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Abstract

Motivation: Sequencing-based methods to examine fundamental features of
the genome, such as gene expression and chromatin structure, rely on inferences
from the abundance and distribution of reads derived from Illumina sequencing.
Drawing sound inferences from such experiments relies on appropriate mathemat-
ical methods to model the distribution of reads along the genome, which has been
challenging due to the scale and nature of these data.

Results: We propose a new framework (SRSFseq) based on Square Root
Slope Functions shape analysis to analyse Illumina sequencing data. In the new
approach the basic unit of information is the density of mapped reads over region
of interest located on the known reference genome. The densities are interpreted
as shapes and a new shape analysis model is proposed. An equivalent of a Fisher
test is used to quantify the significance of shape differences in read distribution
patterns between groups of density functions in different experimental conditions.
We evaluated the performance of this new framework to analyze RNA-seq data
at the exon level, which enabled the detection of variation in read distributions
and abundances between experimental conditions not detected by other methods.
Thus, the method is a suitable supplement to the state of the are count based tech-
niques. The variety of density representations and flexibility of mathematical de-
sign allow the model to be easily adapted to other data types or problems in which
the distribution of reads is to be tested. The functional interpretation and SRSF
phase-amplitude separation technique gives an efficient noise reduction procedure
improving the sensitivity and specificity of the method.
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1. Introduction

Second-generation sequencing technologies, such as Illumina sequencing, has
allowed researchers to discover fundamental features of genomes and their reg-
ulation, organization, and dynamics. For example, sequencing experiments that
examine the dynamics of transcription of genomic DNA into RNA (RNA-seq),
involve the isolation of RNA from populations of cells which are experimentally
processed and sequenced. The generated sequences are often mapped to a ref-
erence genome to identify the genes from which the sequences originated. The
quantification of sequences mapped to each gene are then used to estimate the
level to which each gene is expressed. These gene expression estimates are often
compared between experimental conditions to make inferences about gene expres-
sion differences. This sequence-map-quantify-compare paradigm is the basis for
many functional genomics experiments, including ChIP-seq, DNase-seq, MNase-
seq, and Bisulfite sequencing. The data provided by these experiments are in the
form of genomic coordinates to which the reads are predicted to be derived from,
which number on the order of tens of millions of observations. Because of vari-
ous biological and technical aspects of these experiments, these read distributions
have proved difficult to model (Hayer et al., 2015). While there have been numer-
ous attempts to accurately model these data, nearly all involve reducing data in a
form that summarizes read counts over defined genomic regions, which discards
or significantly reduces information on the spacial distribution of reads.

In the case of RNA-seq or ChIP-seq, which is typically focused on examining
discrete genomic units of genes, these read distributions are generally reduced by
summarizing the number of reads that map to each gene. This approach discards
information about the spacial distribution these reads derive relative to the gene or
exon (Figure 1). While this simplifies the complex data and is more easily mod-
eled, it also loses information that may provide insight on gene expression dynam-
ics that are associated with the shape of the distribution of reads, (e.g as alternative
splicing and variation in transcription start and termination sites, differential exon
usage). This method also suffers from inaccuracies introduced by the presence of
overlapping genes, which may cause inaccurate counting of one gene caused by
the expression of another overlapping gene. Several statistical models have been
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developed to attempt to address these issues, including DESeq2, DEXSeq, Cuf-
flinks, Limma, BaySeq, EBSeq, (Love et al., 2014; Anders et al., 2012; Li et al.,
2015; Trapnell et al., 2012, 2013; Law et al., 2014; Hardcastle and Kelly, 2010;
Leng et al., 2013).

Here, we present the SRSFseq, a new framework for analyzing genomics data
based on second-generation sequencing. The framework interprets the distribution
of read alignments across the genome as shapes. This approach takes into account
information provided by the base-level distribution of the mapped reads in order
to examine variability in the shapes of the read densities over genomic regions. It
takes into account the relative read abundances and the differences in read density
profiles. We show how this framework can be used to identify new differential
expression behaviors and successfully supplement the results established by state-
of-the-art, count based methods.

