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 The Monty Hall problem is a decision problem with an answer that is surprisingly 
counter-intuitive yet provably correct. Here we simulate and prove this decision in a high-
throughput DNA sequencing machine, using a simple encoding. All possible scenarios are 
represented by DNA oligonucleotides, and gameplay decisions are implemented by 
sequencing these oligonucleotides from specific positions, with a single run simulating more 
than 12,000,000 independent games. This work highlights high-throughput DNA 
sequencing as a new tool that could extend existing capabilities and enable new encoding 
schemes for problems in DNA computing.   

 A central question within the mathematical and computational contexts of DNA 
computing1–10 is the applicability of this field to real world problems. While DNA computing is 
currently unmatched by silicon-based computers in biological settings11–17, it is still not clear 
whether it could be adapted to solve very complex problems, e.g. NP-hard problems, at realistic 
scales, where conventional computers perform profoundly better. The limitations of DNA 
computing have been previously discussed18, but it is important to note that these limitations 
apply only for specific encoding schemes of the problem and methods of readout. The original 
scheme used by Adleman1 for a 7-vertex Hamiltonian Path problem, although innovative at the 
time and elegant as a proof of principle, was grossly non-scalable; however present day DNA 
synthesis and sequencing technologies could enable new schemes that address this issue at least 
in specific problems.  

High-throughput DNA sequencing offers a unique setting to test diverse forms of 
encoding and readout that utilize the mechanics of the sequencing strategy being used19. For 
example, the Illumina technology sequences DNA by using sample strands as templates for de-
novo DNA synthesis20, which is performed on billions of unique sample strands in parallel. Each 
polymerization step is monitored in every strand by the sequencing machine. Thus, a typical 
sequencing run consists of hundreds of billions of individually-traced polymerization reactions. 
Moreover, older sequencers, such as the Illumina Genome Analyzer (GA)IIx, allow flexibility in 
designing recipes and introducing components to the chemistry and hardware of the machine, in 
turn enabling high-throughput screening of DNA properties such as protein binding21. Additional 
reactions, such as amplification reactions, restriction, ligation, editing, and re-sequencing, can be 
performed within the sequencing chamber, extending potential encoding schemes and providing 
readout that is highly resolved both spatially and temporally. This high level of parallelization is 
useful for many specific types of calculations.  
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 Here, we used high-throughput DNA sequencing to simulate and numerically prove the 
correct answer to the Monty Hall problem22 (MHP). The essential layout of this problem is 
described in Fig. 1A-C. The participant, or subject, is presented with 3 closed doors. In the 
famous version of MHP, behind one of the doors is a new car, while each of the other two doors 
conceals a goat. The process then goes as follows: 

1. The participant is asked to choose one of the doors, which remains closed (Fig. 
1A);  

2. The presenter, who has complete knowledge of what is behind each door, opens a 
different door and reveals a goat (Fig. 1B); 

3. The participant should now decide whether to switch to the remaining closed 
door, or to stay with the initially-chosen one (Fig. 1C); 

4. The presenter opens the door finally chosen by the participant, and reveals what is 
behind it. 

The core of this decision problem is contained in step 3, namely, should the participant switch to 
the remaining (unchosen and unopened) third door, or to remain with the door that was chosen 
originally. It can be proven mathematically that the correct decision is to switch to the third door, 
which leads to the best chance of winning the car. In step 1, the probability of the car being 
behind the chosen door is ⅓, and of it being behind either of the other two doors is collectively 
⅔; however, step 2 shows that one of these two doors is worthless, effectively shifting the entire 
probability of ⅔ to the remaining door. Switching doors therefore doubles the probability for 
winning the car from ⅓ to ⅔.  

Despite the fact it can be proven, the correct answer is surprisingly counter-intuitive. The 
decision between only two doors strongly suggests that each choice should be assigned a 
probability of ½, in which case switching and not switching have equal value. One approach to 
demonstrate the paradoxical nature of this intuition, and subsequently prove the correct answer, 
is to run many iterations of MHP and show that the decision to switch leads to reward in ⅔ of the 
cases. This simulation was the one performed in this work, using the encoding scheme described 
below. 

In order to simulate all the possible outcomes of MHP, we designed DNA 
oligonucleotides that contain 3 regions, each region representing a car (C) or a goat (G). The 
oligonucleotide ensemble contained every possible configuration of the 3 doors (CGG, GCG, 
and GGC) (Fig. 1D) in equal molar ratios. Each region in any of the configurations is built from 
two parts: an access primer (P1, P2, P3) and an 8-nt identifier barcode (B1 for C, B2 for G).  

