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Abstract

The information of a cell is primarily contained in Deoxyribonucleic Acid (DNA). There is

a flow of information of DNA to protein sequences via Ribonucleic acids (RNA) through tran-

scription and translation. These entities are vital for the genetic process. Recent developments

in epigenetic also show the importance of the genetic material and knowledge of their attributes

and functions. However, the growth in known attributes or functionalities of these entities are

still in slow progression due to the time consuming and expensive in vitro experimental methods.

In this paper, we have proposed an ensemble classification algorithm called SubFeat to predict

the functionalities of biological entities from different types of datasets. Our model uses a feature

subspace based novel ensemble method. It divides the feature space into sub-spaces which are

then passed to learn individual classifier models and the ensemble is built on this base classifiers

that uses a weighted majority voting mechanism. SubFeat tested on four datasets comprising two

DNA, one RNA and one protein dataset and it outperformed all the existing single classifiers and

as well as the ensemble classifiers. SubFeat is made availalbe as a Python-based tool. We have

made the package SubFeat available online along with a user manual. It is freely accessible from

here: https://github.com/fazlulhaquejony/SubFeat.
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1 Introduction

With the advent of modern sequencing machines and techniques there had been a tremendous growth

in the know sequences. DNA, RNA and proteins are of primary interest. They are involved in

all information flow and even in epigenetics. A huge number of sequences and their attributes and

properties are very vital to understand the cell organisms. Among these are structure [1], gene-coding

markers [2, 3], anti-cancer properties [4], editing [5], binding[6, 7], post-translational modifications [8,

9, 10], sub-cellular localization [11], methylation [12], and many other important process and functions

that regulates almost all the processes within the cell organism. However, these techniques are time

consuming and expensive.

There have been growth in developing computational and knowledge based methods to predict the

attributes and functions of the sequences [13, 14, 15, 16, 17]. One of the key advantages of the knowledge

based methods is that they often provide further insights to the patterns that are discoverable using fast

computational facilities available and even with relatively small amount of data knowledge transfers

and deep learning are also been possible from one problem to another [18, 19, 2, 20]. One of the

common approaches in the literature is to formulate the prediction task as a supervised learning

problem: binary [21] or multi-class [2] or multi-label [22]. A number of successful classifiers have been

used, single classifiers like Support Vector Machines (SVM) [22], K-Nearest Neighbors (KNN) [23],

Decision Trees (DT) [24], Naive Bayes (NB) [25], Logistic Regression (LR) [26] and ensemble methods

like AdaBoost [27], Random Forest [28], etc have been applied to solve these problems. However,

no single method seems to be performing well over other mehods, there are scope to develop new

techniques.

One of the most important factor in building a successful machine learning based method is the

representation of the dataset. In this case, its how the sequences of DNA, RNA and proteins are

converted to vector representation. Generally, ensemble methods are found to provide superior perfor-

mances provided that they utlize the underlying feature space properly. AdaBoost iteratively learns

using weak classifiers, however the algorithm does not exploit or consider the underlying feature space.

On the other hand Random Forest smaples the features in a randomly way. From the point of view

of biological domain, it has been often seen that in many cases, the features are grouped into several

sub-groups based on their respective generating techniques and sometimes the subgroups too share

important knowledge. Our main idea in this work is to utilize this property of the feature space.

In this paper, we present a ensemble method called SubFeat . SubFeat divides the full feature space
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into overlapping or non-overlapping sub-spaces and learns base classifiers or their mix on the subspaces

and the ensemble is created using a voting techniques. It is much similar to Random Forest or Ensemble

Voting technique in the way how it uses the feature space and the voting mechanism. However, the

approach taken to divide the subspace is unique here. We have tested the problem to four problems

related to DNA, RNA and proteins: DNA-binding proteins prediction using protein sequences, A-to-

I editing prediction of RNA sequences and promoter and recombination hotspot prediction of DNA

sequences. The datasets used in the work are all standard benchmark datasets. The feature space or

feature representation used here is generated solely from sequences. The experimental results shows

the superiority of the proposed method, SubFeat over several single classifiers and ensembles. We

have made the methodology available as a Python package freely available and usable from: https:

//github.com/fazlulhaquejony/SubFeat.

2 Materials and Methods

The basic idea of the ensemble method, SubFeat is given in Figure 1. In this paper, we have divided

the feature space intro three sub-spaces. Each were then trained using a base classifier and the final

prediction is made based on the weighted majority voting of the sub-classifiers. The framework is

capable of utilizing the possible overlap or non-overlap among the feature spaces.