Figure 1: Next Generation Sequecning (NGS) workflow schematic with highlighted possible vari-
ability biases. The focus of the methods in this article is on redefining steps 4 and 5

In the following sections we show the functionality of the SRSFseq on an ex-
ample of exon level differential expression analysis. The functional interpretation
of the model allows us to use the phase-amplitude separation (Srivastava et al.,
2011) which accounts for additional levels of the noise and the data normaliza-
tion. We utilize the functional F-test (Zhang, 2013) to determine the differential
expression and compare the results with selected popular methods: Cuffdiff, DE-
Seq2 and Limma-voom. Next we propose an alternative extension of the SRSFseq
in application to the shift and the shape change detection in MNase-seq data for
nucleosome positioning.

Figure 2: Obtaining the point pattern data from the mapped reads. The leftmost coordinate of each
read on the reference genome is reported.
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2. Methods

In order to model the distribution of read alignments, first we obtain the read
densities of a specific genomic region of interest (G). This region is assumed to
be common among different samples, e.g. exon, gene, transcription starting site.
The read densities, from now on, are treated as the basic unit of information for
further modelling. In this work to obtain read densities, we are using standard
kernel density estimator applied to coordinates of the mapped reads as seen in
an example in Figure 2. Throughout this paper we will refer to this step as the
filtering. The choice of the density estimation technique, may bear significant
influence on what features of the Next Generation Sequencing (NGS) data are
to be extracted. As a consequence of the filtering step, the data is automatically
normalized.

Summarizing, our approach moves the area of modeling from vector-valued
variables, used in most of the available methods, to infinitely dimensional space
of read densities. The mathematical complexity level is higher, but it is necessary
to benefit from the advanced shape analysis modeling tools to unlock the full
potential of the Next Generation Sequencing.

2.1. Functional ANOVA for read densities
The density normalization (filtering) is essential, as we want to focus to un-

cover new information stored in the NGS results. The density normalization al-
lows us to mod-out all differences coming from discrepancies between number of
mapped reads as well as make the data comparable between experimental sam-
ples. As our normalized data no longer depends on read counts, we expect to
detect different information encoded in the NGS than the count-based methods.
We confirm this hypothesis in the section 3.

In general SRSFseq is suitable to compare and model any point patterns aris-
ing from mapping NGS reads to a reference genome. For sake of clarity we focus
on exon level differential gene expression and RNAseq experiments, but we want
to emphasize that the methods described below can be applied to any NGS output
as long as it consists of mapped reads over known genome.

In the example we aim to be able to compare the gene expression patterns
between j = 1, . . . k conditions over a genomic region of interest (in our case,
exon). In our approach a gene is differentially expressed if at least one of it’s exons
is statistically significantly differentially expressed and different gene isoforms are
treated as different genes.
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To quantify the difference between conditions we utilize the Functional ANOVA
F-Snedecor test with null hypothesis:

H0 : µ1 = µ2 = . . . = µk. (1)

The test statistic is a ratio of the sum of squared distances between and within
conditions scaled by their degrees of freedom.

T =
SSB/(n− k)

SSW/(k − 1)
, (2)

where k represents the number of conditions tested and the SSB and the SSW are
the sums of squared distances within and between conditions, as defined in the
ANOVA statistics, but utilizing the L2 norm:

SSB =
k∑

j=1

nj||µ̄.j − µ̄..||22 SSW =
k∑

j=1

nj∑
i=1

||µij − µ̄.j||22, (3)

with:

µ̄.j =
1

nj

nj∑
i=1

µij, µ̄.. =
1

n

k∑
j=1

nj∑
i=1

µij, where n =
k∑

j=1

nj.

The statistic is known to approximately follow the F (κ(k − 1), κ(n − k)) distri-
bution under the null hypothesis, where κ is a scaling constant obtained by two-
cumulant approximation method (see (Zhang, 2013)). Due to low sample sizes for
NGS experiments, the cumulant approximation is not reliable, thus in SRSFseq,
we use the crude F (k − 1, n− k) distribution for the test statistic.

Equipped with this tool we move to application examples and performance
evaluation of the new framework on RNA and DNA-seq data

2.2. Pre-processing of the raw data
To analyze the differences, first we have to perform the filtering step and obtain

functional interpretation of sequencing over the exon locations (exon coordinates
were obtained from the UCSC database (Kent et al., 2002), extracted in the form of
a GTF file obtained from (Karolchik et al., 2004)). To do that we prvide R scripts
(R Core Team, 2015) , that assume as input the BAM files with mapped reads.
Various software suites are available to transform the raw sequencing data into the
designed format, we used samtools (Li et al., 2009) and bowtie2 (Langmead and
Salzberg, 2012) for alignment against the human genome (HG19). In our analysis
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we are using the benchmark datasets described in (Trapnell et al., 2013). In each
case the software parameters were set as described in the benchmark analysis of
the same dataset.

