosphorylation [Nelson and Cox, 2005]. The

generation of reducing agents for oxidative phosphorylation through the TCA cycle requires

oxidizing agents (NAD, FAD), which are proportionately regenerated during oxidative

phosphorylation and are important metabolic cofactors. In addition, oxaloacetate and 3-

ketoglutarate generated in the TCA cycle can feed into the amino acid biosynthesis pathway.

During low nutrient and low oxygen conditions Mtb presumably needs alternative

mechanisms for generating sufficient cellular energy and regenerating redox and cofactor

molecules.

The Wayne in vitro model of non-replicating persistence (NRP) suggests that up regulation

of ICL may replenish oxidative cofactors through alternative NAD generation pathways

activated in the oxygen limited bacilli [Wayne and Lin, 1982; Wayne and Hayes, 1996;

Wayne and Sohaskey, 2001]. Wayne and colleagues observed that during hypoxic growth

conditions isocitrate lyase (ICL) increased five-fold, however a comparable increase in the

second enzyme in the pathway, malate synthase (MS) was not observed. Thus they

hypothesized that the increase in ICL and subsequent increase in glyoxylate may serve to

replenish NAD by way of the glyoxylate-to-glycine (GtG) shunt. The observed ten-fold

increase in glycine dehydrogenase (GDH), the key enzyme in the GtG shunt, during slow

stirred NRP growth further substantiated their argument. An alternative explanation suggests

that the glyoxylate bypass may be used to generate malate to move into gluconeogenesis,

which would presumably replenish NAD [Smith, et al. 2003].

While increase in glyoxylate may partially serve to replenish NAD, low nutrient conditions

would reduce the carbon-containing molecules entering the TCA cycle through the

glycolysis pathway. Glycolysis-produced pyruvate is converted to acetyl-CoA, and acetyl-

CoA enters the TCA cycle. Mtb’s mycolic acid cell wall may reduce the reliance on

glycolysis in favor of beta-oxidation for production of acetyl-CoA via fatty acid metabolism.

The glyoxylate pathway combined with malate synthase conversion of glyoxylate to malate

allows Mtb to bypass two energy-requiring steps of the standard TCA cycle while producing

the necessary intermediates to maintain the cycle [Smith, et al. 2003]. In addition the bypass

conserves carbon while producing necessary biosynthetic precursors such as oxaloacetate,

an important substrate in the synthesis of amino acids. Therefore both glyoxylate and

malate, and by extension isocitrate lyase and malate synthase, are important for sufficient

regeneration of oxidizing cofactors for energy production and conservation of carbon

moieties during Mtb growth under low oxygen and low nutrient conditions. We explore

consequences of disrupting the function of Mtb’s malate synthase and isocitrate lyase

enzymes during aerobic active growth and anaerobic NRP growth using the SCB method to
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study how small molecules can inhibit the function of these two enzymes. We simulate the

metabolic consequences of the disruption and evaluate how addition of small molecules

impacts metabolites required for bacterial survival.

2. Materials and Methods

As described by [Oprea, et al. 2011] the goal of computational SCB is to develop platform

tools that integrate cheminformatics and systems biology data acquisition, processing, and

integration into a theoretical framework for scientific exploration. In this study we apply two

key computational platforms used in SCB: 1) modeling and simulation of Mtb’s TCA cycle

and glyoxylate bypass network; 2) use of cheminformatics to perform virtual screening of

inhibitory molecules that interact with enzymes.

2.1 Simulating Mtb during active growth and non-replicating persistence

We develop a theoretical model of the TCA cycle, glyoxylate bypass, and the glyoxylate-to-

glycine shunt (depicted in Fig.1, reactions listed in Table 1) based on the Singh and Ghosh

model, the Wayne NRP model, and data from Beste, et al.’s reconstructed metabolic

network of Mtb [Singh and Ghosh, 2006; Wayne and Hayes, 1996; Beste, et al. 2007].

The model explicitly incorporates NAD/NADH and FAD/FADH2 substrates and uses

updated kinetic parameters from the BRENDA Enzyme database and empirical data on Mtb

growth under low oxygen conditions [Scheer, et al., 2011; Wayne and Hayes, 1996; Smith,

et al. 2003]. We use traditional Michaelis-Menten assumptions [Nelson and Cox, 2005] to

determine reaction rate equations. Parameters are based on values used in the Singh-Ghosh

model, growth rates and conditions reported for the Wayne NRP model, or kinetic values

specified in the BRENDA Enzyme Database. We use the relation VMax = Kcat × Etotal,

where the enzyme concentration used in the simulation is Etotal × 10−2, making the reaction

rate (e.g. for S=P reaction): . To capture empirically observed fold

changes in the glyoxylate bypass enzymes (ICL, MS, GDH) due to growth under low

oxygen conditions we multiply V by the fold change value. We capture oxygen-mediated

regeneration of NAD/FAD by approximating the net effect of oxidative phosphorylation

using the following stoichiometric relation: NADH + ½ O2 = NAD; FADH2 + ½ O2 = FAD.