In this section, we provide the details of our methods and materials. The section starts with a

description of the datasets and the problems that were selected for experiments. A very brief literature

review from the computational point of view is also provided for each problem. After that, we describe

our feature representation for each of the problems. The ensemble is presented next with the choice

of the algorithms in brief. We also describe the performance evaluation techniques used for the work.

2.1 Datasets

For this work, we have considered four problems: prediction of DNA recombination hotspots, predition

of promoter sequences in DNA, RNA A-to-I editing prediction and prediction of DNA binding proteins.

Thus we have incorporated three types of the sequences: DNA, RNA and proteins. In this section,

we provide a description of the dataset collection and a brief literature review of the state-of-the-art

methods of each of the problems. In supervised machine learning a dataset is generally composed of
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positive and negative samples.

S = S+ ∪ S− (1)

Here, S+ denotes the set of positive instances and S− denotes the set of negative examples. In this

work, we have selected only balanced set of examples where none of the classes positive or negative

outnumber the other. A summary of the datasets used in this paper is given in Table 1.

2.1.1 Recombination Hotspot

Hotspots are regions in the genome where rates of meiotic recombination is much higher compared to

the cold spots. DNA binding arrays are used in vitro to find recombination hot spots [29]. The dataset

that we consider in this paper was originally curated by Jiang et al. [30]. Recently, a good number of

machine learning based algorithms and methods [31, 32] as well as ensemble based methods [33] are

being proposed in the literature to solve the problem computationally. In this dataset, there were 478

positive samples and 572 negative samples after removing redundancy using CD-HIT [34].

2.1.2 σ70 Promoters

Promoters are regions in the DNA where RNA polymerase binds itself initiating the transcription

process. The RNA polymerase combines itself with different σ factors which are differentiated according

to their nuclear weights. σ70 factors are primary house keeping factors and hence have potential

importance in gene transcription. The dataset that we have selected here for promoter sequence

prediction is taken from [35]. Originally there were curated from RegulonDB [36]. In recent years,

we a large number of methods have been proposed to solve the promoter detection problem using this

dataset [35, 37, 3, 38]. In this dataset, the promoter sequences are all DNA short sequences and there

are 741 positive and 1400 negative sequences.

2.1.3 RNA Editing

Adenosine to Inosine (A-to-I) editing is one of the most common and important RNA modiffications [39]

that changes the gene templates and thus affects the genetic variation in species. RNA-DNA difference

(RDD) methods are generally employed to detect editing or modifications [40]. Many machine learning

based methods are employed to approach the problem in recent years [5, 41, 42]. The dataset that we

are using in this work was originally proposed in [42]. It contains 300 length RNA sequences with 125

positive and 119 negative sequences.
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Figure 1: Block diagram for ensemble classifier
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2.1.4 DNA Binding Proteins

DNA binding proteins bind to specific regions of DNA and affects the gene regulation. In this paper

we have used a very well used benchamrk dataset for DNA binding proteins with 525 positive and 550

negative samples. This dataset was originally proposed in [43] and has been used extensively in the

literature [7, 6, 44, 43, 45].

Dataset Sequence Type Positive Instances Negative Instances Total
Recombination
Hotspot

DNA 478 572 1050

σ70 promoters DNA 741 1400 2141
RNA Editing RNA 125 119 244
DNA Binding Pro-
teins

Protein 525 550 1075

Table 1: Summary of the different datasets used to test the performance of SubFeat .

2.2 Feature Representation

After the data collection, the most important step in machine learning based methods is to convert the

problem instances to vector representation. Generally, the feature vector is a collection of properties.

F = {f1, f2, · · · , fn} (2)

Different feature representation techniques have been used in the literature that includes: struc-

tural information [8], evolution properties [22, 11],etc. However, in recent works it has been shown

that sequence based features though very easy and simple to generate are most effective if selected

or designed properly [15, 44]. Moreover, our main objective in this work was to provide a generic

framework for all three types of the sequences and to reduce the complexity in the feature generation

step. That is the reason that we have selected to use sequence based features only. However, the

framework still supports other features based derived or secondary properties and usable wherever its

necessary and useful.

For the sake of simplicity in the experiments, we have selected similar group of features for all three

type of sequences: Monomer composition, di-mer composiotion, trimer compostion, 1-gapped di-mono

composition and 1-gapped mono-di compositions. However, based on the alphabet size the number of

features extracted is different. We have used PyFeat tool [15] for feature extraction. Considering no

overlaps, these features are then divided intro three groups. The details of the features are given in
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Table 2 and Table 3.

