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Abstract

Identifying patterns of association or dependency among high-dimensional biological datasets 

with sparse precision matrices remains a challenge. In this paper, we introduce a weighted sparse 

Gaussian graphical model that can incorporate prior knowledge to infer the structure of the 

network of trace element concentrations, including essential elements as well as toxic metals and 

metaloids measured in the human placentas. We present the weighted L1 penalized regularization 

procedure for estimating the sparse precision matrix in the setting of Gaussian graphical models. 

First, we use simulation models to demonstrate that the proposed method yields a better estimate 

of the precision matrix than the procedures that fail to account for the prior knowledge of the 

network structure. Then, we apply this method to estimate sparse element concentration matrices 

of placental biopsies from the New Hampshire Birth Cohort Study. The chemical architecture for 

elements is complex; thus, the method proposed herein was applied to infer the dependency 

structures of the elements using prior knowledge of their biological roles.
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1. Background

The advancement of large-scale genomics, epigenomics, gene expression, and other 

biochemical assays has propelled the application of graphical models for analyzing high-

dimensional biological datasets Damaraju et al., (2014);Pierson et al., (2015);Vinciotti et al., 

(2016). Graphical models visually represent dependencies, or relationships, among 

stochastic variables (i.e., genes, proteins, or chemical elements). The Gaussian graphical 

model assumes that the set of variables follows a multivariate normal distribution, and a 

precision matrix is used to represent the inverse of the covariance matrix. Gaussian graphical 

models often assume a sparse precision matrix, characterized by many zeros, which occur 

when the variation for a given variable is predicted by a small subset of other variables in the 

matrix Dempster, (1972). There have been several efforts to address the computational 

challenges encountered when using graphical models to infer complex relationships in 

biological datasets Meinshausen and Buhlmann, (2004); Schafer and Strimmer, 

(2005);Dobra et al., (2004). For example, the precision matrix from a large-scale gene 

association network was estimated using a novel shrinkage covariance estimator, but this 

method failed to account for the sparsity of the precision matrix Schafer and Strimmer, 

(2005). Penalized approaches Li and Gui, (2006);Friedman et al., (2008);Hsieh et al., (2011) 

addressed the sparse structure of high-dimensional gene expression datasets by using 

threshold gradient descent and lasso (least absolute shrinkage and selection operator) 

penalty. Powered by coordinate decent procedure, penalized approaches are remarkably 

computationally efficient and facilitate the application to large data sets with thousands of 

parameters.

Some of the challenges to identifying patterns of association between biological entities via 

modelling sparse precision matrices can in part be alleviated by incorporating prior 

knowledge in the Gaussian graphical model estimation. In this paper, we propose to use 

prior knowledge of chemical associations to improve the estimation of their dependency 

structures in bulk elemental concentrations measured in placental tissue samples. Essential 

elements are homeostatically regulated some more tightly than others due to their potential 

for cellular damage. Selective transport of essential metal and non-metal elements across 

biological membranes uses chemical properties such as ionic radius and charge to 

discriminate between elements; a fallible process which allows entry of potentially toxic 

elements. These shared transport routes serve as prior information for associations between 

elements in our study. Shared transport routes have proven robust in other biological 

systems, for instance, the transport of cadmium, zinc and manganese by iron transporters in 

plants Korshunova et al., (1999), suppression of iron, manganese and zinc uptake by 

cadmium Eide et al., (1996); co-transport of calcium and strontium Twardock, (1963), co-

transport of arsenate and phosphate Rosen and Liu, (2009), as well as co-transport of lead 

and calcium Simons, (1988). Identification of orthologous genes between species has been 

critical to understanding their function, which are strongly conserved in membrane transport 

proteins. In the human placenta, membrane transport is pivotal to function due to the intense 

bidirectional traffic of nutrients, respiratory gases, waste products and hormones between the 

maternal and fetal blood supplies. We hypothesize that analyzing elemental associations in 

the placenta may therefore be particularly informative.
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We use the covariance between metal elements across placental tissues to define the 

precision matrix. Some metals will be highly connected in the precision matrix and thus fit 

the characterization of a hub. We propose to add weight to the network hubs, identified using 

prior biological knowledge, to increase the accuracy of the estimated graph. We introduce a 

weighted lasso regularization procedure for penalized estimation of a sparse precision matrix 

in the setting of Gaussian graphical models. Then, we demonstrate its application to 

identifying networks based on metal element concentrations in human placenta biopsy 

specimens. Such a regularization procedure aims to account for the sparsity of the precision 

matrix in the estimation stage while taking advantage of prior biological knowledge in the 

weighting scheme. After obtaining the estimate of the precision matrix, we applied a 

bootstrap procedure to identify the edges of the graph. Through simulations and application 

to real data sets, we demonstrate that this procedure is computationally feasible for both 

large and small sample cases and provides biologically meaningful results. Our method 

would be applicable to any biological dataset with prior knowledge of variables which are 

likely to be hubs in the network.

