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Abstract 
Post-translational modifications are considered important molecular interactions in protein 

science. One of these modifications is “sumoylation” whose computational detection has recently 

become a challenge. In this paper, we propose a new computational predictor which makes use 

mailto:charles@darwin.co.uk
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of the sine and cosine of backbone torsion angles and accessible surface area for predicting 

sumoylation sites. The aforementioned features were computed for all the proteins in our 

benchmark dataset, and a training matrix consisting of sumoylation and non-sumoylation sites 

was ultimately created. This training dataset was balanced by undersampling the majority class 

(non-sumoylation sites) using the NearMiss method. Finally, an AdaBoost classifier was used for 

discriminating between sumoylation and non-sumoylation sites. Our proposed predictor was 

called “C-iSumo” because of its effective use of circular functions. C-iSumo was compared with 

another predictor, which was outperformed in statistical metrics such as sensitivity (0.734), 

accuracy (0.746) and Matthews correlation coefficient (0.494). 

Introduction 
Once proteins are translated in the ribosome, they undergo a series of modifications commonly 

referred to as post-translational modifications (PTMs) [1]. These molecular marks modify the 

amino acids of a protein by covalently incorporating specific functional groups. A long list of 

PTMs, which differ from each other and play different roles at the cellular level, has been 

discovered. For instance, the amino acid lysine can be modified through methylation [2, 3], 

acetylation [4], ubiquitination and succinylation [5-9]. Each PTM contributes to the cellular 

complexity via complex post-translational networks. Recently, the detection of a new type of 

PTM coined sumoylation [10] has proven extremely difficult. Sumoylation is regarded a 

dynamic and reversible modification, which regulates a variety of cellular processes from 

cellular dynamics and plasticity to gene expression and genome stability maintenance[11, 12] 

[13, 14]. This PTM is produced by small ubiquitin-related modifiers, and its molecular structure 

is similar to that of ubiquitination. The detection of sumoylation sites is essential to drug 

development efforts due to their dramatic effect on protein binding. However, the detection of 
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sumoylation residues by experimental techniques is still considered expensive, inefficient and 

impractical. Therefore, the development of new computational approaches capable of accurately 

predicting sumoylation sites has turned out absolutely necessary. This has eventually prompted 

the proposal of extensive studies. For instance, a predictor called SUMOsp made use of a curated 

dataset along with two previously developed methods: GPS and MotifX, which had been initially 

designed for phosphorylation prediction [15]. Another approach called SUMOsp 2.0 utilized an 

improved group-based phosphorylation scoring algorithm for prediction purposes [16]. Likewise, 

a tool called GPS-SUMO was developed for predicting SUMO-interacting motifs by combining 

a group-based prediction algorithm and a particle swarm optimization approach [17]. All the 

above methods used a group-based phosphorylation scoring algorithm to tackle the sumoylation 

prediction challenge. Additionally, a statistical method called SUMOpre showed improvements 

in sumoylation prediction via the removal of homologs [18]. An approach called SUMOhydro 

considered amino acid hydrophobicity and a support vector machine trained on a non-redundant 

sumoylation set [19]. Another method named SUMO_LDA integrated three feature 

constructions, including AAIndex, position-specific amino acid propensity and the composition 

of k-space amino acid pairs with the general pseudo amino acid composition for predicting 

sumoylation sites [20]. Although some of the above methods have achieved good performance, 

they have mainly relied on sequence analysis for identification of sumoylation sites. For 

instance, SUMO_LDA made use of the pseudo amino acid composition for extracting 

evolutionary information. Moreover, SUMOsp and SUMOsp 2.0 used the putative motif ψ-K-X-

E and evolutionary conservation information, as well as SUMO-interaction motifs for 

classification purposes. Because their use of protein sequence was limited to evolutionary 
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information and sequence motifs, the proposed predictor offers an alternative solution which 

includes structural information for sumoylation site identification. 