As a result of this procedure we obtain a set of functions over shared reference
region G, each function representing a different NGS experiment sample over dif-
ferent exon. Our goal is to compare the NGS experiments between conditions.
A sample in the functional form from j-th condition is denoted µ̃ij(t), where t
is the approximate position on in the common reference domain G. We assume
that in each condition the observed filtered data µ̃ij comes as a distortion of a un-
known true density specific for the condition j, (denoted by µj). We propose three
ways of modelling intensities for detecting differences in NGS results, each model
accounts for different types of distortions. In each model the intensities are nor-
malized prior to performing analysis, so that

∫
G
µ̃ij(s)ds = 1. The models differ

based on assumptions made on the source of variability between the intensities.
In the discussion section we add one more model to show the possible extensions
of the shape analysis framework.

2.3. SRSFseq: Base model (Base)
We propose a simple ANOVA - like setup for the observed, pre-processed

density functions. The density representation of i-th sample in j-th condition is
modelled as:

µ̃ij = µj + εij, (4)

where εij is a Gaussian stochastic process reflecting the noise in the data with
Eεij = 0 and common covariance function K(s, t). µj is the base normalized
density function of the j-th condition. εij is assumed to be pairwise independent.
The density functions µij = µ̃ij can be then directly applied in the test statistic
described above.

The base model handles well obvious density differences as exemplified in
Figure 3. As we show in section 3.1.1, even the simplest functional case proves to
be useful in discovering new differential patterns.

2.4. SRSFseq: noise removal (Shape and Energy preserving alignment)
Unfortunately, due to the low sample sizes of the NGS experiment, the filter-

ing pre-processing step is very sensitive to the noise, when obtaining density func-
tions. This may inflate the type I and type II errors in the test, due to misalignment
in the filtered functions. To account for this issue we extend the analysis by an
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Figure 3: A simulated example of six samples of filtered density functions coming from k = 2
different condition with significantly different underlying true density functions µred, µblack.

additional preprocessing step using the SRSF phase-amplitude separation method
(Srivastava et al., 2011). We assume that the density functions might be distorted
by domain shifts, which we will refer to as warping functions γ. Before conduct-
ing the analysis it is necessary to remove the warping noise, thus align the density
functions. In our analysis we will look at two different type of distortions: shape
preserving and energy preserving. Each model is capturing different aspects of
the functional data and different ways to remove the noise.

2.4.1. SRSFseq: Shape preserving noise removal (Shape)
We assume that observed warped density functions µ̃ij follow:

µ̃ij = µij ◦ γij (5)

where γij : G 7→ G is an orientation preserving diffeomorphism correspond-
ing to the warping noise. Using the phase-amplitude separation we are able to find
optimal, shape preserving alignment γ̂ij and use it to obtain undistorted intensities
µ̂ij

µ̂ij = µij ◦ γij ◦ γ̂−1ij (6)

The warping γij representing the phase noise, may have significant influence
on the differential expression test, thus to properly evaluate the test statistic it
is necessary to conduct the inference with the unwarpped density functions µ̂ij .
The process of aligning intensities by applying the composition with the warping
function γ−1ij to µ̃ij reduces the phase noise. The aligned intensities µ̂ij can be
then used in the Functional ANOVA test statistic.

The aligned intensities are then modelled analogously to the base model:

µ̂ij = (µj + εij) (7)
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The advantage of the warping noise reduction in the model, is that we are
able to eliminate misalignment between density functions, mistakenly inflating or
deflating the values of the test statistic. To visualize the issue we have simulated
six Gaussian curves which differ in amplitude or phase and compared them before
and after alignment. In Figure 4 the curves were generated from two Gaussian
intensities µred and µblack significantly differing by the variance parameter. In
panel A) the difference is not obvious from the point of view of the test as the
L2 variability within each condition is comparable to the variability between each
condition. After alignment the difference between conditions becomes apparent -
panel B).