2. Methods

2.1. Gaussian graphical model

In the following estimations using the Gaussian graphical model, we assume that the data 

are randomly sampled observational or experimental data from a multivariate normal 

probability model. Specifically, let X be a random normal p-dimensional vector and X1, X2, 

…, Xp denote the p elements, where p is the number of elements. Let V = {1, 2, –, p} be the 

set of vertices, or nodes, and x(k) be the vector of elemental concentration levels for the kth 

sample. We assume that X ~ Np(0, Σ) and Σ is a positive definite covariance matrix. Let Ω = 

wij be the precision matrix which is defined as the inverse of the covariance matrix Σ. Let E 

be the set of edges connecting the set of V vertices, and the Gaussian graphical model G = 

(V, E) represents an undirected graph and satisfies the linear restrictions: eij = 0 ⇒ wij = 0. 

Here eij is an indicator variable for the existence of an edge between vertex i and j. The 

Gaussian graphical model is also called a covariance selection model Dempster, (1972) or a 

Gaussian concentration graph model. L1 (Lasso) regularization is well suited to compensate 

for the sparse nature of the true network in real data estimated with sparse Gaussian 

graphical models. Let S be the empirical covariance matrix, the penalized log-likelihood 

function can be written as:

(1)

Here tr denote the trace and ‖Ω‖1 is the sum of absolute values of all elements in Ω. We 

applied the R statistical software library QUIC developed by Hsieh et al., (2011) to 

coordinate descent procedure to estimate the penalized coefficients.

2.2. Weighted Gaussian graphical model

We proposed a weighted Gaussian graphical model to account for the structure of the 

underlying true network. Using prior knowledge about the underlying biology, we can assign 
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weights to likely hub candidates. Assigning a weight to a hub effectively assigns that weight 

to all of the hubs adjacent edges. If we assign weights only to the strongest candidates (i.e. 

those with evidence from the literature), we limit our ability to make novel discoveries. If we 

assign weights evenly to all nodes, we do not provide adequate weight to nodes with some 

support. Consequently, we aimed to develop functional networks, which integrate publicly 

available biological data to provide both the opportunity to make new discoveries while also 

allowing us to focus on candidates that are more promising than randomly selected nodes.

Unlike the weighted False Discovery Rate Genovese et al., (2006);Gui et al., (2015), where 

weights have to satisfy certain restrictions, we can freely up-weight and down-weight nodes. 

We propose the weighted procedure as follows:

We assume that W = diag{w1, w2, …, wp} is a p-by-p diagonal matrix and X is an n-by-
p data matrix.

1. Identify a subset of nodes (hubs) and the corresponding weights w1, w2, …, wp. 

Here wi = 1, when i ∉ hub set, and wi > 1, when i ∈ hub set

2. Transform data X to Xw = XW

3. Apply QUIC to Xw to estimate the network

The QUIC is a forward selection procedure which will include the edges with larger 

corresponding covariance first. Therefore, adding a weight to each hub will increase its 

connectivity in the estimated network. This approach is equivalent to apply Lasso to a set 
of weighted variables in linear regression setting. The weighted variables will be less 
penalized than the rest and therefore have a better chance to get non-zero coefficients 
after penalization. We will use simulations to demonstrate this point and determine the 
optimal weight.

3. Results and Discussion

To demonstrate the strength of the proposed method, we designed two simulations: 

Simulation I focused on comparing the tuning parameter selection methods. Simulation II 

aimed to estimate the accuracy of our proposed method under different settings.

3.1. Simulation of Model Selection

We simulated input covariance matrices with 40 nodes and 120 samples. Each matrix had 5 

hubs with 8 edges on average and 35 non-hub nodes with 1–2 edges on average. First, we 

assigned weights to the hubs ranging from 1 (that is, no different from non-hubs) to 16 (that 

is, the adjacent edges to each hub have a weight of 16). Then, we applied existing penalized 

regression methods to the input covariance matrices in order to produce estimated precision 

matrices. We used Akaike information criterion (AIC), Bayesian information criterion 

(BIC), 5-fold and 10-fold cross validation to find tuning parameter which determine the 

optimized model. After obtaining the optimized model, we computed the true positive rate 

(TPR) and true negative rate (TNR). We defined accuracy as the average of TPR and TNR; 

