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We propose statistical methods to detect novel genetic variants just using genome-wide 

association studies (GWAS) summary data without access to raw genotype and phenotype 

data. With more and more summary data being posted for public access in the post GWAS 

era, the proposed methods are practically very useful to identify additional interesting 

genetic variants and shed lights on the underlying disease mechanism. We illustrate the 

utility of our proposed methods with application to GWAS meta-analysis results of fasting 

glucose from the international MAGIC consortium. We found several novel genome-wide 

significant loci that are worth further study.

1 Introduction

In the past decade, the genome-wide association studies (GWAS) have been very successful 

in identifying thousands of common genetic variants that are associated with various traits 

and diseases (Visscher et al., 2017). These GWAS are primarily based on the paradigm of 

single variant single trait association tests, and have typically made publicly available the 

association test summary statistics, which include, e.g., the minor allele frequency (MAF), 

the estimated effect sizes with their standard errors, and significance p-values for each single 

nucleotide polymorphism (SNP) analyzed in a GWAS. Since it is generally much harder to 

access the individual-level GWAS phenotype and genotype data due to privacy concerns and 

various logistical considerations, it has motivated tremendous interest in developing new 

methods for further analyzing GWAS association test summary data (Pasaniuc and Price, 

2017). For example, for the single variant based association test, the GWAS meta-analysis 

(Evangelou and Ioannidis, 2013) is typically conducted based on the association test 

summary statistics, which can be as efficient as analyzing individual-level data across all 

studies (Lin and Zeng, 2010). Similar methods have been developed for meta-analysis of the 

rare variant set association across studies (Hu et al., 2013; Lee et al., 2014). Specifically Hu 

et al. (2013) showed that the score statistics across variants approximately followed the same 
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correlation as the rare variant genotype scores, and developed a novel Wald chi-square test 

for the rare variant set association just using single rare variant association score statistics. 

For joint association test of a single variant with multiple correlated traits, Stephens (2013) 

and Zhu et al. (2015) proposed methods using only individual GWAS summary statistics and 

GWAS meta-analysis summary results. The key insight of these approaches is that for a 

single variant, the association test Z-statistics across different traits share the same 

correlation as the traits (Stephens, 2013). Most identified common variants have small effect 

sizes and contribute a small proportion to the overall heritability (Manolio et al., 2009), it 

often helps to aggregate signals across multiple variants to boost the detection power (Wu et 

al., 2010). In this work, we study methods for genome-wide variant set association test at the 

gene level using only GWAS summary data. We provide a transparent derivation showing 

that the correlation of GWAS (meta-analysis) association test Z-statistics across variants can 

be computed based on the variant linkage disequilibrium (LD) matrix. Hence we can 

leverage LD information from a population reference panel to estimate the correlation of Z-

statistics and conduct variant set association test. We further develop and post publicly 

available R programs that can very efficiently and accurately compute p-values for the 

summary data based association tests. The proposed methods are practically very useful to 

further mine the vast amount of public GWAS summary data to identify additional 

interesting genetic variants. We illustrate the utility of our proposed methods with 

application to GWAS meta-analysis results of fasting glucose from the international MAGIC 

consortium.

2 Materials and Methods

Consider the single variant association test for a continuous trait Y based on the following 

linear regression model Y = Xα j + G jβ j + ∈ j for the variant Gj, j = 1,…,M. Here X is a 

vector of p covariates to be adjusted (including the intercept, age, and gender, e.g.), and αj 

and βj are the regression coefficients. 𝜖j is assumed to follow a normal distribution N(0,σj
2). 

The random error 𝜖j has been indexed depending on each variant, since in principle 𝜖j 

consists of two parts: variation due to random measurement error and polygenic 

contributions. The random measurement error can be assumed identical across all variants. 

But the polygenic contribution could be different since part of it will be captured by Gjβj for 

those risk variants. Therefore null variants will have identical errors with the same variance, 

while the variances are potentially different for risk variants and those nearby variants in 

linkage disequilibrium (LD) with the risk variants.

Given the observations of n unrelated individuals, denote X as the n×p design matrix, Y the 

n-vector of outcomes, Gj the n-vector of genotypes for the j-th variant. Denote projection 

matrix P = In − X(XT X)−1XT , where In is a n-th order identity matrix. We can check that

β j =
YT PG j

G j
T PG j

, υar β j =
σ j

2

G j
T PG j

.
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The GWAS summary Z-statistics are computed as the standardized genetic regression 

coefficients by their estimated standard errors where the unknown variance σ j
2 is replaced by 

their estimate σ j
2

z j =
β j

υar β j

=
YT G j

∼

σ j
, G j

∼ =
PG j

G j
TPG j

.