The second scenario shown in Figure 5, corresponds to a problem where the
random distortions accidentally drive the intensities to seem to be different. This
can occur only by chance, but due to low samples sizes of the NGS experiment
and the large number of genomic regions to be tested, such events have a non-
negligible probability to occur, that has to be accounted for. As shown in Figure 5
six intensities were generated as distortions of the same Gaussian curve, but by ac-
cident three of them, consecutively generated, were shifted to the right (panel A).
In such case the difference between those conditions could be falsely called sig-
nificant. After alignment the groups of intensities seem indistinguishable (panel
B).
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Figure 4: Six intensities generated from two conditions: red and black with significantly different
true base density functions µred, µblack. A) The unaligned raw intensities. B) The same density
functions after the phase noise removal procedure.

2.4.2. SRSFseq: The energy preserving noise removal
In this model, as before we assume that the original density functions are dis-

torted by a random warping γij . This time, however, the warping does not nec-
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Figure 5: Six intensities generated from two conditions: red and black with same underlying true
base density functions µred = µblack. A) The unaligned raw intensities. B) The same density
functions after the shape noise removal procedure.

essarily preserve the shape of the curve, but is constrained to maintain the energy
(L2 norm). The intuition behind the energy-preserving model is the same as for
the shape-preserving model, with the sole difference that the noise is introduced
in Energy-preserving way. Accounting for the energy-preserving noise has the
advantage over the shape-preserving noise, that it can cope with noise yielding
significantly different shapes. The cost of it, however is that, the less constrained
noise removal procedure (energy) may also accidentally remove critical informa-
tion from the data.

We assume the following model for the distorted intensities:

µ̃ij = (µj + εij) ◦ γij
√
γ̇−1ij (8)

Using same SRSF phase-amplitude separation method (Srivastava et al., 2011)
we obtain the optimal alignment between density functions γ̂−1ij that preserve the
energy norm of each curve.

The aligned model is then:

µ̂ij = µ̃ij ◦ γ̂−1ij

√
ˆ̇γ−1ij = µj + εij (9)

The obtained energy-aligned density functions µ̂ij can be then further used in
the functional ANOVA test statistic
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3. Results

3.1. RNAseq expression analysis with Base, Shape and Energy models
To evaluate the information provided by SRSFseq we have compared the new

functional models (denoted “Base”, “Shape” and “Energy”) with several other
differential expression methods: Cufflinks, DESeq2, DEXSeq and Limma-voom
(sections 2.3, 2.4 and 2.4.2 ) using published HOXA1 knock-out RNA-seq data
(Trapnell et al., 2013). In our design a gene or exon is defined by the UCSC
gene models. We treat each gene isoform as a separate gene and we call a gene
differentially expressed if at least one of it’s exons shows a change in the density
function.

The heat-maps in figure 6 show the dissimilarity between the SRSFseq and
count-based methods. The heatmap entries indicate the number of genes called
differentially expressed by both methods (row and column). For all of the new
models, there is little overlap with count based methods. At the same time the
SRSFseq methods have high overlaps. This is to be expected as SRSF normaliza-
tion eliminates all count-based differences between samples. Interestingly, several
genes identified specifically within our framework were related to developmental
regulation, including COL1A1 and BAX, which have been previously implicated
as targets of HOXA1 (Martinez-Ceballos et al., 2005; Zhang et al., 2003). What
can be surprising at the beginning is that the SRSFseq methods report lower num-
ber of differentially expressed regions. This, however is also to be expected, as
the differences in the shape of read density occur less frequently then count-based
differences.

3.1.1. New differential expression patterns uncovered
Figure (7AB) shows an example genes (uc001bvt.2, uc003vec.2) , that dis-

plays a clear difference in filtered read densities, however this difference is not
captured by any count-based methods because the overall counts at the genes do
not significantly change (Cufflinks: p=0.229, DESeq2: p=0.908, Limma-voom:
p=0.983). We have observed similar differential patterns in 272 genes called dif-
ferentially expressed (α = 0.05) identified only by the base model. At the signif-
icance level of α = 0.01 30 out of 37 showed potential of exon overlap (Figure
7B), where the UCSC genome browser indicates an overlap between HBP1 and
COG5 exactly on the region where the density functions differ.