Feature Subspace Feature Type No. of features

F1 MonoMer Composition 20
DiMer Composition 400
TriMer Composition 8000

F2 1-Gapped Di-Mono Composition 8000
F3 1-Gapped Mono-Di Composition 8000

Table 2: Details of feature subspacing for protein dataset.

Feature Subspace Feature Type No. of features
F1 MonoMer Composition 4

DiMer Composition 16
TriMer Composition 64

F2 1-Gapped Di-Mono Composition 64
F3 1-Gapped Mono-Di Composition 64

Table 3: Details of feature subspacing for DNA and RNA dataset.

2.3 SubFeatAlgorithm

The pseudo-code of SubFeat algorithm is given in Algorithm 1. It follows the same procedure as

described in Figure 1. However, given a set of instances in the training set, X and the labels associated

with them y, the algorithm first extract the feature set, F . From, F , next it populates a feature

subspace set, Xs. This set contains all the subspaces and this is controlled by two parameters, np

denoting the number of partitions in the feature space and overlap is a boolean indicating whether

there will be overlaps among the subspaces or not. In practice, np and overlap could be hyper-

parameters and needs to be trained based on a specific problem in concern. After that, iteratively the

hypothesis set, H and associated weights, W are learned based on the classifier type selected.

For prediction, the hypothesis set, H and weights set W are used to ensemble the predictions of

the individual base classifiers in a weighted majority fashion. The parameter mix allows the mix of

the models selected.

2.4 Performance Evaluation

There are two important aspects of the performance evaluation: test sampling and metrics. In this

paper, we have used 10-fold cross validation for the sampling of the datasets. The dataset is divided

into 10 different balanced subsets retaining the balance ratio and then in each iteration 1 subset is
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Algorithm 1: SubFeat(X, y, np = 3, overlap = false)
1 F = extractFeatures(X)
2 Let Xs = {}, set of features sub-spaces
3 Let H = {}, set of learned hypothesis
4 Let W = {}, set of weights of models
5 XS = groupFeatures(F, np, overlap)
6 for each Xi ∈ Xs do
7 ci = selectClassifier(mix = true)
8 hi = learnClassifier(Xi, y)
9 wi = getWeight (Xi, y, hi)

10 H = H ∪ hi
11 W = W ∪ wi

12 end
13 return (W,H)

used as test and the rest are taken as train set. These process in continued 10 times. However, to

tackle the randomness effect, 10 runs were performed and average of them are reported only.

We have used several evaluation metrics: Accuracy (Acc), Precision, F1 Score, MCC, Sensitivity

(Sn), Specificity and Area under curve (AUC). They are presented here in brief. Please note that, in

the following equations TP, TN, FP and FN represents true positive, true negative, false positive and

false negative. True positive means positive instances that were correctly classified by the classifier.

True negative means negative instances that were correctly classified by the classifier. Similarly false

positive and false negative means negative instances that are incorrectly classified as positive by the

classifier and positive instances that are incorrectly classified as negative by the classifier.

1. Accuracy (Acc) gives a percentage result of correctly classified instances in between total

number of instances.

Acc =
TP + TN

TP + FP + FN + TN
(3)

2. Sensitivity (Sn) gives a percentage result of correctly classified positive instances in between

total number of positive instances.

Sn =
TP

TP + FN
(4)

3. Specificity (Spc) gives a percentage result of correctly classified negative instances in between

total number of negative instances.

Spc =
TN

TN + FP
(5)

4. Matthew’s Correlation Coefficient (MCC) returns value between +1 to -1. The 0 represent
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a random classifier. The more the value is closer to +1, the better the classifier, similarly values

towards -1 represent bad classifier.

MCC =
(TP × TN)− (FN × FP )√

(TP + FN)× (TN + FP )× (TP + FP )× (TN + FN)
(6)

5. F1 score is the weighted average of precision and Recall. F1-score works with both false positive

and false negative. Especially in the term of an uneven class distribution, this metric is usually

more useful than accuracy.

F1− Score =
2× precision× recall
precision+ recall

(7)

Precision gives a result of correctly classified positive instances in between total number of

positive instances.

Precision =
TP

TP + FP
(8)

Recall is same as sensitivity and it is the ratio of correctly predicted true positive and false

positive (all positive observations). It works on binary classification.

Recall =
TP

TP + FN
(9)

6. Area under the Receiver Operating Characteristic curve (AUC) is a performance mea-

surement for classification problems at various thresholds. AUC is the measure or degree of

separability while ROC represents a probability curve.