The relative amount of available oxygen, [O2], is determined using an initial oxygen

concentration of 8.0e-5mM and oxygen depletion data for Mtb grown under aerobic, slow-

stirred hypoxic, and vigorously agitated hypoxic conditions reported in the Wayne NRP

models. The initial oxygen concentration value was calculated as twice the KM value of O2

for the Cytochrome C oxidase (EC 1.9.3.1) as reported in BRENDA for Helicobacter pylori.

We use a circuit based simulation platform, BioXyce, to implement the model [May and

Schiek, 2009; May 2011]. At the cellular level, biochemical pathways are modeled as

electrical circuits where signals are produced, propagated and consumed. BioXyce uses the

following equivalents: chemical mass as charge, mass flux as electric current, concentration

as voltage, stoichiometric conservation as Kirchhoff’s voltage law, and mass conservation as

Kirchhoff’s current law. With BioXyce, we can focus on subsystems as described in this

May et al. Page 4

Comput Biol Chem. Author manuscript; available in PMC 2014 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



work as well as simulate large control networks consisting of entire cells, heterogeneous,

and homogeneous cell populations.

2.2. The Cheminformatics Workflow

The second aspect of computational SCB used in this work is the use of an automatable

cheminformatics pipeline to screen for small molecule inhibitors of the malate synthase

enzymes and identification of critical parameters associated with the inhibitors. Figure 2

illustrates the workflow used to obtain information regarding the ligand-protein interactions

of interest in this work:

First we perform searches in WOMBAT and SciFinder using names or Enzyme Commission

(EC) numbers of the enzymes in order to retrieve small molecules with relevant biological

activity. We consider different protonation states for the molecules. Most of the compounds

have a carboxylic acid. Using the Omega software package (OpenEye Scientific Software,

Santa Fe, NM) [Boström, J. et al 2003; Hawkins 2010, 2012] we generate three-dimensional

conformations for the set of compounds. For enzymes in the glyoxylate cycle, we use the

Protein Data Bank (PDB) as the source for 3D structures of malate synthase (2GQ3) and

isocitrate lyase (1F8M). Mutations in the sequence of each protein are checked by aligning

them in ClustalW with the reference amino acid sequences. Next we prepare the enzymes

and perform docking analysis (Fig. 3) with FRED (version 2.1 (OpenEye Scientific

Software, Santa Fe, NM) [McGann, M. et al 2003] generating a total of 500 poses and

saving 20 alternative poses for each molecule after using the chemgauss3 scoring function,

keeping default values to the remaining parameters. Two docking conditions are tested: (1)

after removal of the water molecules in the active pocket; (2) considering the water

molecules in the pocket.

Before running any docking study using crystallographic water molecules, we analyzed the

enzyme pockets with GRID v. 22 (Molecular Discovery Inc., London) to better understand

the environment of the active pockets and to determine the most important crystallographic

water molecules to keep during docking. This was accomplished by using a set of virtual

probes in default mode (water, carbonyl oxygen, amide nitrogen, hydrophobic and Csp2) to

compute the interaction energies between the probe and the amino acids from the enzyme at

the lattices of a grid cage.

The docking results are used to determine how well a candidate ligand fits in the enzyme

pocket and the plausibility of the putative inhibitor pose. This process is used to identify

potential inhibitors of the enzyme of interest, which are then incorporated into the

theoretical model of the system described in Section 2.1.

3. Results

Systems chemical biology (SCB) enables us to evaluate the effects of small molecule

inhibitors on the reaction catalyzed by malate synthase and isocitrate lyase, as well as the

indirect effect of inhibition on the complete TCA cycle by taking into account complex

network relationships within that system. We first use the SCB platform to perform a

chemistry-centric analysis of key metabolic pathways believed to impact Mtb latency. The
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resulting cheminformatics models can help identify potential inhibitors of this pathway

based on available chemical, biological and structural information. Finally, we incorporate

the inhibitors into our metabolic network model to enable comparison of normal and small

molecule-inhibited Mtb growing under aerated and low oxygen conditions, conditions

selected to replicate the Wayne aerated/NRP experimental system.

3.1 Identification of small molecule inhibitors using SCB-related virtual screening studies

To enable chemistry cognizance in the Mtb pathway simulations, we apply virtual screening

as previously described to identify small bioactive molecules. We take advantage of the

presence of 3D structures (from X-ray crystallography) for two of the enzymes in the Mtb

glyoxylate shunt, namely malate synthase and isocitrate lyase. In this section we will

illustrate the process using our analysis of the MS enzyme. The substrate binding site in

each enzyme is evaluated using the GRID program. Malate synthase (PDB entry 2GQ3) has

an active site that accommodates the substrate (glyoxylate) and the co-factor, acetyl-CoA, in

order to release malate and CoA (Fig. 4).