Here G j
∼

 is essentially the vector of standardized genotypes adjusting for other covariates. We 

can check that asymptotically V ar z j = 1, Coυ z j, zl = ρ jl,  where ρ jl =
G j

TPGl

(G j
TPG j)(Gl

TPGl)

(see appendix for details). When the adjusted covariates are all independent of tested 

variants (e.g., age and gender), we can unbiasedly estimate the covariance between the 

summary Z-statistics using cor(Gj,Gl), i.e., the LD correlation matrix (see appendix for 

details). Therefore we can compute the null covariance matrix of summary Z-statistics by 

leveraging the LD information from a population reference panel, e.g., the 1000 Genomes 

Project (Abecasis et al., 2012), or some existing GWAS data of similar ancestry. As argued 

by Hu et al. (2013), for weakly informative covariates, the LD can still provide a very good 

approximation to the correlation of score statistics, which is proportional to the Z-statistics. 

Therefore in general we expect the LD correlation matrix provides a good estimate of the Z-

statistic correlations. The previous results also hold for GWAS meta-analysis summary 

results (see appendix for details).

For simplicity of notation, consider a set of m variants in a gene region, denote their 

summary Z-statistics as (z1,…,zm), and R = (rij) the estimated null correlation matrix 

computed based on the variant LD. We consider the following three SNP-set association 

tests: (1) sum test (ST), B = ∑ j = 1
m z j, which is a type of burden test statistic (Madsen and 

Browning, 2009); (2) squared sum test (S2T), Q = ∑ j = 1
m z

j
2, which is a type of SKAT 

statistic (Wu et al., 2010); and (3) adaptive test (AT), based on the minimum p-value T = 

minρ∈[0,1] P(Qρ), where Qρ = (1 − ρ)Q + ρB2 and P(Qρ) denotes its p-value. The AT is in the 

same vein as the SKAT-O statistic (Lee et al., 2012). We can readily check that B2/ ∑i, j ri j

asymptotically follows the x1
2 distribution; and Q is asymptotically distributed as the 

weighted sum of independent x1
2 random variables with weights being the eigenvalues of R. 

We follow the approach of Wu et al. (2016) to efficiently and accurately compute the p-value 

for the AT based on an one-dimensional numerical integration. In practice we search over 

ρ ∈ (0, 0.12, 0.22, 0.32, 0.42, 0.52, 0.5, 1)for the minimum p-value. The ST has good performance 

when all variants have effects of same direction and approximately equal size, but is 

sensitive to the direction of variant effects. The S2T has better performance than the ST 

under a mix of protective and deleterious variants. The AT could adapt to the data and 

generally has more consistent and robust performance with good detection power across a 

wide range of scenarios.
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3 Results

3.1 Simulation study

We first conduct a simulation study to assess the type I errors of the three tests. We simulate 

108 random vectors from N(0,R) to estimate their type I errors at significance levels 

α = 10−4, 10−5, and 2.5 × 10−6. We consider a set of 20 SNPs in the NPHS2 gene and take 

their LD matrix as R. Table 1 summarizes the results. Overall we can see that all three tests 

have well-controlled type I errors.

3.2 Application to fasting glucose GWAS meta-analysis summary results

We analyze the summary data from the GWAS meta-analysis of fasting glucose conducted 

by the international MAGIC consortium (Dupuis et al., 2010). The association results are 

based on 21 GWAS with around 46,186 non-diabetic participants of European descent who 

are informative for fasting glucose. The summary data is publicly available at ftp://

ftp.sanger.ac.uk/pub/magic/MAGIC_FastingGlucose.txt. The summary data consists of the 

MAF, effect size estimate and its associated standard error, and p-value for 2,470,476 SNPs. 

For illustration, we first remove 290 genome-wide significant SNPs with p-value less than 5 

× 10−8 and then filter out those SNPs with MAF < 0.05. We download the list of genes and 

their coordinates (transcription start and end positions based on the hg19/GRChB37 

reference genome) from the UCSC genome browser (Kent et al., 2002). We take all SNPs 

that are located in or near a gene as a set to be analyzed for joint association. Specifically 

following Wu et al. (2010), we group all SNPs from 20 kb upstream of a gene to 20 kb 

downstream of a gene. For each SNP set corresponding to a gene, we also perform LD 

pruning: we remove those SNPs that have pairwise LD r2 > 0.8 with other SNPs. Using 

these criteria, we obtain 18,725 SNP sets that have at least two SNPs. We set our genome-

wide SNP set significance level as 2.67 × 10−6, which is the Bonferroni corrected 

significance level for the total number of tested SNP sets.