The Area Under the curve (AUC) obtained by one run can be defined as balanced accuracy 

computed by the formula,
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(2)

where sensitivity and specificity are known as true positive rate and true negative rate. We 

repeated the process 500 times and recorded the average accuracy. Sokolova et al., (2006)

Simulation of model selection compares accuracy with four different tuning parameter 

selection methods, AIC, BIC, and Cross-Validation (5-fold, and 10-fold). Figure 1 reports 

the accuracy against weights assigned to hubs. The results from AIC, BIC, 5-fold and 10-

fold cross validation are plotted. As the weight increased from 1 to 5, accuracy sharply 

increased for all 4 methods. AIC outperformed BIC by a large margin. AIC is also more 

consistent than the cross-validation methods. Therefore, we focused on using AIC for tuning 

parameter selection in the application of high-dimensional data analysis.

3.2. Simulation of Weighted Nodes Selection

We tested the effects of hub selection on accuracy estimation. We simulated 4 different 

scenarios including assigning weights to all hubs, a mixture of hubs and non-hubs, and all 

non-hubs. We repeated each simulation 500 times and calculated the average accuracy for 

each scenario

Scenario 1: Weights were assigned to all 5 hubs

Scenario 2: Weights were assigned to 3 hubs and 2 non-hubs

Scenario3: Weights were assigned to 5 non-hubs

Scenario 4: Weights were assigned to 5 randomly selected nodes

Simulation II presents accuracy results by different scenarios of assigning weights to hubs 

and/or non-hubs. Figure 2 shows the effect of weighting when we have varying information 

on hubs. When we placed weights on all hubs (scenario 1), the accuracy increased sharply as 

the weights went up. If we only placed weights on a subset of hubs (scenario 2), the 

accuracy increased with a lesser slope. If we assigned weight on non-hubs or random nodes 

(scenarios 3 and 4), the accuracy would fluctuate without any significant improvement in 

accuracy. The result is expected since true correlation values between non-hubs and 
other nodes are small in general. Hence, even after the weighting process, nodes with 
small true correlation values are rarely selected

3.3. Application to placental metal concentration data

We collected 765 placental specimens from participants of the New Hampshire Birth Cohort 

and studied the metallome of human term placenta by measuring the bulk elemental 

composition of placental biopsies Punshon et al., (2015);Punshon et al., (2016). To estimate 

the network of metal elements in placental samples, we applied the Weighted Gaussian 

graphical model to the bulk elemental composition. Our goal is to better predict the 

covariance of each pair of metals and construct networks representing interactions among 

them. Network analysis is conducted by the estimation of the sparse precision matrix in 
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which each off-diagonal value indicates the conditional covariance between the two 

corresponding metals.

The placenta metal concentration dataset contained 27 metal elements and 763 samples. We 

excluded metal elements if more than 50% of their covariance values were missing. After 

pre-processing the dataset and excluding the metal elements V and U for measurement error, 

our final dataset included 25 metals.

We used the following approach on real data: first, we log-normalized and scaled the 

placenta metal concentration data. Then, we applied AIC to find tuning parameters to 

determine the optimized model, because AIC give us the most consistent estimate in 

accuracy from simulation. To ensure robust results, we ran 200 bootstraps for each estimated 

network and plotted the edges that were selected at least 190 times.

We targeted three different elements of interest; zinc (Zn), cadmium (Cd) and arsenic (As) as 

possible hubs in the network. We chose Zn as a result of observing spatial localization of 

zinc in the syncytiotrophoblast, the outer membranes of the fetal chorionic villi in a previous 

study Punshon et al., (2016), and because of its multiple essential intracellular roles. We 

chose Cd as a possible hub because it is a common non-essential metal contaminant that can 

be detected in the placenta (from exposure to cigarette smoke, as well as dietary exposure) 

whose competition with Zn is well-supported in the scientific literature Wang et al., 

(2016);Da Silva and Williams, (2001);Bridges and Zalups, (2005);Ballatori, (2002). We also 

chose As as a further non-essential element of interest because groundwater in New 

Hampshire contains elevated concentrations of arsenic, and up to 40% of residents in the 

region obtain their household drinking water from an underground well. Both of these non-

essential elements cross the human placenta, with As crossing particularly efficiently and Cd 

showing evidence of placental retention Punshon et al., (2016).

For applied results, first, we estimated the unweighted element network generated by QUIC. 

In the resulting network (Figure 3), Zn, magnesium (Mg), strontium (Sr), barium (Ba) and 

phosphorus (P) are highly connected. Next, we assigned weights of 3 to As Cd and Zn 

(Figure 4). Since males and females tend to have different Zn concentrations, we repeated 

the weighted analysis on males and females separately (Figure 5 and 6).