This site, already subjected to investigation [Mdluli and Spigelman, 2006], features a

relatively small number of hydrophobic interactions, which suggests that classical inhibitor

design methods may prove unsuccessful. Besides that, we detected another cavity in the

vicinity of the catalytic site, which may function as an allosteric site and is more

hydrophobic. This potentially new allosteric site may be subject to the design of novel

modulators in the future, especially because no allosteric modulators of malate synthase

have been described to date. Preliminary docking studies on the well-known active site

using FRED correctly placed malate in the malate synthase binding site, anchoring the

molecule by strong ionic interactions between the carboxylate and Mg2+ and the hydrogen

bonds formed with the surrounding water molecules.

Comparing Figure 5a and 5b, our docking results clearly suggests that bromopyruvate

competes with malate for the substrate binding pocket of malate synthase and does not

appear to interfere with coenzyme binding. We can therefore infer a simple competitive

inhibition mechanism in our mathematical models. In addition to our cheminformatics

analysis, using data retrieved from the literature, we identified and simulated four compound

inhibitors of malate synthase and inhibitors of isocitrate lyase (ICL1 and ICL2). The

inhibitors and their associated KI values are listed in Table 2 and Table 3, respectively.

3.2 Metabolic Consequence of Malate Synthase and Isocitrate Lyase Inhibition in Mtb

Emulating the in vitro Wayne NRP model, we simulate Mtb metabolism during growth in

well-aerated, slow-stirred hypoxic, and vigorously agitated hypoxic conditions. These

conditions result in exponential growth, exponential growth followed by NRP, and

exponential growth followed by death, respectively. The vigorously agitated model is used

as the negative control versus the well-aerated/non-inhibited system and the slow-stirred/

non-inhibited system, which represents our positive active growth control and our positive

NRP/latent growth control. We simulate NRP Mtb growth using enzyme activity rates

observed in empirical studies. Specifically we increase GDH (EC 1.4.1.10) ten fold, ICL
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(EC 4.1.3.1) four fold, and reduce MS (EC 2.3.3.9) two-fold [Wayne and Hayes, 1996;

Smith, C., et al., 2003]. We compare our inhibition models for these systems.

3.2.1 Results of SCB analysis of Mtb TCA/Glyoxylate Bypass during inhibition
of malate synthase—Using our theoretical model, we analyze the TCA/glyoxylate cycle

in the absence of inhibitory molecules and during inhibition of MS by the molecular

substrates identified in Table 2. The simulation employs a simple competitive inhibition

model, where the KM is increased by [I]/KI ([I] is the concentration of the inhibitor and KI is

the inhibition constant). The simulation framework allows the incorporation of more

complex inhibition models. Addition of each inhibitor is individually simulated and we

compare the results to the non-inhibited controls. To enable comparison, we normalize

results to the non-inhibited controls for the well-aerated, active growth model (Figure 6) or

the slow-stirred, NRP growth model (Figure 7). Figures 6 and 7 show the effects of MS

inhibition on components of the TCA/glyoxylate cycle during aerated growth and slow-

stirred/hypoxic growth where oxygen is slowly depleted from the system.

Figures 6A–B and 7A–B show the concentration of glyoxylate and glycine (mM) over a ten-

day simulation period for each of the MS inhibitors, where the concentration of the inhibitor

is 11.4 mM which equals 100x the initial concentration of glyoxylate. In the figure legends

the following abbreviations are used: control/non-inhibited (Non), bromopyruvate (Bromo),

glycolate (Glyco), oxalate (Oxal), phosphoenol-pyruvate (Ppy). Simulation results from

each inhibition model are normalized against the control, non-inhibited model for the

respective environmental condition. To compare the impact of the various inhibitors, we

calculate the average relative fold change by taking the mean of the log2 normalized

concentration value for each metabolite. Figures 6C–F and 7C–F show the average relative

fold difference for metabolites from the inhibited systems for simulation times greater than

40h; this time frame captures the tail end of logarithmic replication through both phases of

NRP in the slow-stirred system [Wayne and Hayes, 1996]. In the graphs a value of zero

indicates parity with the control, non-inhibited system. Figures 6C and 7C show the system

for inhibitor concentration equal to 1x (0.114 mM) the concentration glyoxylate and 6D and

7D show the system for the 100x inhibition level. Both the aerated and slow-stirred

simulation results show significant increase in glyoxylate and glycine levels when MS is

inhibited, with the strongest inhibitor bromopyruvate resulting in the largest increase in the

concentration of the metabolites. Additionally we observe a significant dosage-dependent

increase between the 1x and 100x inhibition levels as clearly depicted in 6C–D and 7C–D.

