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Abstract

Connexinophaties are a collective of diseases related to connexin channels and hemichannels. In 

particular many Cx26 alterations are strongly associated to human deafness. Calcium plays an 

important role on this structures regulation. Here, using calcium as a probe, extensive atomistic 

Molecular Dynamics simulations were performed on the Cx26 hemichannel embedded in a lipid 

bilayer. Exploring different initial conditions and calcium concentration, simulation reached ~4 μs. 

Several analysis were carried out in order to reveal the calcium distribution and localization, such 

as electron density profiles, density maps and distance time evolution, which is directly associated 

to the interaction energy. Specific amino acid interactions with calcium and their stability were 

capture within this context. Few of these sites such as, GLU42, GLU47, GLY45 and ASP50, were 

already suggested in the literature. Besides, we identified novel calcium biding sites: ASP2, 

ASP117, ASP159, GLU114, GLU119, GLU120 and VAL226. To the best of our knowledge, this 

is the first time that these sites are reported within this context. Furthermore, since various 

pathologies involving the Cx26 hemichannel are associated with pathogenic variants in the 

corresponding CJB2 gene, using ClinVar, we were able to spatially associate the 3D positions of 

the identified calcium binding sites within the framework of this work with reported pathogenic 
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variants in the CJB2 gene. This study presents a first step on finding associations between 

molecular features and pathological variants of the Cx26 hemichannel.
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Introduction

Multicellular organisms require multiple types of inter-cellular communication in order to 

respond in an organized way - in either tissue or organ - to stimuli of the organism itself or 

from the environment that surrounds it [1–5]. The most common and ubiquitous form of this 

intercellular communication in animal tissues is through the Gap Junction Channels (GJCs) 

[2–4, 6, 7]. GJCs (Fig. 1) are structures that connect cells allowing the direct exchange of 

ions and molecules with a molecular weight cut-off of about 1kDa [8]. GJCs are involved in 

many cellular processes determining the normal physiology of an organism, such as cell 

proliferation, differentiation, migration, and apoptosis [2, 7–10]. Multiple pathologies and 

developmental disorders, such as hearing loss, skin diseases, peripheral and central 

neuropathic disorders, lens cataracts (Cx26, Cx30) and cardiac arrhythmias (Cx40), have 

been associated with different dysfunctions of hemichannels and GJCs [11–13]. Many of 

these pathologies are associated to specific genetic variants that change the Cx amino acid 

sequence [11, 12]. For example, two clinical phenotypes were associated to hearing loss due 

to Cx26 hemichannel malfunction [14] and a heterozygous missense mutation was identified 

in a family with dominant deaf-mutism and palmoplantar keratoderma [15].

The GJCs are constituted by the head-to-head non-covalent coupling of two hexameric 

oligomers named connexons, each one of them placed in the plasma membrane of adjacent 

cells (Fig. 1) [16]. The connexons can also work as hemichannels providing a direct and 

highly regulated transmembrane communication pathway [17–19]. The monomer subunit of 

the hexameric arrangement is the Connexin (Cx), a highly-conserved sequence protein 

constituted by four hydrophobic transmembrane segments named TM1 to TM4 (Fig. 1) [20, 

21]. The N-terminal domain of Cx is inside the cell and it is located within the channel pore 

determining the polarity of the gap junction channel [8]. Thus, the conformational flexibility 
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of this region is crucial for proper regulation of the channel [22]. The C- terminal domains 

and one of the connecting loops from the Cx26 are also inside the cell, whereas the two 

others are outside the cell. These last extracellular loops are essential for the docking 

between connexons. GJCs and connexons hemichannels are sensitive to several intracellular 

and extracellular factors affecting a variety of physiological processes and pathological 

states. One of these factors is Ca2+ concentration, which ranging from 2mM extracellular to 

10–100nM intracellular, is a key element in the regulation of GJC conductance and therefore 

a driver of multiple physiological properties [5, 19, 23, 24].

A milestone in the field of molecular modelling of connexons occurred when the crystal 

structure of the GJC of connexin 26 (Cx26) was reported with a resolution of 3.5 Å [25]. 