In this work, we propose a new predictor called “C-iSumo”, which takes into consideration the 

sine and cosine of four torsion angles (φ, Ψ, θ and τ) along with accessible surface area for 

accurately predicting sumoylation sites. We used a benchmark dataset consisting of 448 proteins 

whose sumoylation sites were experimentally detected and annotated. Each sumoylation and 

non-sumoylation residue was described by its 15 upstream and 15 downstream amino acids, and 

subsequently summarized in a training dataset. To ameliorate the imbalance between classes, we 

employed the NearMiss method for undersampling the majority class (non-sumoylation sites) 

[21]. For classification purposes, we designed an AdaBoost classifier which is considered one of 

the best ensemble methods. When compared with existing state-of-the-art predictors, C-iSumo 

showed a significant improvement in performance with 0.734 sensitivity, 0.746 accuracy and 

0.494 Matthews correlation coefficient. 

Materials and Methods 
In this paper, we describe a new machine learning-based predictor, which was able to effectively 

discriminate between sumoylation and non-sumoylation sites. The proposed predictor employed 

two main characteristics of proteins, namely, backbone torsion angles and accessible surface 

area. The description of lysine residues and computed features, as well as the machine learning 

approach are presented in the following subsections. A flowchart of the methodology can be 

found in Figure 1. 

Dataset 
The benchmark dataset was retrieved from the Compendium of Protein Lysine Modifications 

[22, 23], which comprises around 45,000 proteins distributed across 122 species. To avoid 
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overestimations because of sequence homology, we retained those proteins <40% similar for 

further analysis. The final dataset was composed of 448 proteins with experimentally annotated 

sumoylation residues. Subsequently, each protein sequence was analyzed and its annotated 

lysines were assigned to either of two sets. As a result, the positive set contained 780 

sumoylation sites whereas the negative set comprised 21,353 non-sumoylation sites. 

Accessible Surface Area 
Accessible surface area (ASA) is a characteristic that provides the estimated accessibility area of 

an amino acid to a solvent in the 3D configuration of a protein. Therefore, the prediction of the 

ASA for individual amino acids tends to reveal essential information about the protein structure. 

To calculate the ASA, each protein sequence was analyzed with the tool SPIDER2 [24, 25], 

which outputs one value for each amino acid in the protein. Of note, SPIDER2 uses evolutionary, 

physicochemical, and sequence features for training a deep learning model [24, 25]. This means 

that any structural features, predicted by SPIDER2, will implicitly incorporate sequence-based 

information. Because the proposed predictor used the output of SPIDER2 as structural features 

(backbone torsion angles and accessible surface area), it has indirectly considered sequence 

information. This strategy allowed us to benefit from sequence-based characteristics without 

necessarily increasing the number of features. 

Backbone Torsion Angles 
Backbone torsion angles between nearby amino acids reportedly provide valuable information on 

the local structure of amino acids, somehow complementing the ASA. For a given amino acid, 

the backbone torsion angles φ and Ψ are predicted as continuous representations of the 

interaction between local amino acids along the protein backbone. Recent studies have also 

considered two new angles: θ which is formed between Cα atoms (Cαi-1- Cαi- Cαi+1), and τ which 
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rotates around the Cαi- Cαi+1 bond [26]. We run SPIDER2 [24, 25] for each protein sequence and 

consequently obtained four different numerical vectors (φ, Ψ, θ, and τ). These vectors were 

finally converted into sine and cosine functions. 

It is worth noting that the above structural information was only extracted from protein 

sequences and not from the actual 3D structure of proteins. As previously stated, we predicted 

the secondary (local) structure of proteins using the software SPIDER 2.0 which is a fully 

sequence-based model, and used the resulting structure for sumoylation site prediction. 

Therefore, the proposed model solely relies on protein sequences and no additional information 

was regarded. 