Figures 6E–F and 7E–F show relative fold-change values for metabolites with less

pronounced variations in the inhibited system, including malate, oxaloacetate, citrate,

NADH, and NAD. The metabolites directly downstream of the inhibited MS such as malate

experience a net increase for some inhibitors in the aerated and for all inhibitors in the slow-

stirred systems. Increasing inhibitor levels to 100x results in an overall net decrease in

malate, oxaloacetate, citrate and NADH. However there is a slight net increase in NAD

relative to the control. For both the aerated and slow-stirred model the NAD increase does

not result in a proportional decrease in NADH, and results in a disruption of the

NAD:NADH ratio. Inhibition of MS in the aerated system resulted in a slightly greater

change in glyoxylate and glycine than in the slow-stirred system. The opposite holds for
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metabolites downstream of MS, where the greater decrease occurs in the slow-stirred

system.

3.2.2 Results of Analysis of Mtb TCA/Glyoxylate Bypass during inhibition of
isocitrate lyase—We investigate inhibition of ICL1 and ICL2 using the inhibitors listed

in Table 3. ICL1 and ICL2 catalyze the reaction ICIT=GLX+SUCC, a key biochemical

process in the TCA cycle. As in the MS-inhibitor system we compare dosage response and

the average log2 normalized concentration values for the aerated and slow-stirred inhibition

models normalized against their respective non-inhibited controls. Figures 8A–D and 9A–D

show the concentration of glyoxylate, glycine, malate, and oxaloacetate (mM) over a ten-day

simulation period for each of the ICL1/ICL2 inhibitors, where the concentration of the

inhibitor is 6.0 mM, which equals 100x the initial concentration of isocitrate. In the figure

legends the following abbreviations are used: control/non-inhibited (Non), 3-nitropropionate

(Np3), bromopyruvate(Bromo), itaconic anhydride (Ith), itaconate (Ita). We observe notable

inhibition of glyoxylate and glycine levels at the 100x inhibitor concentration for both the

aerated and low oxygen models. There are observable inhibitor-mediated reduction of

malate and oxaloacetate (Figures 8C–D and 9C–D) for both simulated conditions.

Figure 8E–H and Figure 9E–H compare the average relative fold change at 1x and 100x

inhibition levels using the normalized metabolite concentrations for the aerated and slow

oxygen depletion conditions, respective. Fold changes in 8E–H are for simulation times

greater than 40h and fold changes in 9E–H are for simulation times greater than 3h to

capture the region with greater variation in malate and oxaloacetate for the slow-stirred

system (Figure 9C and D). In general, we observe consistent correlation between the

strength of the inhibitor and the inhibition impact on metabolic substrates, such that the

strongest inhibitor leads to the greatest decrease for each metabolite. However we clearly

see that at 1x inhibition levels we observe an unexpected net increase in the level of

metabolites. This net increase becomes a net decrease with respect to the non-inhibited

systems at the 100x inhibition level, demonstrating the impact of dosage on the system and

potentially the impact of the presence of branched pathways and reaction rates on our ability

to successfully produce a desired chemotherapeutic effect using targeted inhibition. We

discuss this further in Section 4.

In comparing the results from Figure 8 and 9, we note that the inhibition of ICL1/2 has a

greater impact on the slow-stirred/low-oxygen system than the well-aerated system. In

Figures 8F and 9F we observe that ICL inhibition in the slow-stirred model results in a

greater reduction of glycine than in the aerated system. The difference in relative glycine

level occurs although both systems have comparable glyoxylate inhibition levels. We also

observe lower levels of malate, oxaloacetate, citrate, NADH, and NAD in the slow-

stirred/NRP system than in the well-aerated system. These differences may correlate to the

reduction in NADH/NAD recycling coupled to the reduced throughput of the glyoxylate to

glycine shunt as a result of blocking ICL-mediated conversion of isocitrate to glyoxylate.

The GtG shunt is more critical in the slow-stirred model as it mediates the conversion of

NADH to NAD, which can help compensate for the oxygen-related reduction of

NADH/NAD recycling.
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3.2.3 Analysis of Mtb TCA/Glyoxylate Bypass during combined MS and ICL
inhibition—The goal of chemotherapeutic treatment that targets the pathogen is clearly the

elimination of the pathogen. We use our theoretical model to investigate whether a treatment

regimen that targets MS or ICL only versus one that targets both in combination is more

effective at inhibiting the growth of active or NRP Mtb. To compare combined inhibition

with results from our single-inhibition simulations, we run multiple-inhibition simulations

that combine strong, medium, and weak inhibitors of MS and ICL at 100x concentration

levels. In these simulations we treat the non-inhibited aerated model as our control and

compare results to the non-inhibited slow-stirred/NRP system, which represents our

persistence profile, and the non-inhibited rapid oxygen depletion model, which represents

our death profile.

We normalize all simulation output, including the slow-stirred and rapid-oxygen depletion

results, against our aerated control. We compare fold change among all conditions using the

log2 of the mean normalized metabolite concentration value. Figure 10 shows the results of

this study for glyoxylate, glycine, malate, oxaloacetate, citrate, NADH, and NAD for the

aerated model (Figures 10A, C, E) and the slow-stirred model (Figures 10B, D, F) for

simulation times greater than 40h. The figure legends represent the various inhibition

conditions tested with the following abbreviations: strong, medium, and weak MS inhibitors

represented by bromopyruvate(Bro), phosphoenol-pyruvate (Ppy), and glycolate(Gly),

respective; strong, medium, and weak ICL inhibitors represented by 3-nitropropionate

(Np3), itaconate (Ita), and itaconic anhydride (Ith), respective; non-inhibited slow-stirred

(Slw) and rapid-oxygen depletion (Vig) systems.