In order to capture the unique structure of MHP, the access primers in this 
implementation are defined in terms of gameplay decisions and not physical position, i.e. they do 
not represent a specific “door”. The first primer (P1) represents the participant’s first choice, 
which may be a car (probability of ⅓) or either goat 1 or 2 (collective probability of ⅔). The 
second primer (P2) represents the elimination of a goat by the presenter (Fig. 1E), and the third 
primer (P3) represents the participant’s decision to switch (Fig. 1F).  

There are three different scenarios in MHP (Table 1). The participant may randomly 
choose the car, goat number 1, or goat number 2. In the first case, if the participant chooses the 
car, the presenter reveals a goat leaving the other goat for the participant in case a decision to 
switch is made. In the other two scenarios, a goat has been chosen and the presenter will reveal 
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the second goat, leaving only the car in case the participant decides to switch. In our 
implementation of MHP, each oligonucleotide represents one of the three scenarios. The specific 
design used here is as follows, although the particular order of regions along each 
oligonucleotide is irrelevant: 

1. Scenario 1 = [C][G][G] = [P1B1][P3B2][P2B2] 
2. Scenario 2 = [G][C][G] = [P1B2][P3B1][P2B2] 
3. Scenario 3 = [G][G][C] = [P1B2][P2B2][P3B1] 

This simple encoding captures the precise structure of MHP.  

The MHP ensemble was sequenced in an Illumina NextSeq 500 instrument in paired-end 
mode. In the first read, the full length of the ensemble was sequenced to ensure that all scenarios 
are equally represented (Fig. 2A); the second read was sequenced from a specific access primer 
(P1, P2, or P3) based on gameplay decision.  

Following the first read, the experimental procedure progressed as follows: 

1. The participant’s chose a “door”, with a probability of ⅓ to conceal a car and ⅔ to 
conceal a goat; this choice, which is always the same in MHP regardless of 
scenario, was then defined by P1, but was not sequenced at this stage.  

2. The presenter sequenced the ensemble from access primer P2, revealing a goat 
across the entire ensemble.  

3. The participant chose to switch: the presenter sequenced the ensemble from 
access primer P3.  
Note: had the participant chosen not to switch, presenter would have sequenced 
from access primer P1.  

This run simulated 12,341,292 games, and the decision to switch resulted in a car in 8,227,528 
games, which is 66.7% of the total well-sequenced reads (Fig. 2B).  

The purpose of this work was to highlight high-throughput DNA sequencing as a setup to 
probe new possibilities in the encoding of problems that rely on parallel computing in order to be 
solved. Moreover, it shows one possible approach in the representation of such problems. The 
technology employed here is routinely used to sequence billions of reads with more than 100 
bases each. Even as a readout mechanism alone, this already significantly expands the 
capabilities of early schemes such as Adleman’s. In this scheme1, in which each vertex and each 
edge is represented by a 20-mer oligonucleotide, a graph with k vertices would require a total of 
20k(log k)k base pairs of DNA, reaching an unrealistic scale rapidly beyond the initial graph of 7 
vertices. In contrast, high-throughput sequencing could theoretically support representations of 
graphs with 40-50 vertices using Adleman’s original encoding of the problem. Although this is 
still very far from the current capabilities of conventional computers, it demonstrates that what 
was considered once completely impractical can now potentially be achieved by an existing, off-
the-shelf technology, and by improved encoding forms.  

 It would be interesting to see such new forms of computational problem encoding in 
DNA, that utilize the entire range of capabilities e.g. high-throughput sequencing, DNA editing, 
strand-displacement networks, etc., which became available only recently. For example, it could 
be feasible to develop a scheme for the division of large and complex problems into billions of 
small tasks, their distributed execution within the sequencing machine, and later their 
reintegration into a solution to the original problem, inside the sequencer. Benenson et al8 
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describe a finite automaton made of DNA molecules. This machine could be programmed to 
parform calculations. In their work, 1012 processes were run in a single tube, carrying out the 
same calculation. Implemented in a sequencing machine, 1010 automata could be programmed to 
perform 1010 unique calculations, each monitored independently.  

Although it is still early to see where and to what extent would high-throughput DNA 
sequencing impact the question raised at the beginning of this article, it is not unlikely that 
further advances in DNA sequencing, which for the past decade significantly outpaced Moore’s 
law23, would lead to new insights into how can the current gaps be bridged. 