The network from the unweighted model (Figure 3), as well as weighted (Figure 4) and sex-

specific models (Figure 5 and 6) identified fundamental elemental associations consistent 

with known chemical and biological roles of the elements. The common features of these 

models are, (1) a separate network containing only Ca and K; (2) an interconnected sub-

network of Mg, P, Ba and Sr, and (3) the appearance of Zn as a hub of multiple elemental 

associations.

The connection between Ca and K distinct from the larger network speaks to the many 

fundamental and regulatory cellular processes in which these two elements participate. In 

addition to a major role in metabolic control, Ca provides mechanical stability as a 

component of cell walls and membranes, is involved in cell division and hormonal activities. 

Calcium is also a signalling molecule, where short bursts of Ca movement across 

membranes are triggered either by electrical impulses or hormonal signals. Likewise, K is 
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involved in osmotic control, electrolytic equilibria across cell membranes, stability of 

polyelectrolytes and DNA, while also being connected to the chemical uptake of organic 

metabolites. Calcium and K are more abundant in the placenta by several orders of 

magnitude than other elements measured in this study Da Silva and Williams, (2001).

Another common feature of the resulting networks is the appearance of a smaller sub-

network consisting of Mg, P, Sr and Ba. The close association between Mg and P is well 

known: Mg strongly binds to pyrophosphates such as ATP (adenosine triphosphate), widely 

known as the molecular unit of currency in intracellular energy transfer. By contrast, Ba and 

Sr are not essential elements, but their chemical similarity to Ca and Mg, (also in group IIA) 

may explain their connections with Mg in this network. Both of these elements are 

ubiquitous environmental contaminants, the former from coal combustion, but they are both 

also present in a diverse range of industrial products from ceramics, lubricants, paint 

pigments, fluorescent lights to medicine. With the exception of group IA and IIA metals, Zn 

is the most common catalytic metal ion in the cell cytoplasm; it is involved in a great variety 

of enzyme reactions, and its abundance in placenta is comparable to that of K and Ca. Zn is 

a component of insulin, S-100, phospholipase C, carbonic anhydrase, superoxide dismutase, 

alcohol dehydrogenase and metallothionein, among others. In all models, Zn is connected 

with multiple metals, in particular with Mn, Se, Pb and Cd. Zinc is associated directly with 

Cd in the weighted models. Also, a Lewis acid, Cd2+ is a known to substitute for Zn2+ in 

many Zn-containing enzymes. In the placenta, in particular, Cd has been noted to impair Zn 

transport Wang et al., (2016).

Sex-dependent functional differences in the placenta may underlie the observed sex-

specificity of responses to in utero exposure to metal contaminants, as well as to non-

communicable chronic disease Kippler et al., (2013). These differences may be a result of 

genetic and hormonal differences. The sex-specificity of the metal networks was explored by 

separating placental specimens on the basis of whether they had supported a male or a 

female pregnancy (Figures 5 and 6), producing subtly different networks. In particular, we 

observed differences in the connections with Zn and Cd; in females, Mn was co-connected 

with Zn and Cd, and in males, none of elements was co-connected with Zn and Cd.

4. Conclusion

In this paper, we presented a novel procedure for estimating the sparse precision matrix in 

the setting of Gaussian graphical models. This paper makes two unique contributions: first, 

we offer a computationally efficient algorithm that incorporates network structure for better 

accuracy estimation in a precision matrix. We have developed the functions for this 

procedure in R, which are available upon request. Second, we carefully compared three 

popular tuning parameter selection methods (cross validation, AIC and BIC) and found that 

AIC yields the best results in most cases.

Despite the advantages stated above, one limitation of this method is that the weight 

selection is ad-hoc. In future work, we plan to identify a method to optimize the weight 

selection using either publicly available datasets or via splitting the data into training and 
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test sets. We believe that an optimal weight to maximize the accuracy can be derived based 

on the known network structures.

In summary, we demonstrate in simulation and real data that our proposed method is 

efficient and can accurately estimate the precision matrix. We believe that it will play an 

important role as part of a research strategy to understand chemical interactions that 

embraces the complexity of the network structure.
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When weights are placed only on hubs, the accuracy increases sharply as the 

weights go up.

When weights are assigned on random nodes, accuracy fluctuates without clear 

improvement.

There is a connection between Ca and K distinct from the larger network 

regardless of weights.

There exists a smaller sub-network consisting of Mg, P, Sr and Ba regardless of 

weights
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Figure 1. 
Accuracy by different weights assigned to hubs
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Figure 2. 
Accuracy by different weighting strategies
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Figure 3. 
Network from unweighted model
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Figure 4. 
Network from weighted model
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Figure 5. 
Network from weighted model for males only
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Figure 6. 
Network from weighted model for females only
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