GJCs were crystalized with and without Ca2+ [26] and both structures were virtually 

identical, except from the large structural changes observed in close proximity of Ca2+ 

binding sites. From the structural knowledge of these systems, several Molecular Dynamics 

(MD) simulations experiments of the human Cx26 in multiple environments have been 

carried out [20, 23, 27–29]. In particular, MD simulations have been used to study Ca2+ 

binding sites at the interface between adjacent subunits close to the extra cellular connexons 

junction. The importance of this is captured in a recent review article on structure-function 

relationships on GJCs channel by modelling and simulations by Villanelo el al. [30].

In this work, using calcium as a probe at high concentrations, MD simulations were used to 

identify potential calcium binding sites of a hemichannel embedded in a model membrane. 

The MD simulations were conducted taking into account four different cases. These 

simulations allowed us to explore the various specific amino acids strongly interacting with 

calcium ions and their dynamics. Furthermore, the position of these amino acids was 

spatially associated to known pathogenic mutations, using the ClinVar database [31]. In the 

next sections, we describe the four systems studied and the methodology used in the MD 

simulations [32]; the results of the simulations and their association with ClinVar 

annotations. In the Discussion section, we compare our findings with those from the 

literature. The Conclusions summarize our major findings and discuss how the approach 

used here may be extended to other systems.

Materials and Methods

MD simulations were performed using the GROMACS 5.0.4 software package [33] with the 

CHARMM36 force-field [34] and the TIP3P model for water [35, 36]. After 10 ns of 

equilibration, MD simulations were carried out for 500 ns production runs within the NPT 

(constant number of particles, temperature, and pressure) ensemble. The system was coupled 

to a temperature bath with a reference temperature of 310K and a relaxation constant of 0.1 

ps. Temperature was kept constant using the Nosé-Hoover thermostat [37, 38] with a 

coupling constant of 6.0 ps and the pressure was equilibrated at 1 bar using the Parrinello-

Rahman barostat [39] with a coupling constant of 6.0 ps and compressibility of 4.5×10−5 

bar−1. The electrostatic interactions were taken into account using the Particle Mesh Ewald 

(PME) version of the Ewald sums [40, 41] considering a real space cut off of 1.0 nm, a grid 

spacing of 0.12 nm and a cubic interpolation. In all the simulations the Van der Waals 

interactions were cut off at 1.0 nm [42]. The time step for the integration of the equation of 
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motion was 2 fs. The non-bonded list was updated every 10 steps. All simulations were 

performed without any constrains. The simulations were performed in the Center of High 

Computer Performance (CHPC) at the University of Utah, using 120 cores of commodity 

processors. The figures were obtained using Visual Molecular Dynamics [43] software 

(VMD from University of Illinois at Urbana-Champaign, IL, USA), Chimera [44] and Grace 

(http://plasma-gate.weizmann.ac.il/Grace/) software packages.

The simulated systems were based on a Cx26 connexon embedded into a POPC bilayer. The 

protein structure of the Cx26 was the 3.5 Å X-ray structure of the Connexon Cx26 obtained 

by Maeda et al. [25] and completed with homology modelling techniques [18]. The protein 

structure was embedded into a 500 1-palmitoyl-2-oleoylsn-glycero-3-phosphocholine 

(POPC) (250 in each leaflet) lipid bilayer by the replacement method and using the web 

based software CHARMM-GUI [45, 46]. POPC lipids are broadly used in biomimetic 

studies and it is one of the most used systems in this kind of membrane protein MD 

simulations [47]. The assembled systems were solvated with sufficient number of water 

molecules (> 46000) to ensure proper hydration of the lipid bilayer and to prevent the 

interaction of the protein with itself (~25 Å) with periodic boundary conditions (PBC). A 

sodium chloride solution was used to neutralize the net and local charges of the system.

Even for these big systems, physiological calcium concentration corresponds to 0.1 to 1.7 

calcium atoms, which may be insufficient to identify biding sites within a reasonable 

simulation time. To overcome this, we considered calcium concentrations higher than 

physiological ones to obtain as broad sample as possible of binding sites. We performed 

three simulations varying the concentration of calcium and buffer ions, initially placed into 

the water phase. The calcium ions were randomly placed in the simulation box using a water 

replace method available in the GROMACS simulation package. These three studies will be 

referred to as CA–r (with r = 0, 0.04 and 0.1, corresponding to Ca2+ concentration none, 

0.04 M and 0.1M, respectively). We carried out an additional simulation at a calcium 

concentration of 0.1M, were initially eight Ca2+ ions were placed inside the connexon pore, 

i-CA-0.1. In this case, we replaced random waters and ions present at different sections of 

the pore editing the initial configurations. All the simulations were run in duplicates.