 

Methods summary 

Oligonucleotides were ordered from Integrated DNA Technologies (IDT). Access 
primers were either taken directly from Nexterra and TruSeq sequencing primer collections, or 
custom designed, with Tm of ~ 65 �. The barcodes were taken from the Nexterra barcode library. 
To compensate for the low complexity of the ensemble, an additional random 5-nt adapter was 
inserted at the beginning of each oligonucleotide, to allow the instrument to properly generate 
the cluster map during the first read. The concentration of each oligonucleotide was measured by 
Qubit and qPCR before mixing to obtain the ensemble. Sequencing library was prepared 
according to standard protocols. The ensemble was sequenced in an Illumina NextSeq 500 
instrument in paired-end mode.  
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Table 1 
 

Scenario P1: 
In step 1: Participant’s 
first choice 

P2: 
In step 2: Presenter 
reveals a goat 

P3:  
In step 3: Participant 
decides to switch 

In step 3: Participant 
decides not to switch 

1 Car (B1) = P1B1 Goat (B2) = P2B2 Goat (B2) = P3B2 

2 Goat (B2) = P1B2 Goat (B2) = P2B2 Car (B1) = P3B1 

3 Goat (B2) = P1B2 Goat (B2) = P2B2 Car (B1) = P3B1 

 

Table 1. Detailed structure of the MHP ensemble, capturing all possible scenarios of the game. 
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Figure 1 
 

 
 
Figure 1. Layout of the Monty Hall problem (MHP) and its encoding in DNA molecules. A-
C, a schematic of the MHP gameplay, showing a specific scenario (GGC). A, the participant is 
asked to choose one of the doors, which remains closed. B, the presenter opens a door thereby 
intentionally revealing a goat. C, the core choice is then made by the participant whether to 
switch to the other closed door or not to switch. D, encoding of the MHP in an ensemble of three 
DNA oligonucleotides, which represent all possible scenarios of the game (CGG, GCG, GGC). 
The primer P1 represents the participant’s first choice across the ensemble. E, the presenter’s 
action of opening a door which reveals a goat is encoded by sequencing the entire ensbemble 
from the primer P2. F, the decision to switch is encoded by sequencing the ensemble again from 
either the primer P1 (first choice) or the primer P3 (the choice to switch). Results of the decision 
are revealed as sequences of the identifier barcodes. 
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Figure 2 
 

 
 
Figure 2. Experimental results of the MHP simulation. A, a representative field from a flow-cell 
tile displaying 3,000 clusters in 2D space; only every fifth cluster in the field is displayed for 
purposes of clarity. Each of the three symbols (x, +, dot) represents a scenario from the 
ensemble. X and Y units are pixels, using the native Illumina NextSeq image resolution of 0.8 
microns/pixel. Image dimensions are 2592 X 1944 pixels. B, results of sequencing the ensemble 
following the participant’s decision to switch doors. Sequencing took place from primer P3 
instead of P1 (the first choice in the game), and barcode sequences were analyzed and 
represented by colors (green, car barcode; red, goat barcode). The run resulted in 8,227,528 
“cars”, which is 66.7% of the total number of 12,341,292 games that were simulated.  
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Supplementary Information 

 

The complete ensemble is as follows: 

Car in position 1: 

AATGATACGGCGACCACCGAGATCTACACACACTCTTTCCCTACACGACGCTCTTCCGATCTNN
NNNCTAGTACGGTTGCGTCACACTGAACATCCTTCTCTTGTGTGCCTAGTACGCTGTCTCTTAT
ACACATCTCCGAGCCCACGAGACTCGCCTTACTGTCTCTTATACACATCTGACGCTGCCGACGA
ATCTCGTATGCCGTCTTCTGCTTG 
 

Car in position 2: 

AATGATACGGCGACCACCGAGATCTACACACACTCTTTCCCTACACGACGCTCTTCCGATCTNN
NNNCTAGTACGGTTGCGTCACACTGAACATCCTTCTCTTGTGTGCTCGCCTTACTGTCTCTTAT
ACACATCTCCGAGCCCACGAGACCTAGTACGCTGTCTCTTATACACATCTGACGCTGCCGACGA
ATCTCGTATGCCGTCTTCTGCTTG 
 

Car in position 3: 