We note that the MAGIC consortium has performed a followup replication study using a 

Metabochip consisting of a small panel of promising SNPs and a much larger sample size 

from 66 fasting glucose GWAS with around 133,010 non-diabetic participants (Scott et al., 
2012). The summary data contains the results for 64,493 pre-selected SNPs, and is available 

at ftp://ftp.sanger.ac.uk/pub/magic/MAGIC_Metabochip_Public_data_release_25Jan.zip. We 

use them as partial validation for our analysis of Dupuis et al. (2010) summary data.

When applying the three SNP-set tests to the summary data of Dupuis et al. (2010), the ST 

identified 12 significant genes, S2T identified 20 genes, and AT identified 22 significant 

genes. The adaptive test AT captures the majority of significant genes identified by ST and 

S2T. An interesting case is the significant gene FADS1 identified only by the adaptive test 

AT with a significance p-value of 2.39 × 10−6, and ST and S2T reported p-values of 1.40 × 

10−5 and 4.41 × 10−6, respectively. This gene harbored genome-wide significant SNPs in the 

study of Dupuis et al. (2010) and the followup study of Scott et al. (2012). Figure 1 shows 

the Venn diagram comparing the number of significant genes identified by the proposed 

tests. Among all 25 significant genes identified by the three SNP-set tests, 10 are novel 

genes which didn’t harbor any significant SNPs in the study of Dupuis et al. (2010). These 
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novel genes contain promising SNPs (often with small or modest effect sizes) worth further 

study. And among these 10 novel genes, 6 genes have been found to contain genome-wide 

significant SNPs in the followup study of Scott et al. (2012). Table 2 lists the test p-values 

for some novel genes together with the minimum p-values across all SNPs in the gene in the 

two studies. The complete results are available at the supplementary materials.

For illustration, we also performed SNP-set tests using all SNPs and obtained similar 

conclusions. The complete results are available at the supplementary materials.

4 Discussion

In summary, we have proposed SNP-set tests using the GWAS summary data. The proposed 

methods are efficient and scalable to analyze summary data for millions of genome-wide 

SNPs. As more and more summary data are now being posted for public access in the post 

GWAS era, these methods will be practically very useful to identify more genetic variants 

associated with various diseases.

Our previous discussions have implicitly assumed equal weights for variants. We note that 

we can readily incorporate variant weights into the proposed tests as follows. Denote the 

associated variant weights as W = (w1,…,wm), which can be determined by the variant 

MAFs (p1,…,pm). We then consider weighted summary statistics (w1z1,…,wmzm), and their 

associated covariance matrix is then diag(W)Rdiag(W). Note that the Z-statistics are 

inherently standardized: the Z-statistic is roughly proportional to the score statistic scaled by 

the genotype standard error. So setting the constant weight corresponds to using weight 

w j = 1/ p j 1 − p j  following the approach of Wu et al. (2010) and Madsen and Browning 

(2009). There have been some recent research that leverages additional functional annotation 

information and public GWAS summary data to further identify novel genetic variants 

(Gusev et al., 2016; Mancuso et al., 2017), which can be approached as incorporating variant 

weights W under the proposed framework. We are currently exploring this approach and will 

report the results in the future.

We want to remark that it is more productive to treat the proposed SNP-set tests as a 

complementary instead of competing approach to the traditional single variant based 

association test. Therefore we recommend applying the proposed tests to genes that do not 

harbor genome-wide significant SNPs to further identify more novel variants. We have 

implemented the proposed methods in an R package available at http://www.github.com/

baolinwu/mkatr. We provide sample R codes to install and use the package at the 

supplementary materials.
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Appendix

GWAS summary Z-statistics

Denote Y as the continuous outcome observed for a cohort of n unrelated individuals. 

Denote the n×p covariate matrix as X, which includes the intercept and other commonly 

adjusted covariates (e.g., age and gender). Here p denotes the total number of 

covariates.Under the marginal working regression model for variant j, Y = Xαj+Gjβj+𝜖j, 

where ∈ j ∼ 𝒩(0.σ j
2In), we have β j = G j

TPY / G j
TPG j , where P = In − X(XTX)−1

XT is the 

projection matrix. Hence β j, βl = cor(G j
TPY , Gl

TPY) = r jl, where r jl =
G j

TPG j

(G j
TPG j) (Gl

TPGl)
.

When the covariates X do not contain ancestry covariates (e.g., for the homogeneous 

European population), Gj is independent of X: hence rjl equals to the LD correlation between 

the two variants, cor(Gj,Gl). Let zj denote the standardized β j (i.e., the summary Z-statistic)

z j =
β j

Var β j

=
YT G j

∼

σ j
, G j

∼ =
PG j

G j
TPG j

,where σ j
2 = PY − G j

∼
β j

2 / n − p − 1 . Note that 

generally the estimated variance σ j
2 are slightly different across SNPs. For null variants not 

associated with the outcome, σ j
2 are all unbiased estimates of the same outcome variance. 