In Table 1 we summarized the characteristics of each of the systems described above, 

including the number of atoms, number of different ions and characteristic simulation run 

times.

Known pathogenic variants of Cx26 (CJB2 gene) were extracted from ClinVar (https://

www.ncbi.nlm.nih.gov/clinvar/) [31], which is the most comprehensive and authoritative 

source of annotated human variants with known clinical impact. The search for variants was 

performed using the web interphase of ClinVar in April 17th of 2017 and the variants were 

recorded manually and assigned against the same Cx26 sequence as used in the simulations 

(see Discussion section for details). Mutation sites that are far removed from calcium 

binding sites in the protein sequence may be in their physical proximity and therefore able to 

change calcium binding ability at the site. To study this issue, we labelled in the Cx26 

structure the calcium binding sites and the mutations sites using a pairwise approach and 

visually identified potential regions of interest.
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Results and Discussions

In order to assess the protein structural stability and dynamics during the simulations, we 

calculated the Root Mean Square Deviation (RMSD) of the protein alpha carbons (Cα) [48] 

and Root Mean Square Fluctuation (RMSF) of each residue [49], using as a reference the 

initial configuration structure of the connexon [18]. Figure 2 compares the RMSD of the 

CA–0 (green), CA–0.04 (red) and CA–0.1 (black) systems, over 500 ns simulations. The 

RMSD results for the replicas are presented in Figure S1 of the Supplementary Material. All 

RMSDs are compatible with a highly stable protein backbone during the simulation time 

after equilibration [50]. The order of magnitude of the drift from the initial structure was 

approximately 5 Å for all systems, but it is apparent from Figure 2 that the systems are not 

fully equilibrated at the beginning of the 500 ns production runs. Therefore, all the analysis 

presented here disregarded the first 50 ns of the production run, i.e. all average quantities 

where calculated using the last 450 ns of the simulations to eliminate any transient effects on 

the results presented here.

To gather insight on the relative fluctuation of different regions within each Cx26 structure 

we evaluated the RMSF of the backbone of each amino acid residue in the four different 

chains of the structure (Figure 3) for the last 450 ns of the production runs. RMSF results on 

the replicas are presented in Figure S2 of the Supplementary Material.

Figure 3 and S2, of the supplementary material, show the average RMSF of each residue of 

the six connexins chains for the three CA-r simulated systems. Similar fluctuations patterns 

are observed for the same connexins domains. The highest peak is consistently observed for 

the CL domain between the residues 96 and 132. The fluctuations observed within the 

regions of residues 210–226 and 1–19 correspond to the CT and NTH terminal domains. As 

expected, the CT and CL domains located outside the membrane, are the most flexible ones 

because their lack of structural constrains. The TM regions are the most stables domains 

since they are embedded in the lipid bilayer and organized in alpha helices, which restrict 

their movements [51]. For the NTH domain, we notice subtle differences between the CA–0 
simulation and the others, suggesting that the Ca2+ ions influence the dynamical properties 

of this region.

The overall organization of the whole system was investigated through the calculation of the 

average electron density profile (EDP) along the direction normal to the bilayer (Z-axis) for 

the three simulations (Figure 4) and its replicas (Figure S3) of the supplementary material. 

As an example, in Figure 4A and S3A of the supplementary material, we show the EDP of 

POPC (red), protein (black) and water (green) for the CA–0.1 simulation, where Z=0 

corresponds to the bilayer center of mass. The hemichannel asymmetrical structure is 

reflected in the EDP distribution along the Z-axis. This asymmetry leads to a distortion of 

the lipid bilayer when compared with plain bilayers [52, 53] and to a high-water density at 

the region corresponding to the extracellular side of the connexon. Furthermore, contrarily to 

what is observed in simple lipid membranes, the density of water is different from zero in 

the hydrophobic region, which could be attributed to the presence of water inside the 

connexon pore. This was confirmed by visual inspection of the structures generated by the 

simulation as exemplified in Figure S4 of the Supplementary Material.
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Ion electron density profiles and z- averaged density maps (Figures S5 to S6 and S7 to S9) 

of the supplementary material show that most sodium and chloride ions are widely 

distributed into the water phase. However, few of the ions are found in the outer region of 

the pore and some chloride ions were able to enter inside the pore during the simulation 

times considered here.