In Figures 10A–B we observe that glycine levels are increased under environmental

conditions that lead to Mtb persistence (4.1923 fold for Slw) and slightly increased for

conditions that lead to Mtb death (0.0038 fold for Vig). Glyoxylate levels are increased

during Mtb persistence (2.9213 fold for Slw) but decreased during Mtb death (−0.2208 fold

for Vig). During aerated growth, strong inhibition of ICL by Np3 most effectively reduces

the levels of glycine and glyoxylate, reducing levels of these metabolites to well below that

reached under rapid oxygen depletion. Combined inhibition of MS and ICL using a weak

MS inhibitor (Gly) and Np3 reduced glycine and glyoxylate below the levels found in slow-

stirred models while strong MS inhibition significantly increased metabolite levels. Under

slow-stirred conditions only strong ICL inhibition by Np3 reduced glycine and glyoxylate

levels below that of persistent bacteria but not to the level of dying bacteria, suggesting a

more effective inhibition strategy is needed to significantly reduce glyoxylate and reduce

possible GtG shunt mediated generation of NAD.

Other than glycine and glyoxylate, the impact of inhibitors on most of the metabolites in the

aerated model is less pronounced. In Figures 10C and 10E we plot the metabolites for the

inhibited aerated system separately and include the Slw and Vig results in Figures 10D and

10F with the slow stirred system where the fold changes are more pronounced. From Figure

10D we see that fold change between the control, non-inhibited aerated system is greater for

malate, oxaloacetate, and citrate in the Vig system (0.3138, −0.2667, −0.1813, respective)

than the Slw system (0.1000, −0.0543, −0.0365, respective). Under both conditions we see a

positive fold change for malate and a negative fold change for the metabolites downstream
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of malate. The decrease in oxaloacetate and likely subsequent decrease may be attributed to

reduced NAD levels (−0.2793 and −3.6338 fold for Slw and Vig, respective) due to reduced

oxygen-enabled recycling of NADH to NAD (Figure 10E), where NADH levels increased

by 0.6549 and 1.3401 fold for Slw and Vig, respective. Under well-aerated conditions while

the effects of inhibition are relatively minor, there is no increase in malate. Combined

inhibition of MS and ICL by strong inhibitors (Bro/Np3) results in the most effective

reduction of oxaloacetate and citrate. In general inhibition of the slow-stirred system slightly

increases (in the case of malate and NADH) or slightly reduces (for oxaloacetate, citrate,

and NAD) metabolite levels beyond that of persistent Mtb (Slw). While several inhibition

strategies slightly edge the slow-stirred system towards levels found in the Vig system, the

combination of weak MS inhibition and weak ICL inhibition (Gly/Ith) has a slight advantage

over the alternative strategies.

3.2.4 Analysis of Mtb adaptive response during ICL inhibition by 3-
nitropropionate—An expected consequence of drug therapy is the initiation of an

adaptive response by the pathogen to the chemotherapeutic agent. In an extensive study by

Boshoff et al., the genetic response of Mtb to various inhibitory molecules and

environmental stresses was investigated (Boshoff et al., 2004). While the study did not

include response to specific inhibitors considered in our model, molecules that inhibit

enzymes involved in the TCA cycle and the electron transport chain were reported. Results

from the study indicate that triclosan (TRC), a broad-spectrum antibacterial molecule,

inhibits bacterial respiratory enzymes, including inhibition of succinate dehydrogenase.

While we are not directly targeting succinate dehydrogenase in our SCB model, as

simulation results suggest inhibition of isocitrate lyase can negatively impact the bacterial

respiratory system. In response to TRC inhibition, Mtb up-regulates genes in various

pathways including genes involved in the tricarboxylic acid cycle. In supplemental gene

expression (GEO GSE1642) data provided by Boshoff et al., citrate synthase (gltA1/

Rv1131) is increased 1.73 fold six hours following the addition of 50ug of TRC.

Ebel et al., studied the direct consequence of isocitrate lyase inhibition by 3-nitropropionate

in Aspergillus fumigatus (Ebel et al., 2006). In response to inhibition, A. fumigatus increased

expression of the icl promoter in a linear, concentration-dependent manner: y=72.825(x) +

395.97, where x represents the concentration 3-nitropropionate and y is the specific activity

of the icl promoter-coupled β-galactosidase reporter protein. We normalize the equation

using the baseline specific activity of the reporter protein in the absence of the inhibitor

(395.97) and calculate the relative change in icl expression during inhibition. In the presence

of 6 mM 3-nitropropionate, which is the level of inhibitory substrate used in our SCB

models, we estimate a 2.1 fold increase in isocitrate lyase expression, two-hours post-

inhibition in concurrence with sample collection times reported (Ebel et al., 2006).