3.1.2. Advantage of the shape- and energy- preserving noise removal
Accounting for the phase variability is designed to improve the results of the

new method by controlling for variability in read distributions that would result
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Figure 6: The heat-maps of the overlaps between lists of genes called differentially expressed by
SRSFseq models (Base, Shape, Energy) and count based methods, using the significance level (A)
α = 0.05, (B) α = 0.01.

in false positives and affect the statistical significance of the truly differentially
expressed genes that were not detected by the base model alone (nor by any count
based methods) (Figure 8).

Figure 8A shows an example gene, X, where noise removal procedure can im-
prove the differential expression detection. The alignment of the density functions
helps reduce the SSW component of the test statistic, which previously was keep-
ing the statistic result below the significance level α = 0.01. Figure 8B shows an
example gene, X, where the noise removal procedure increases the p-value above
the significance level of α = 0.05, consistent with a lack of strong evidence for
the differential expression based on read densities alone.

In both instances (A,B) the noise removal improved the results by either cap-
turing a False Positive, False Negative

Which noise removal is superior? In the Figure 9 we highlight that, although
the noise removal is desirable and overall performance improves when compared
with base model, neither of the proposed alignments proves to be significantly
better than the other. Figures 9A,B show the advantage of the energy-preserving
alignment over the shape-preserving alignment model by reducing the type I and
II errors. The third panel however (Figure 9C) emphasizes that, even though
energy-preserving alignment seems to perform better, it’s relatively weak con-
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Figure 7: (A) Example of exonic region called differentially expressed by all three SRSFseq
models, but not detected by any of the count-based methods, Two conditions: control (black),
HOXA1 KO (red). Top panel: The point patterns over reference genome obtained by mapping
first bp of each read, middle panel: filtered density functions, third panels: aligned density func-
tions according to shape-preserving model, bottom panel: aligned density functions according to
energy-preserving model. The p-values reported by other methods for the whole gene are: Cuf-
flinks: 0.229, DESeq2: 0.908, Limma-voom: 0.983. (B) Similar example, but for convenience
we provide the UCSC genome browser screen-shot for the region on top of the main figure. The
comparison with genome browser indicates that the new differential patterns detected by SRSFseq
can be explained by the current knowledge about gene location. The p-values reported by other
methods: Cufflinks: 0.077, DESeq2: not reported, Limma-voom: not reported.

straints (constant energy or L2 norm), may cause information loss after noise
removal. In particular the energy-preserving aligning method won’t distinguish
between density functions that have same energy even if their shapes are signifi-
cantly different, as seen on the bottom panel of the figure.
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Figure 8: (A) Example of an exonic region called differentially expressed on the significance level
of α = 0.01 only after the shape noise is removed. Two conditions: control (black), HOXA1 KO
(red). Top panel: The point patterns over the reference genome obtained by mapping first base pair
of each read. Middle panel: filtered density functions. Bottom panel: aligned density functions.
(B) Example of an exon region that was called differentially expressed by the base model, but lost
significance after applying the shape-noise removal procedure. The sum of square distances were
inflated due to the noise. Two conditions: control (black), HOXA1 KO (red). Top panel: The point
patterns over the reference genome obtained by mapping the first base pair of each read. Middle
panel: The observed filtered density functions. Bottom panel: The aligned density functions.

3.2. Misalignment as differences in activity patterns
The proposed functional framework describes a novel way of modelling the

genomic distribution of reads by identifying the differences in the shape of the
read density functions between experimental conditions. To show the potential of
SRSFseq we exemplify how our generative models (energy- and shape- preserving
alignment), can be extended, by alternating roles of the aligning components in the
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Figure 9: (A) Energy-preserving noise removal improves detection of differences comparing to
shape-preserving alignment and base model, by capturing a false positive. (B) Energy-preserving
noise removal improves detection of differences comparing to shape-preserving alignment and
base model, by capturing a false negative. (C) Energy-preserving noise removal causes loss of
information and fails to detect a significant difference between expression patterns. This difference
is successfully captured by the shape-preserving alignment and base model.

model (γ functions). In the new setting we assume that the observed intensities
µ̃ij arrive as condition-specific shape changes γj of the same true base density
µ and test whether the shape changes γj are significant between conditions. The
aligning functions γ are no longer recognized as noise - they now carry potentially
significant information.