Figure 4B and S3B of the supplementary material, show the calcium distribution for CA–0.1 
(green) and CA–0.04 (blue) simulations and its replicas, respectively. Similar patterns are 

observed in both cases, with well-defined peaks (~−20Å, ~20Å and ~40 Å) at the protein 

edges. The first peak had the same high for both concentrations suggesting a saturation of 

Ca2+ binding sites, while the second and third peaks show an increase in their intensities 

with the calcium concentration. This could be explained by a difference in the total number 

of Ca2+ binding sites on each side of the protein, as is discussed below. No Ca2+ ions were 

found around at Z=0, but in one case in the replicated system (Figure S3B-green), it seems 

that a calcium ion was able to enter the pore. This is supported by the analysis of calcium 

density maps (S8D, S8H and S9D-S9H) and will be discussed below.

An exploratory analysis of the CX26 pore topology was carried out using the MOLE online 

service [54]. Through this tool, we were able to probe the pore length, characterize its 

bottleneck and measure different diameters. In Figures S10 and S11 of the Supplementary 

Material, three snapshots of structures analysed at 100 ns (A), 300 ns (B) and 500 ns (C), for 

CA-0.0 and CA-01, are presented at the top of the figure along with a plot of the 

corresponding channel length and radius at the bottom. Our results are in good agreement 

with the ones reported by Batool et al. [55] both in pore size and length. However, as it can 

be observed in the figure S11, in our work we found that high Ca2+ concentrations appear to 

be altering the intracellular topology of the pore. This issue will be explore in future work.

The Ca2+ interactions with specific amino acids were studied by calculating the time 

evolution distances between the ions and the selected atoms in the trajectories from 

simulations. Stable distances can be associated to stable energies, considering pair 

interactions between non-bonded atoms. Further information could be obtained by free 

energy calculation, but we consider that those calculations are outside the scope of this 

work, which focus in identifying potential binding sites and associate them with known 

pathogenic variances.

Figure 5 shows the temporal evolution of the distance between a Ca2+ and the two 

carboxylic oxygen atoms in the lateral chain of ASP50 for one of the Cx26 protomers. The 

distance corresponds to each oxygen atom to the calcium ion (R1 = Oxygen 1 to Ca2+ -red- 

and R2 = Oxygen 2 to Ca2+ -black) during the first 100ns were the interplay between the 

three atoms is better observed. The distances at the initial times (t < 25 ns), are ~50 Å and 

exhibit large fluctuations, but after 25 ns the distances remain close to 2.35 Å, indicating a 

specific interaction, such as the one depicted in the inset of Figure 5. In Figure S12 of the 

Supplementary Material we present the time evolution of these distances up to 500 ns 

confirming the stability.
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We found several other amino acids interacting with Ca2+ and following similar behaviors: a 

large initial uncorrelated fluctuation of the distances between Ca2+ and the lateral-chain-

carboxylic oxygens followed by stabilization at a distance of ~2.35 Å. These amino acids are 

ASP159 in the E2 domain, GLU114, ASP117, GLU119, and GLU120 in the CL domain, 

VAL226 in the CT domain and ASP50 in the E1 domain.

ASP50 was already identified as a calcium binding site by Zonta et al. [23]. This finding was 

also supported by Lopez et al. [56], that using mutant structures of Cx26(D50N/Y) were the 

ASP50 was replaced by neutral amino acids Tyrosine or Asparagine concluded that ASP50 

plays a key role in the Ca2
+ driven gating mechanism. Recently, using MD, the same authors 

reported that there is an electrostatic network close to the E1 region that exhibits significant 

disruption/rearrangement upon calcium binding [16]. In spite of the symmetry of the protein, 

in our simulations, the ASP50 interaction is observed only in one protomer of the connexon 

at a time, which may be associated with the electrostatic repulsion of a neighboring chain 

[26].

We were also able to associate GLU114, GLU119 and GLU120 acids with calcium binding 

sites and to the best of our knowledge this is the first time that this has been reported. These 

three amino acids were identified to be capable of being γ-carboxylated in some cells as part 

of post-translational modifications [57] and a mutation in GLU114 was associated with 

severe deafness in association with a V27I mutation [58]. To the best of our knowledge, ASP 

117 was not previously reported in association with a calcium binding site. This amino acid 

belongs to the CL region close to GLU114, GLU119 and GLU120 amino acid.