3 Results and Discussion

All experiments done in this paper are implemented in Python Language and using scikit learn library

[46]. All experiments were run 10 times and the average of the results are reported. In all the tables

bold faced values means the best values.
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3.1 Classification Algorithms

In this section, we briefly describe the single based classifiers and the ensembles that were used for

the experiments and for performance comparisons. Four single classifiers were used: Support Vector

machines (SVM), Naive Bayes (NB), Decision Tree (DT) and Logistic Regression (LR). Support Vector

Machine (SVM) [47] selects vectors that can represent the decision boundary best to separate the

different classes. In our experiments, we have used a linear kernel based SVM. Logistic Regression (LR)

[48] divides the sample space using linear hyper-planes. We use L2 regularization and regularization

parameter set to 1.0 for the experiments with iterations to learn the parameters to 100. Decision Tree

[49] is based on selecting features based on a measurement that can discriminate the instances best

according to a criteria. We usedgini index as the selection criteria and min samples to split was set

2. Gaussian Naive Bayesian (NB) [50] is a supervised learning based on probabilities of the features

given the class labels and their likelihoods.

In addition to these single classifiers we have used three ensemble algorithms for experiments: Ad-

aBoost, Random Forest and Ensemble Voting. Each of these algorithms are state-of-the-art ensemble

methods that are used in the bioinformatics domain and as well as in other areas [27, 28].

3.2 Experimental Results

We present the results obtained by running experiments on four of the datasets. Table 4, Table 5,

Table 6 and Table 7 shows the result of using single classification, feature subspacing ensemble classifi-

cation and different ensemble classifier like random forest, adaboost and ensemble voting algorithms on

Recombination Hotspots, σ70 promoters, RNA editing and DNA binding proteins problem respectively.

3.2.1 Recombination Hotspot Prediction

For the Recombination hotspot prediction dataset, the results are presented in Table 4. The first

part of the table shows that among the single classifiers, Logistic Regression performs significantly

close. Since SVM and LR both are using linear decision boundaries, there performance very close to

each other. However, when we turn to ensembles, we could notice Random Forest algorithm performs

significantly better compared to other methods. In the lower part of the table, we present the results

obtained by SubFeat using different combinations of single base classifiers. Note that, for this paper we

have used only three base classifiers. Performance of all decision tree combinations is somewhat poor

compared to others. Among all these combinations it appears that Naive Bayes and SVM combinations

10

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 4, 2020. ; https://doi.org/10.1101/2020.08.04.228536doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.04.228536


Algorithm Precision F1 Acc MCC Sn Spc AUC
Result of single classifier algorithms

SVM 0.8794 0.8016 0.7826 0.5633 0.7950 0.7673 0.8667
NB 0.7923 0.5975 0.6525 0.3636 0.8065 0.5794 0.7969
LR 0.8839 0.8034 0.7854 0.5687 0.8018 0.7658 0.8687
DT 0.7070 0.7547 0.7339 0.4659 0.7574 0.7061 0.7321

Result of using different ensemble classifiers
Random Forest 0.8913 0.8322 0.8120 0.6225 0.8098 0.8150 0.8874

Adaboost 0.8589 0.7982 0.7760 0.5492 0.7827 0.7672 0.8497
Ensemble Voting 0.8794 0.7754 0.7699 0.5471 0.8244 0.7186 0.8654

Result of feature subspacing ensemble classification
SVM+SVM+SVM 0.9724 0.8760 0.8464 0.7158 0.7835 0.9865 0.9708

NB+NB+NB 0.9681 0.9078 0.8946 0.7911 0.8674 0.9351 0.9647
LR+LR+LR 0.9697 0.8731 0.8420 0.7079 0.7787 0.9856 0.9706
DT+DT+DT 0.8562 0.8440 0.8297 0.6584 0.8420 0.8154 0.8771

SVM+NB+LR 0.9505 0.8871 0.8632 0.7420 0.8072 0.9739 0.9423
NB+LR+SVM 0.9498 0.8907 0.8676 0.7502 0.8113 0.9780 0.9441
LR+SVM+NB 0.9471 0.8925 0.8697 0.7548 0.8128 0.9813 0.9421
DT+SVM+DT 0.9194 0.8689 0.8483 0.6980 0.8227 0.8884 0.9079
SVM+DT+DT 0.9148 0.8684 0.8481 0.6976 0.8233 0.8871 0.9065
LR+LR+DT 0.9199 0.8852 0.8609 0.7366 0.8060 0.9689 0.9047

SVM+LR+DT 0.9182 0.8824 0.8582 0.7286 0.8070 0.9562 0.9032
SVM+NB+DT 0.9382 0.8916 0.8731 0.7513 0.8355 0.9354 0.9313

Table 4: Experimental Result on Recombination Hotspot Prediction Dataset.

are working best. Here we can conclude that the mix of the base classifiers are not working well as

compared to the combination of using the same base classifiers. Also note that these results by a good

margin better over the results obtained by the ensemble methods.