In short, the we assume that:

µ̃ij = (µ+ εij) ◦ γj, or equivalently µ̃ij = (µj + εij) where µj = µ ◦ γj. (10)

and we aim to test the null hypothesis of no difference between the shape
changes between any two conditions j1, j2: H0 : γ1 = γ2 = . . . = γk. Or alterna-
tively: H0 : ∀j1,j2=1...k, j1 6=j2 γ̇j1j2 = 1, where γj1j2 = γj1 ◦ γ−1j2

.
As γj1j2 can be estimated by the phase-amplitude separation algorithm (Sri-

vastava et al., 2011), we can measure the magnitude of local shifts between con-
ditions, the location of those shifts, or quantify the differences between aligned
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patterns. As a consequence of the design, this particular model has little appli-
cation in direct exon-level expression analysis, because there is not a known bi-
ological interpretation for RNA-seq read densities to be consistently shifted. It
opens, however, the possibility to analyze shifts or shape changes in genomic data
problems, for which very few approaches are currently available, e.g. differences
in the positions of nucleosomes (Chen et al., 2013; He et al., 2010; Meyer et al.,
2011; Fu et al., 2012).

Below we present a work-in-progress example application of the alternative
model design to detect differences in nucleosome positions between experimental
conditions (”shifts”) near the transcription starting sites (TSS). The motivation for
such analysis is to test the hypothesis that the nucleosome shifts near TSS is asso-
ciated with the regulation of gene expression. Few approaches have been devel-
oped to identify differences in nucleosome positions that are applicable to large
eukaryotic genomes such as human (cite danpos2 and others based on emailed
list). Using MNase-seq data, we are able to perform the phase-amplitude analysis
and estimate the optimal warping between the density curves in two different cell
types (lymphocytes and fibroblasts). The Figure 10A shows an example piece of
information that can be easily decoded by the model. The figure presents the den-
sity functions with their aligned versions combined with the location and amount
of the shift (in bp per TSS). We can observe a clear shifting of the density peaks
towards the right end of the graphs, which have a confirmation in high absolute
values of the γ̇ graphed in the top panel.

This model will be further developed for application to MNase-seq data and
other chromatin structure data where shifts in read densities can be used to infer
differences in chromatin structure.

4. Discussion

We have proposed a new framework (SRSFseq) of investigating the NGS data
through the functional interpretation. We have shown that the new approach can
be successively used in analysing NGS outcomes and uncover information not
possible to decode with the state-of-the-art methods. We have equipped the SRS-
Fseq with two functional noise removal procedures improving the type I and type
II errors. Interestingly, if we performed same analysis on whole spliced genes, in-
stead of on separate exons, we still obtain significantly different gene lists called
differentially expressed comparing to both exon-level SRSFseq and all count-
based methods. The results can be seen on Figure 10B.
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Figure 10: (A) Shift detection near the TSS regions. Comparing the DNASeq filtered density
between two conditions: control (Black) and nucleosome shift (Red). Bottom panel shows the
endpoints positions of the mapped reads on the reference genome, Middle panel shows the filtered
density functions, with the additional dashed red line reflecting the optimal alignment of the red
density to the black density. Top panel shows the relative changes in density domain with respect
to the control density. Red curve above the black horizontal line reflects the shifts toward 5’ end;
below, towards 3’ end. Area between black and red curves reflect the amount of shifting needed.

We have shown the flexibility of SRSFseq and have given the examples of
how it can be tuned to address the experimental questions. We have proposed an
alternative application of the framework that aims do detect changes the shape of
read density and exemplified it on nucleosome shift detection problem.

In the filtering step in this article we have used the simple kernel density es-
timator, however we would like to point out, that other density estimation tech-
niques can be used depending on particular applications, especially when one
needs to account for over-dispersion of read counts or read clustering problem.

We would like to emphasize that the new framework in case of the RNAseq
data, due to it’s normalization procedure, won’t detect gene-wide count based dif-
ferences. As such, it should not be viewed as a replacement for methods that detect
global differences in gene expression, but can be effectively used to supplement
their results where overlapping genes result in false negatives.
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5. Software

Software in the form of R script, used to obtain results in this article is avail-
able in a reproducible and adjustable way, on public Github repository: https:
//github.com/FSUgenomics/SRSFseq
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