AATGATACGGCGACCACCGAGATCTACACACACTCTTTCCCTACACGACGCTCTTCCGATCTNN
NNNTCGCCTTACTGTCTCTTATACACATCTCCGAGCCCACGAGACCTAGTACGGTTGCGTCACA
CTGAACATCCTTCTCTTGTGTGCCTAGTACGCTGTCTCTTATACACATCTGACGCTGCCGACGA
ATCTCGTATGCCGTCTTCTGCTTG 
 

Color coding: 
Nexterra p5 adapter 
TrueSeq p5 sequencing primer 
Random adapter 
“Presenter exposes a goat” sequencing primer (custom primer) 
“Participant chooses to switch” sequencing primer (Nexterra p7 sequencing primer) 
“Participant chooses not to switch” sequencing primer (Nexterra p5 sequencing primer) 
Goat barcode 
Car barcode 
p7 complementary adapter 
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The ensemble was constructed as follows: each gameplay oligo was divided into two parts which 
were ordered separately (table 1). The two parts were hybridized as follows: 

95°, 3min,  
95°, 30 sec,  
70.4°, 30 sec 
72°, 30 sec, 
6 Cycles 
 

Table S1: gameplay oligo parts 

car in 1 p5 AAT GAT ACG GCG ACC ACC GAG ATC TAC ACA CAC TCT TTC CCT 
ACA CGA CGC TCT TCC GAT CTN NNN NTC GCC TTA CTG TCT CTT 
ATA CAC ATC TCC GAG CCC ACG AGA CCT AGT ACG G 

car in 2 p5 AAT GAT ACG GCG ACC ACC GAG ATC TAC ACA CAC TCT TTC CCT 
ACA CGA CGC TCT TCC GAT CTN NNN NCT AGT ACG GTT GCG TCA 
CAC TGA ACA TCC TTC TCT TGT GTG CCT AGT ACG C 

car in 3 p5 AAT GAT ACG GCG ACC ACC GAG ATC TAC ACA CAC TCT TTC CCT 
ACA CGA CGC TCT TCC GAT CTN NNN NCT AGT ACG GTT GCG TCA 
CAC TGA ACA TCC TTC TCT TGT GTG CTC GCC TTA C 

    

car in 1 p7 CAA GCA GAA GAC GGC ATA CGA GAT TCG TCG GCA GCG TCA GAT 
GTG TAT AAG AGA CAG CGT ACT AGG CAC ACA AGA GAA GGA TGT 
TCA GTG TGA CGC AAC CGT ACT AGG TCT CGT GGG C 

car in 2 p7 CAA GCA GAA GAC GGC ATA CGA GAT TCG TCG GCA GCG TCA GAT 
GTG TAT AAG AGA CAG TAA GGC GAG TCT CGT GGG CTC GGA GAT 
GTG TAT AAG AGA CAG CGT ACT AGG CAC ACA AGA G 

car in 3 p7 CAA GCA GAA GAC GGC ATA CGA GAT TCG TCG GCA GCG TCA GAT 
GTG TAT AAG AGA CAG CGT ACT AGG TCT CGT GGG CTC GGA GAT 
GTG TAT AAG AGA CAG TAA GGC GAG CAC ACA AGA G 

  
 
Table S2: overlap in each pair 
 
sample size seq Tm (deg. C) 

car 1 overlap 20b CCGTACTAGGTCTCGTGGGC 59.3 

car 2 overlap 20b GCGTACTAGGCACACAAGAG 55.4 

car 3 overlap 20b GTAAGGCGAGCACACAAGAG 55.9 

 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 20, 2018. ; https://doi.org/10.1101/502435doi: bioRxiv preprint 

https://doi.org/10.1101/502435
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 

 

Samples were measured in Qubit to verify concentration and purity. 10 independent mixtures 
were made, and measurements were carried out to verify mixing accuracy.  

Table S3: quality analysis 

Sample name conc (ng/ul), 
qubit (10ul) conc (nM) 

1 0.394 2.76 
2 0.422 2.96 
3 0.394 2.76 
4 0.364 2.55 
5 0.426 2.99 
6 0.448 3.14 
7 0.39 2.74 
8 0.388 2.72 
9 0.36 2.53 

10 0.334 2.34 
 

1. qPCR was carried out on the 10 independent mixtures. Primers used were as follows:   
 
For AATGATACGGCGACCAC 
Rev  CAAGCAGAAGACGGCATA 
 
Fig. S1: qPCR results 
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