Undersampling the Majority Class 

Class imbalance is one of the problems commonly encountered in machine learning applications. 

To tackle it, two widely used strategies are oversampling and undersampling. Whereas 

oversampling the minority class often results in overfitted models, undersampling the majority 

class offers a practical solution for increasing the sensitivity of models. Though previous studies 

have introduced different approaches for balancing a training set [27], we used here a method 

called NearMiss. NearMiss removes samples from the majority class by considering average 

distance measures [21]. In this study, we used a version of NearMiss which chooses those 

instances of the majority class whose average distances to three closest instances of the minority 

class are the smallest. To do this, we employed the imbalanced-learn package of Python, which 

provides a wide range of methods for dealing with highly unbalanced datasets. 

Describing the Lysine Residues 
Each lysine residue was described in terms of its 15 upstream and 15 downstream amino acids 

(Fig. 2A). Previous studies have extensively investigated different window sizes [28-30], 
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however, all of them have consistently concluded that a 15-residue window provides relevant 

information about lysines. On the other hand, when a lysine residue was located near either 

terminus of the protein, and a gap of 15 amino acids was not possible to retrieve, we completed 

the feature vector by mirroring the entire side with missing amino acids (Fig. 2B). 

Let us consider a peptide segment 

𝑆𝑆 = {𝑅𝑅−15,𝑅𝑅−14, … ,𝑅𝑅−2,𝑅𝑅−1, 𝐿𝐿,𝑅𝑅1,𝑅𝑅2, … ,𝑅𝑅14,𝑅𝑅15}                      (1) 

which describes the lysine residue 𝐿𝐿 and contains 𝑅𝑅−𝑖𝑖 and 𝑅𝑅𝑖𝑖 (1 ≤ 𝑖𝑖 ≤ 15) for upstream and 

downstream residues. Each lysine was thus represented by a peptide segment 𝑆𝑆 composed of 31 

residues. These amino acids were described by structural characteristics such as ASA, and the 

sine and cosine of the four torsion angles φ, Ψ, θ and τ. Each feature was represented by one 

numerical vector from which the segment 𝑆𝑆 was extracted. As a result, each lysine was described 

as a 279-dimensional feature vector. It is worth noting that if the dimensionality of the feature 

space increases, feature selection or dimensionality reduction techniques should be used before 

applying any classifier. Although the length of the protein fragments could dramatically affect 

the predictor performance, we chose to use a 31-residue window for describing each lysine. This 

window size was chosen after previous analyses with different windows [6, 8, 9, 31], and has 

also been consistently supported by scientific publications [32-36]. 

AdaBoost 

AdaBoost is an ensemble strategy consisting of multiple algorithms, which are combined by an 

adaptive boosting scheme. It combines the outputs of individual weak classifiers in order to 

produce a strong predictor [37-39]. Because individual classifier tends to poorly predict 

instances, this ensemble approach uses the training data to build several base models by 
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bootstrap sampling. Initially, one model is created and subsequently a second model, intended to 

correct the errors of the first model, is designed. This procedure continues until the training set is 

correctly predicted, or a specific number of models is reached. AdaBoost is mainly utilized to 

improve the performance of decision trees in binary classification problems, often encountered in 

the field of computational proteomics [40]. In this study, we used the scikit-learn library of 

Python and decision trees as base classifiers [41, 42]. 

Results and Discussion 
C-iSumo includes two categories of structural features, namely, accessible surface area and 

backbone torsion angles. Both characteristics were used for describing each lysine residue and 

ultimately predicting those sumoylation sites. The following sections describe the comparison of 

the proposed method with an existing predictor in the literature. 

Statistical Evaluation 

When a new prediction approach is designed, it is extremely important to measure its 

performance. For this purpose, we considered four statistical metrics: sensitivity, specificity, 

accuracy, and Matthews correlation coefficient (MCC). 