We investigate the metabolic consequence of Mtb response to indirect inhibitor-induced

respiratory stress and direct inhibition of isocitrate lyase using data from the Boshoff et al.,

and Ebel et al., studies, respective. In Figure 11 we compare the metabolic consequence of

Mtb adaptation to inhibition of isocitrate lyase by 3-nitropropionate for the aerated (Fig.

11A,B) and NRP/slow-stirred system (Fig. 11C,D) to our previous results from the

inhibition models. For glyoxylate and glycine, the two metabolites most impacted by
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inhibition, we note that the adaptive response of Mtb attempts to counteract the effect of

inhibition resulting in an increase in both metabolites. However the adaptive responses

included in our model did not significantly reverse the inhibition phenotype, which is clearly

seen when comparing the results to the non-inhibited models (inset figures).

4. Discussion

In this work we demonstrate the feasibility of using computational systems chemical biology

methods to study the interaction of possible small-molecule inhibitors with Mtb’s malate

synthase and isocitrate lyase, key enzymes that enable the bacterium to persist under

oxidative stress conditions. SCB-related virtual screening provides insight into possible

mechanisms of inhibition using docking-based studies of small-molecule displacement of

substrates in the binding pockets of the enzyme. Docking-based screening can help refine

inhibitor candidates and identify molecules capable of disrupting enzymatic activity. Further

work is needed to effectively quantify and directly link screening results to inhibition

parameters for SCB simulation studies.

The major challenge of the proposed systems chemical biology approach is in creating a

strong link between the systems biology model and the cheminformatics counterpart. As

discussed in this work, the traditional bottom-up systems biology model is composed of

equations that quantify and describe the biochemical outcome of inhibiting Mtb’s TCA and

glyoxylate bypass pathway when using known enzymatic inhibitors and previously

identified inhibition constants. However, such a model does not include the chemical

information that is required when planning novel molecules or analogues with the same aim.

Our first attempt to address this problem consisted of the study of two key enzymes (ICL

and MS) and their inhibitor molecules using docking, a fast approach that is commonly used

in the initial steps of the virtual screening step. We have shown results of inhibitors docked

into the active site of the malate synthase in order to understand the chemical interactions

between the ligands and the macromolecule in comparison with the X-ray crystallographic

structure (Fig. 5). Docking results can enable the prediction of novel molecules as putative

enzymatic inhibitors for further SCB analysis. As seen in Fig. 5b, it is easily perceived that

the bromopyruvate molecule is a competitive inhibitor that binds into the substrate site and

that it does not cause any perturbation to the coenzyme. Results of the docking study

provide an important structural piece of information that supports the proposed mode of

action and also provides valuable mechanistic data directly linking our cheminformatics

workflow and our systems biology model.

Usually the docking program gives reasonable poses, but the main drawback of this

approach is the scoring function (Warren 2006, Huang 2010). This limitation impairs

confident quantitative analyses of the energetics involved in the system and allows, at best,

semi-quantitative (or comparative) analyses pointing to a trend in affinity/inhibition of a set

of molecules. One possible alternative to this approach could be the molecular modeling of

the system by means of molecular dynamics (MD). Nonetheless, MD is not yet designed for

a fast trial of the chemical space like docking and it is often applied on further steps of the

drug discovery pipeline, when seeking the influence of more subtle chemical modifications

of new derivatives (Durrant 2011). Even if a more complex approach like the Free Energy
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Perturbation could be applied to the system and ΔG would be determined, it would not

always be straightforward to link Ka (or Kd) to Ki.

With the goal of disrupting Mtb’s ability to survive, results from Section 3.2 provide insight

regarding key consequences of MS and ICL inhibition. First, the results of MS versus ICL

inhibition under common environmental conditions suggest that inhibition of MS has the

greatest metabolic impact on glyoxylate versus malate and downstream metabolites.

However ICL targeting impacts both glyoxylate and malate due to the branching

architecture of the system, which enables multiple pathways from isocitrate to malate

production. Therefore for similar conditions, ICL is more consequential at reducing levels of

malate, which can limit malate mediated gluconeogenesis-based production of NAD.

Additionally ICL inhibition can lead to reduction in oxaloacetate available for amino acid

biosynthesis.

Our second observation based on our model is that variations in the microenvironment

impact the effectiveness of inhibition on malate and downstream metabolites but has less of

an impact on glyoxylate. For both MS and ICL inhibition models, the magnitude of the

relative fold change for malate, oxaloacetate, citrate, NADH and NAD increase under slow-

stirred/NRP conditions; this may be related to the reduction of oxygen-mediated NAD

recycling in the NRP system compounding the effect of the inhibitor. Inhibition disrupts

both systems’ NAD:NADH ratio, the net effect being lower NADH levels and slightly

increased NAD levels. Under NRP, the GtG shunt activity increases ten fold, further

depleting NADH to produce NAD. Since NAD availability impacts reactions relevant for

malate and oxaloacetate production we observe a greater variation in these metabolites

during MS inhibition when the alternative pathways to malate production require NAD to

effectively function.