This is also the first time that a direct link between ASP159 and calcium binding is 

observed. Gonzalez et al. [59] demonstrated that human and sheep Cx26, but not the rat 

orthologue, are able to form open, voltage-activated hemichannels. They also showed that rat 

hemichannels became voltage-gated when the Aspartate found in the human and sheep 

replaced the Asparagine at position 159 of the rat sequence. The C-terminal residue VAL226 

is also a new calcium binding site found in this study but given it´s terminal nature is 

possible that may not be relevant.

We identified a different total number of Ca2+ binding sites on each side of the connexon: 

seven in the extra-cellular and thirty in the intra-cellular side. From Figure 4B and S3B of 

the supplementary material, we observed that increasing calcium concentration leads to 

populating these Ca2+ sites corresponding to EDP peaks at ~20 Å and ~40 Å. These regions 

are the most flexible ones and involve ASP, GLU and VAL residues that are further away 

from the center of the connexon.

Under ergodic conditions all accessible binding sites will be revealed, however this is not the 

case for finite simulation. In order to extensively sample all possible binding sites different 

strategies are needed. The first one used here was to study different calcium concentration. 

Another strategy would be to bias the initial placement of the calcium in the simulations. In 

order to do so, we performed a simulation on a system –named as i−CA–0.1 (see Methods) - 

in which eight Ca2+ ions were placed inside the Cx26 channel and the other Ca2+ randomly 

distributed. RMSD, RMSF and membrane-protein overall organization were analyzed for the 
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duplicate cases. The results of these calculations are presented in Figures S13 to S15 of the 

supplementary material. At a first glance, no significant differences with the results 

discussed above for the other systems considered here were found. However, for this 

simulation the calcium EDP showed a new peak on the distribution at the center of the pore 

(Z=0), as shown in figure S15B of the supplementary material. This is in correlation with the 

density maps analysis, where calcium density is concentrated inside the pore (Figure S17D 

and S17H), a main difference with it was observed for the previous density maps. With 

further analysis of the simulations, we were able to identify in this area a calcium binding 

site involving ASP2 from two connexins. According to the literature reports [51, 60], this 

interaction may be physiologically relevant due to the role of ASP2 in the “plug gating 

mechanism”, as discussed elsewhere this suggest that Ca2+ binding at ASP2 also may be 

associated with this mechanism. Visual analysis of the MD trajectories also supports this 

observation as exemplified in S18 of the supplementary material.

In addition to those sites described above and in agreement with an X-ray structure reported 

in the literature [26], in the i−CA–0.1 simulation we found calcium binding sites involving 

GLU42, GLU47 and GLY45, which are located at the extracellular edge of the pore region. 

We were able to find three stable supra-molecular arrangements of Ca2+ interaction within 

these sites, which are shown in Fig. 6. The first arrangement (6A, 6B) involves the oxygen 

atoms of the GLU42 lateral chain (red-black) and the GLU47 lateral chain (green-blue) 

stabilizing, at similar distances (~2.5 Å), and the oxygen of the GLY45 (orange), stabilizing 

at a distance between 5 Å and 7 Å. In the second arrangement (6C, 6D) the two oxygen 

atoms of GLU42 (red-black) are located at a stable distance (~2.3Å) of a Ca2+ and only one 

oxygen of the GLU47 (green or blue) binds at any given time. The oxygens exchange 

between GLU47, green to blue, can be observed in Fig. 6C at approximately 35 ns. In 

addition, the GLY45 oxygen distance to the Ca2+ fluctuates around a mean value of 5 Å. The 

third arrangement (6E and 6F) shows that one of the oxygen atoms of GLU47 (green) is at 

~2.3 Å from the Ca2+. Large fluctuations are observed for the oxygens atoms in GLU42 

(red-black), whereas the oxygen of GLY45 (orange) remains at a distance similar to the 

other oxygen of GLU47 (blue).