The above metrics are defined as follows, 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝑃𝑃𝑃𝑃+

𝑃𝑃𝑃𝑃+ + 𝑃𝑃𝑃𝑃−
                                                              (2) 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝑁𝑁𝑁𝑁+

𝑁𝑁𝑁𝑁+ + 𝑁𝑁𝑁𝑁−
                                                             (3) 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑃𝑃𝑃𝑃+ + 𝑁𝑁𝑁𝑁+

𝑃𝑃𝑃𝑃+ + 𝑃𝑃𝑃𝑃− + 𝑁𝑁𝑁𝑁+ + 𝑁𝑁𝑁𝑁−
                                           (4) 

𝑀𝑀𝑀𝑀𝑀𝑀 =
(𝑁𝑁𝑁𝑁+  ×  𝑃𝑃𝑃𝑃+)  −  (𝑁𝑁𝑁𝑁−  ×  𝑃𝑃𝑃𝑃−)

�(𝑃𝑃𝑃𝑃++ 𝑃𝑃𝑃𝑃−) (𝑃𝑃𝑆𝑆+ + 𝑁𝑁𝑁𝑁−) (𝑁𝑁𝑁𝑁+ +  𝑃𝑃𝑃𝑃−) (𝑁𝑁𝑁𝑁+ + 𝑁𝑁𝑁𝑁−)
                     (5) 
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where 𝑃𝑃𝑃𝑃+ and 𝑃𝑃𝑃𝑃− represent the amount of sumoylation sites correctly and incorrectly 

classified, whereas 𝑁𝑁𝑁𝑁+ and 𝑁𝑁𝑁𝑁− indicate the amount of non-sumoylation sites correctly and 

incorrectly classified by the predictor. 

Sensitivity and specificity evaluate the ability of a predictor to correctly detect sumoylation and 

non-sumoylation sites. Accuracy assesses how accurate a predictor is, and MCC measures the 

classification quality of a predictor. Interested readers should refer to these studies [43-61] for 

more detailed descriptions. 

The ideal predictor should demonstrate a significant improvement across all the above metrics. If 

this is not possible, at least sensitivity should be improved when compared to previous 

approaches. 

Validation Strategy 

To evaluate the performance of a prediction model, two schemes known as 𝑛𝑛-fold cross-

validation and jackknife [62] are often used. Both strategies are suitable due to the very limited 

number of available samples. In these schemes, a different test set is always employed for 

assessing the predictor. It is worth noting that an independent test data was used for the two 

predictors compared in this study, however, it was not employed during parameter learning. 

Concretely, both predictors used a similar dataset extracted from the “Compendium of Protein 

Lysine Modifications.” The least arbitrary of the above strategies is jackknife, which returns 

unique outcomes for each benchmark dataset. In spite of this, we used here the 𝑛𝑛-fold cross-

validation strategy for a faster processing time. The procedure was conducted in five steps: 

Step 1. The dataset was randomly split into 𝑛𝑛 subsets of equal size. 

Step 2. One subset was retained for validation purposes whereas the remaining subsets were used 
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for training the predictor. 

Step 3. The parameters of the predictor were estimated with the training subsets. 

Step 4. The evaluation metrics were calculated on the validation subset. 

Step 5. The above steps were repeated 𝑛𝑛 times for computing each average metric across all the 

partitions. 

To ensure that our predictor was fairly compared, we conducted 6-, 8- and 10-fold cross-

validations for evaluating its performance. Because we do not have any feature extraction or 

feature selection, it is also important to emphasize that any parameter tuning was dramatically 

reduced. This contributed to eliminate any potential bias towards the proposed model. 

Comparison of C-iSumo and pSumo-CD predictors 

The pSumo-CD predictor [63] has reportedly achieved the best results for sumoylation prediction 

among other state-of-the-art predictors in the literature. Therefore, we decided to compare the C-

iSumo predictor with it. It is worth noting that there is a limited number of approaches using 

computational methods for tackling the sumoylation prediction problem (some are reviewed in 

the introductory section). However, most of these studies do not have an available predictor, 

which makes it even harder to establish fair comparisons. One clear advantage of pSumo-CD 

[63] is its web-server, which constitutes the necessary tool that enables us to directly compare 

our predictor.  