Therefore for null variants, asymptotically V ar(z j) = 1 and Coυ(z j, zl) = r jlFor a variant 

associated with the outcome, if it explains only a very small proportion of the total trait 

variation, which is true for most variants under polygenic model, the previous equations 

approximately hold.Denote the (raw or after adjusting for top ancestry PCs) LD correlation 

matrix R =(rjl). For relatively homogeneous population (e.g., of European descent), we can 

use the LD matrix computed from public population samples.

Consider K separate GWAS each with nk individuals, k = 1,2,…,K. For the k-th GWAS, 

denote Yk as the outcome, Pk the covariate projection matrix, Gkj the genotype scores for 

SNP j, and βˆ
kj the regression parameter estimates for the j-th SNP. With homogeneous 

population and no ancestry covariates, PkGkj amounts to centering the genotypes. Without 

loss of generality, assume the genotype scores have been centered. We have PkGkj = Gkj, and 

hence βk j = Gk j
T Yk / Gk j

T Gk j . Denote V ar(Yk) = σ2Ink
.Let θj denote the variance of genotype 

scores for SNP j. For null variants, we have asymptotically V ar(βk j) = σ2/(nkθj), and Cov

Coυ βk j,βkl = r jlσ
2/(nk θ jθl . They also approximately hold for those variants with small 

effects. The meta-analysis estimate is typically based on the weighted average, denoted as 

β j = ∑k = 1
K akβkl . Here the weight ak is typically determined by the GWAS sample size. For 

example, one common choice isak = nk /(∑k = 1
K nk) . Another popular choice is based on the 

inverse variance weighting, which amounts to setting ak = V ar(βk j)
−1 ∑k = 1

K V ar(βk j)
−1 ,

which asymptotically equals tonk /(∑k = 1
K nk) . Hence for null variants we have 
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asymptotically , V ar(β j) = ∑k = 1
K ak

2/nk σ2/θ j, and Coυ(β j, βl) = ∑k = 1
K ak

2/nk r jlσ
2/ θ jθl .

Therefore for the GWAS meta-analysis Z-statistics, we also have asymptotically Cov(zj,zl) = 

rjl. We note that with ak = nk /(∑k = 1
K nk) ., we have V ar(β j) = σ2/θ j/ ∑k = 1

K nk . Therefore 

the meta-analysis approach has the same asymptotic efficiency as the mega-analysis, which 

pools all GWAS individual samples for analysis. This agrees with the theoretical results of 

Lin and Zeng (2010).
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highlights.txt

1. 1. propose useful and efficient GWAS summary data based SNP-set 

association test methods to identify more novel variants

2. 2. provide efficient implementation of the proposed methods in a publicly 

available R package

3. 3. demonstrate the utility of proposed methods via application to analysis of 

fasting glucose GWAS meta-analysis results, and find several novel loci worth 

further study
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Figure 1: 
Venn diagram of number of significant genes identified by three summary data based SNP-

set tests.
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Table 1:

Ratio of empirical type I errors divided by the significance level α estimated over 108 simulations: listed 

within parentheses are the standard errors. S2T is based on the sum of squared Z-statistics; ST is the sum of Z-

statistics, and AT is the adaptive test.

 10−4  10−5  2.5 × 10−6

 S2T 1.01 (0.01) 0.99 (0.03) 0.98 (0.06)

 ST 1.00 (0.01) 0.99 (0.03) 1.02 (0.06)

 AT 0.99 (0.01) 0.88 (0.03) 0.81 (0.06)
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Table 2:

Some novel genes found by the proposed SNP-set tests: we listed the test p-values for S2T, ST and AT and the 

minimum p-value across all SNPs in the gene for Dupuis et al. (2010) study (denoted as minP-2010) and Scott 

et al. (2012) study (denoted as minP-2012).

 Gene  S2T  ST  AT minP-2010 minP-2012

 ZNF512 2.09e-06 5.49e-01 3.82e-06  1.40e-06  9.68e-20

 GPN1 2.51e-06 5.38e-01 4.62e-06  2.96e-06  9.68e-20

 SLC4A1AP 1.22e-06 6.06e-01 1.55e-06  2.96e-06  3.21e-17

 PROX1 1.39e-06 8.17e-06 1.61e-06  7.08e-08  3.22e-12

 SUPT7L 1.76e-06 4.16e-01 2.30e-06  2.96e-06  6.59e-12

 C2CD4B 6.31e-07 5.64e-02 6.31e-07  5.89e-07  2.05e-08
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