In relation with these amino acids, Bennet et al. reported the interaction between them and a 

calcium ion by X-ray crystallography [26]. In this work, an electrostatic barrier driven by 

Ca2+ for the GLY45 in coordination with GLU42 and GLU47 was proposed. However, as a 

final remark, the authors doubted about the strength of GLY45 role in this arrangement. In 

our simulations, the GLY45 residue is found at a longer distance from the calcium that the 

one reported by the X-ray studies. Moreover, here GLY45 appears to be repelled by the 

changes in the total force from the calcium ion and the GLU42 and GLU47 from adjacent 

connexins. This behavior supports Bennet et al. theory that GLY45 was not a stable 

participant on this complex network. These results exemplify the strength of un-constrained 

MD simulations to study the dynamic behavior of these kinds of systems that escapes some 

experimental approaches.

It is important to also notice that the interaction of GLU47 and calcium was studied by the 

means of quantum chemistry methods by Zonta et al. [61]. Through their calculations, the 

researchers explored GLU47, ARG75 and ARG184 with Ca2+ in a Cx26 hemichannel and 
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their results proved that the post-translational glutamate GLU47 is a strong candidate to bind 

Ca2+ in the extracellular side on Cx26. However, the computational cost of the calculations 

is too high and then the procedure might be applicable exceptionally to confirm an argued 

mechanism of interaction, as the authors did.

Because Ca2+ ion regulation plays a key role in defining the physiological activity of the 

connexons we hypothesize that mutations in close proximity (in sequence or physical 

proximity, see also Methods section) of Ca2+ ion binding sites are more likely to cause 

pathological alterations. However, very little is known with respect to the molecular 

mechanisms of diseases associated with these variants. Figure 7 shows the sequence of 

Cx26, where the Ca2+ binding sites and mutation sites obtained from ClinVar have been 

highlighted.

Figure 7 shows that there are Ca2+ binding sites for which pathogenic variants have been 

reported, i.e. GLU120 and ASP159. Moreover, a number of calcium binding sites are one or 

two residues apart from a reported mutation site [11, 12, 15, 62–64]. While these 

observations are important, it is also relevant to take into account the three-dimensional 

nature of our problem. Mutation sites that are far from calcium binding sites in the protein 

sequence may be in physical proximity and therefore, able to change calcium binding ability 

at the site. To study this issue, we labelled in the Cx26 structure the calcium binding sites 

and the mutations sites using a pairwise approach and visually identified potential regions of 

interest (see Figure 8 for an example).

The summarization of these analysis is presented in Table 2, where we show all the possible 

regions of interaction between sites with reported pathogenic mutations (ClinVar) and Ca2+ 

binding sites found in the MD simulations. In all cases these results have been derived from 

visual inspection and using an inclusive criterion. Also, in Table 2 we associate our findings 

with the recently reported [11, 12] functional state of Cx26 hemichannels, gap-junctions and 

pathological phenotypes [64]. It is important to notice that due to the three-dimensional 

approach used here to identify the possible associations between reported mutations and 

calcium-biding sites from the MD simulations, some mutations are at a distant region of the 

sequence from that where we find calcium binding sites. This is for example the case of 

G12R and VAL226 as exemplified in figure S19 of the supplementary material.

Conclusions

In this work, we carried out eight simulations considering different calcium concentration 

and initial conditions. Our results were able to capture interesting features of the calcium-

connexon interaction. In particular we identified 10 amino acid involved in specific 

interaction sites, which are summarized them in Figure 9. Besides the agreement that we 

found with the specific sites for calcium already defined in literature, in our work we 

identified novel ones and went forward capturing different kind of arrangements that could 

shed light to the interaction of calcium with Cx26. In addition, a summary of the number of 

calcium ions in relation with these residues is presented in Table S1 of the Supplementary 

Material.
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Given the relevance of calcium in the physiopathology of conditions that affect the Cx26 

connexon channel activity [11, 12, 21] it is important to have an insight on the molecular 

interactions of these two key components. In this work, using calcium as a probe at high 

concentrations, we found the first indication of different calcium sites through the electron 

density profile. Further inspection at the molecular level helped us to find specific amino 

acid interactions with calcium and their dynamics. This interaction mainly occurs with the 

carboxyl groups of the amino acids, similar to what it was described for other compounds as 

it can be exemplified by the chelation mechanism of the calcium by the functional groups of 

the PAMAM and EDTA [118].

Molecular Dynamics simulations proved to be a powerful tool to explore a biological system 

at the molecular level. The identification of the specific sites where calcium could have an 

important role in the connexon structure is a step forward to understand the complex world 

of the intercellular communication. Moreover, by combining the MD results with known 

pathogenic mutation sites, we were able to find regions of the protein for which in depth 

studies of how mutations affect structure and dynamics of calcium binding may elucidate 

pathogenic pathways and perhaps identified potential therapeutic avenues.