Having said that, we were able to submit the protein sequences to the trained pSumo-CD web-

server for sumoylation site identification. To accurately compare both approaches based on their 

prediction results, all the sequences in our benchmark dataset were manually uploaded to the 

pSumo-CD web server [63], and the predicted sites were retrieved. It should be noted that the 

pSumo-CD web server was trained with part of the sequences in our dataset, which could 
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somehow contribute to favorably bias its performance. Moreover, the pSumo-CD performance 

was reported using the validation samples of the cross-validation scheme. 

Table 1 depicts the comparison between C-iSumo and pSumo-CD predictors. As it clearly 

shows, the C-iSumo predictor outperformed the pSumo-CD method in statistical metrics such as 

sensitivity, accuracy and MCC. Although accuracy and MCC slightly improved by 4.2% and 

6.7%, sensitivity achieved a significant improvement of 36.9%. This performance confirms the 

practical use of the C-iSumo predictor for detecting sumoylation sites in real scenarios. Though 

the specificity of the pSumo-CD method [63] turned out to be higher than that of the C-iSumo 

predictor, it is reasonable to assume that non-sumoylation sites outnumber sumoylation sites. 

Additionally, the Receiving Operating Characteristic for 6-, 8- and 10-fold cross-validations was 

drawn and the area under the curve was computed at 0.73, 0.75 and 0.74, respectively (Figure 3). 

Because of this, the detection of non-sumoylation sites could turn out to be much easier. 

Table 1: Comparison of C-iSumo and pSumo-CD predictors. 

Predictor Sensitivity Specificity Accuracy MCC 

pSumo-CD [63] 0.536 0.896 0.716 0.463 

C-iSumo (6-CV) 0.710 0.752 0.731 0.465 

C-iSumo (8-CV) 0.734 0.757 0.746 0.494 

C-iSumo (10-CV) 0.719 0.758 0.738 0.478 

*The highest value of each metric is highlighted in bold.   

 

The computed metrics (Table 1) give a clear evidence of the promising results achieved by the 

C-iSumo predictor which have not been attained by any other predictor in the literature. This is 

due to the incorporation of key structural features, such as accessible surface area, and the sine 
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and cosine functions of four backbone torsion angles (φ, Ψ, θ and τ). Such features were 

computed with the tool SPIDER2 [24] and they appear to be useful for the difficult task of 

sumoylated lysine detection. Therefore, it seems possible to create better computational 

predictors by using the above structural characteristics given their importance in discriminating 

between sumoylation and non-sumoylation sites. 

The feature matrices used in this study can be accessed at https://github.com/YosvanyLopez/C-

iSumo. 

Conclusions 
In this paper, we proposed a new computational approach able to accurately predict sumoylation 

residues. The method, called “C-iSumo”, combines two essential characteristics related to 

protein structure, namely, accessible surface area and the sine and cosine of four torsion angles. 

An under-sampling strategy was employed for dealing with the imbalance between classes, and 

an ensemble of decision trees, AdaBoost, was finally designed for classification purposes. The 

proposed method was compared to another benchmark predictor (pSumo-CD), outperforming it 

in metrics such as sensitivity, accuracy, and Matthews correlation coefficient. 
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Figures 

Figure 1. Flowchart of the proposed methodology. 

Figure 2. Description of a lysine residue by its surrounding amino acids. A) 15 upstream and 15 

downstream amino acids are regarded, B) the side with missing amino acids was mirrored by 

taking into consideration the other side of the lysine. 

Figure 3. Receiving Operating Characteristic for A) 6-fold B) 8-fold and C) 10-fold cross-

validations. 
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