Our third observation from the combined inhibition model is that targeting ICL directly

impacts the glyoxylate to glycine shunt and limits Mtb’s ability to use this alternative

pathway to replenish NAD. By comparing inhibitor models to the three non-inhibited model,

results suggest that a strong ICL inhibitor is the more effective treatment to move the

metabolic profile of persistent Mtb towards that of dying Mtb represented by the vigorously

agitated model. While we significantly reduced glyoxylate and glycine using Np3, more

effective strategies are needed to significantly impact other metabolites such as oxaloacetate

and NAD co-factor.

Lastly, our SCB study of malate synthase and isocitrate inhibition demonstrates the complex

interplay between the architecture and kinetics of a biochemical network and results of

system inhibition. In addition to the bacterium’s use of alternative pathways to compensate

for inhibited reactions, the kinetics of the system likely contributes to unanticipated

outcomes. In addition to variations due to the strength of the inhibitor, the system response

at 1x versus 100x yielded different outcomes. During ICL inhibition (Figures 8 and 9) at the

1x level there is a net increase of all metabolites except NAD and at the 100x inhibition

level we observe a net decrease for all metabolites except NAD, which has a small net

increase. The opposing behavior at 1x versus 100x is partly due to isocitrate functioning as a

branch point in our TCA cycle model and the relative kinetic rates of the reactions that

May et al. Page 12

Comput Biol Chem. Author manuscript; available in PMC 2014 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



connect isocitrate and malate. If we consider for example the increase in glyoxylate at low

inhibitor concentrations, we postulate that during ICL inhibition the systems ability to use

alternate NAD and FAD dependent reactions to produce succinate and ultimately malate

may lead to comparatively higher levels of malate than glyoxylate, making the inverse

malate to glyoxylate reaction more favorable. The reaction rates associated with these

reactions provide some support for this argument. The forward Vmax for malate synthase is

0.3333 mM/s and inverse reaction rate for the production of glyoxylate from malate is

0.0033 mM/s. The ICL1/2 reaction rates are comparable to the inverse MS rates, with the

forward Vmax equal to 0.0049 mM/s and 0.0065 mM/s, respect. With [Glyoxylate] ≅
3e−6mM and [Malate] ≅ 1.84e−2, this increases the favorability of the reverse reaction.

Furthermore the Vmax of isocitrate dehydrogenase 1/2 (ICD1/2), which converts isocitrate

to alpha-ketoglutarate (AKG) is two-orders of magnitude greater than ICL1/2 (rates for

ICD1/2 are 0.17 mM/s and 0.166 mM/s, respective).

Finally as an extension of our SCB studies, we consider how an adaptive response by the

bacteria to inhibitory or respiratory stress counteracts the metabolic impact of inhibition in

the well-aerated and NRP system. We found that while notable increases in metabolites such

as glyoxylate and glycine occur, the original non-inhibited levels were not reached. These

results demonstrate the need to consider not only the interaction of a small-molecule and the

target enzyme-reaction subsystem, but also the consequential response of the bacterial

system that works to reverse the effects of chemotherapeutic agents.

SCB analysis of pertinent pathogen biochemical systems can ultimately enable us to study

potential side effects of small-molecule perturbations on target and non-target pathways for

various types of inhibitors, dosage levels, and micro-environmental conditions. As we

demonstrate in this work, inhibition can result in unexpected system response due to

structural and dynamic properties of the network. Use of computational SCB tools and

methods can advance in silico tools used to support identification and predictive

characterization of candidate small molecules. Insights from SCB based studies can aid in

the development of novel therapeutics for challenging diseases like latent TB infection or

potentially identify new uses for existing chemotherapies in the treatment of disease.
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Highlights

• SCB related virtual screening and docking studies can provide mechanistic

insight on inhibition.

• Unlike glyoxlate response, inhibitor impact on malate seems microenvironment

dependent.

• For similar microenvironments, ICL versus MS inhibition is metabolically more

consequential.

• Strong ICL inhibition causes metabolite levels in persistent Mtb towards levels

in non-viable Mtb.