We suggest further research, including MD simulation in mutated proteins, to further explore 

these systems, and dedicated in vitro experiments. While our work has been restricted to 

Cx26, the methods proposed here could be extended to other connexins for which 

experimental structures are available or by using 3D structure prediction approaches [119]. 

Both, the connexinophaties understanding and the development of new therapies will benefit 

from the knowledge at the molecular level of these systems.
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Highlights

• In this paper we were able to spatially associate the 3D positions of the 

identified calcium binding sites within the framework of this work with 

reported pathogenic variants in the CJB2 gene. This study presents a first step 

on finding associations between molecular features and pathological variants 

of the Cx26 hemichannel.
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Figure 1. 
Schematic Representation of the Cx26 structures. A- Gap Junction channel. Each connexon 

shown in different color. B- Connexon structure. Each connexin has a different color. C- 

Connexin structure and its domains Transmembrane Segments TM1 (Yellow), TM2 (Violet), 

TM3 (Blue), TM4 (Light Blue); Extra-cellular Loops E1 (Green), E2 (Black); Intra-cellular 

C-terminal CT (Orange); Intra-cellular Loop CL (Pink), and Intra Pore Segment NTH (Red).
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Figure 2. 
RMSD calculations for the three of the systems considered in this study. Cases: A) CA– 0 
(green), B) CA − 0.04 (red) and CA − 0.1 (black).
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Figure 3. 
RMSF of each connexin residue calculated over the simulation run. The six connexins 

corresponding to each case are depicted in different colors and over imposed. A) CA-0.1 
case, B) CA-0.04 case and C) CA-0 case. On the top, each Cx26 domain is indicated.
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Figure 4. 
Electron Density profiles. A) System CA–0.1. The POPC distribution is in red, the protein 

distribution in black, and the water distribution in green B) Calcium EDP for the CA–0.04 
(blue) and CA–0.1 (green) cases. Z=0 corresponds to the center of the membrane, the region 

that corresponds to the extra-cellular domains of the connexon, is located between −20 and 

−60 Å and the intra-cellular one is between 20 and 60 Å.
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Figure 5. 
Time evolution of the R1 and R2 distances: R1 and R2 are the distances between Ca2+ and 

the two carboxylic O atoms in lateral chain of ASP50. The binding distance is around 

2.35Å. Inset: Schematic graph of the binding interaction between Ca2+ and ASP50. Both 

curves are superimposed.
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Figure 6. 
Time evolution of the distances between Ca2+ and oxygen atoms in different amino acids. 

A), C) and E) distances with two carboxylic O atoms in the lateral chain of GLU42 (red and 

black), GLU47 (green and blue) and GLY45 (orange). B), D) and F) show a schematic 

representation of the corresponding arrangements, associated with the side figure.
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Figure 7. 
Sequence of Cx26 annotated with the position for which pathogenic variants reported in 

ClinVar and calcium binding sites have been encountered in this study. Residues highlighted 

in blue, orange and green correspond to those for which pathogenic variants have been 

reported in ClinVar, calcium biding sites found in this study and those that meet both 

criteria, respectively.
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Figure 8: 
Relative spatial positions of the sequences EKKR(104) in blue and EFKDIEE (120) in red. 

In the first sequence pathogenic mutations have been reported at GLU101, LYS103 and 

ARG104, whereas in the second one the positions GLU114, ASP117, GLU119 and GLU120 

have been identified as calcium binding sites.
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Figure 9. 
Schematic representation of the connexin. The amino acids involved in calcium specific 

interaction sites were highlighted in red, the ones found with the first initial condition and 

those observed after adding eight Ca2+ inside the pore are in green.
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Table 1.

Summary of the four simulated systems considered in this study.

System name N of atoms Nº of Ca2+ Nº of Na+ Nº of Cl- Run time 
&

CA-0 229,030 0 150 204 500 ns

CA-0.04 229,138 36 150 276 500 ns

CA-0.1 229,285 85 150 374 500 ns

i-CA-0.1 229,285 85 150 374 500 ns

&
Average run times are 25 ns per day using 120 cores for systems with 164,000 sites.
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