• SCB points to a complex interplay between network structure, kinetics, and

therapeutic outcome.
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Figure 1.
Computational Systems Biology Workflow.
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Figure 2.
Cheminformatics virtual screening workflow.
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Figure 3.
Structural overview of the enzyme malate synthase (PDB code: 2GQ3) showing the substrate and cofactor pockets (blue

surface). Enzyme is shown in green ribbons.
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Figure 4.
Translucent view of the binding pockets surface of malate synthase showing malate (left), coenzyme A (right), water molecules

and magnesium (spheres). Part of the CoA side chain is pointing outward.
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Figure 5.
Superposition of malate (a) and bromopyruvate (b) from the crystalographic X-rays (gray carbons) and the docking result

(carbons in orange) into the malate synthase.
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Figure 6.
Simulation results for SCB analysis of malate inhibition of Mtb during aerated growth. Greatest impact of MS inhibition on

glyoxylate and glycine concentration for inhibitor levels at 100x the initial concentration of glyoxylate (A and B; legend -o-

Non, -square-Bromo, -x-Glyco, -inverted triangle- Oxal, -star- Ppy). Impact of inhibitor observed but less pronounced for

malate, oxaloacetate, citrate, NADH, and NAD. Dosage dependent difference observed for 1x (C, E) versus 100x inhibitor

concentration (D, F).
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Figure 7.
Simulation results for SCB analysis of malate inhibition of Mtb during aerated growth. During slow O2 depletion, greatest

impact of MS inhibition is on glyoxylate and glycine concentration for inhibitor levels at 100x the initial concentration of

glyoxylate (A and B; legend -o- Non, -square-Bromo, -x-Glyco, -inverted triangle- Oxal, -star- Ppy). Impact of inhibitor

observed but less pronounced for malate, oxaloacetate, citrate, NADH, and NAD. Dosage-dependent difference observed for 1x

(C, E) versus 100x inhibitor concentration (D, F).
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Figure 8.
During well aerated growth, ICL inhibition at 100x the initial concentration of isocitrate impacts several metabolites, with

significant impact on glyoxylate(A), glycine (B), and notable reduction on malate (C) and oxaloacetate (D). (A–D legend -o-

Non, -square-Np3, -x-Bromo, -inverted triangle- Itaah, -star- Ita). Figures E–G compare dosage dependent impact, 1x (E,G) and

100x (F,H).
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Figure 9.
During slow O2 depletion, ICL inhibition at 100x the initial concentration of isocitrate impacts several metabolites, with

significant impact on glyoxylate(A), glycine (B), and notable reduction on malate (C) and oxaloacetate (D). (A–D legend -o-

Non, -square-Np3, -x-Bromo, -inverted triangle- Ith, -star- Ita). Figures E–G compare dosage dependent impact, 1x (E,G) and

100x (F,H).
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Figure 10.
Results of combined MS and ICL inhibition at 100x impacts several metabolites during simulated growth of Mtb under well

aerated (A, C, E) and slow O2 depletion (B, D, F) conditions. Changes in the average metabolite concentrations normalized

against the well-aerated, non-inhibited control are evaluated in comparison to the non-replicating persistence model (Slw) and

the rapid oxygen depletion model where Mtb does not successfully replicate.
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Figure 11.
Simulation of Mtb response and adaptation to inhibition by Np3. Comparison of inhibited metabolite (square) with metabolite

levels when we account for Mtb genetic response (-triangle); inset figures compare results to non-inhibited model (-o-) for the

aerated (A–B) and NRP (C–D) systems. When we account for Mtb adaptive response we observe higher levels of glyoxylate

(A,C) and glycine (B,D), than in our initial inhibition models.
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Table 1

Reactions included in the model of TCA, glyoxylate, and GtG shunt.

Enzyme Name Reaction

citrate synthase (CS) 1 OA + 1 ACCOA = 1 CIT + 1 COA

aconitase (ACN) 1 CIT = 1 ICIT

isocitrate dehydrogenase 1 (ICD1) 1 ICIT = 1 AKG

isocitrate dehydrogenase 2 (ICD2) 1 ICIT = 1 AKG

alpha-ketoglutarate decarboxylase (KGD) 1 AKG = 1 SUCCSAL

succinic semialdehyde dehydrogenase (SSADH) 1 SUCCSAL = 1 SUCC

succinate dehydrogenase (SDH) 1 SUCC + 1 FAD = 1 FUM + 1 FADH2

fumarase (FUM) 1 FUM = 1 MAL

Malate dehydrogenase (MDH) 1 MAL + 1 NAD = 1 OA + 1 NADH

isocitrate lyase 1 (ICL1) 1ICIT=1GLX+1SUCC

isocitrate lyase 2 (ICL2) 1ICIT=1GLX+1SUCC

Malate synthase (MS) 1 GLX + 1 ACCOA = 1 MAL + 1 COA

glycine dehydrogenase (GDH) 1 GLX + 1 NADH = 1 GLY + 1 NAD
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Table 2

Inhibitors of malate synthase.

Compound KI (uM)a

Bromopyruvate 60

Phosphoenol-pyruvate 200

Oxalate 400

Glycolate 900

a
Data from [Smith, C. V. et al. 2003]
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Table 3

Inhibitors of isocitrate lyase.

Compound KI ICL1 (uM)a KI ICL2 (uM)a

Bromopyruvate 120 710

3-nitropropionate 3 110

Itaconate 120 220

Itaconic anhydride 190 480

a
Data from [Bentrup, K., et al. 1999; Scheer, M., et al. 2011]
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