Figure 2 shows area under receiver operating characteristic curves analysis for the recombination

hotspot dataset. In this figure, we also put the standard deviations among all the runs. We could

notice that here too, the proposed method shows higher performance and over the different thresholds

its performance is superior to the other methods, single or ensemble. The strong performance of the

proposed method, SubFeat in terms of AUC provides evidence on the robustness of the method.

3.2.2 σ70 Promoters Prediction

Table 5 presents the results of our experiments on the σ70 promoters prediction problem. Here too

we have presented the results in three parts: single, ensembles and SubFeat and its variations. From

the results obtained in the single classifier experiments, we note that logistic regression outperforms

the other methods. However, once again the performance of SVM is very close to logistic regression

which is expected. In the ensemble part the results are improved compared to the single classifier
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Figure 2: ROC analysis for recombination hotspot problem dataset.
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Algorithm Precision F1 Acc MCC Sn Spc AUC
Result of single classifier algorithms

SVM 0.8924 0.8238 0.7647 0.4721 0.8070 0.6742 0.8229
NB 0.8883 0.7936 0.7473 0.4790 0.8501 0.6093 0.818
LR 0.8978 0.8262 0.7655 0.4696 0.8013 0.6835 0.8286
DT 0.7377 0.7604 0.6881 0.3142 0.7638 0.5490 0.6574

Result of using different ensemble classifiers
Random Forest 0.9024 0.8331 0.7735 0.4862 0.8036 0.7020 0.8368

Adaboost 0.8848 0.8106 0.7490 0.4399 0.7997 0.6452 0.8084
Ensemble Voting 0.8967 0.8188 0.7652 0.4865 0.8255 0.6563 0.8243

Result of feature subspacing ensemble classification
SVM+SVM+SVM 0.9589 0.8860 0.8098 0.5664 0.8007 0.8408 0.9232

NB+NB+NB 0.9513 0.8556 0.8203 0.6255 0.9008 0.7038 0.9084
LR+LR+LR 0.9598 0.8552 0.7886 0.5170 0.7745 0.8470 0.9222
DT+DT+DT 0.8261 0.8227 0.7605 0.4577 0.7975 0.6758 0.7786

SVM+NB+LR 0.9442 0.8680 0.8175 0.5853 0.8233 0.8020 0.8969
NB+LR+SVM 0.9446 0.8663 0.8153 0.5796 0.8225 0.7962 0.8964
LR+SVM+NB 0.9443 0.8670 0.8166 0.5836 0.8240 0.7970 0.8964
DT+SVM+DT 0.9007 0.8406 0.7791 0.4935 0.7958 0.7336 0.8275
SVM+DT+DT 0.9021 0.8447 0.7857 0.5101 0.8023 0.7413 0.8320
LR+LR+DT 0.9178 0.8508 0.7862 0.5079 0.7829 0.7980 0.8414

SVM+LR+DT 0.9222 0.8563 0.7960 0.5326 0.7939 0.8031 0.8545
SVM+NB+DT 0.9297 0.8602 0.8119 0.5765 0.8367 0.7566 0.8736

Table 5: Experimental Result on σ70 promoters dataset.

results. Here, we could notice that Random FOest outperforms the rest of the methods. Moving to

the third part of the table, we find the results of the different combinations of the single classifiers

within the SubFeat framework. Similar to the results on the recombination hotspot problem, here

too we notice that the mix combination of the single classifiers are not working as compared to the

ensemble created with same type of the classifier. The best performing combination was produced

by Naive Bayes algorithm. SVM and logistic regression followed closely. Decision tree combinations

performed poorly. Also note that this dataset was the largest among the datasets considered for this

work.

The receiver operating characteristic analysis on the σ70 promoters prediction dataset are presented

using a curve of false positive rate against true positive rate and shown in Figure 3. SubFeat method

here outperforms the other methods with a good margin again. Note that the changes in the threshold

on the x-axis of the curve does not change the true positive rates. For a balanced dataset chosen for

the purpose, this is a strong indication of the superior performance of SubFeat over the other methods

compared in this work.
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Figure 3: ROC analysis for σ70 promoters problem dataset.
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Algorithm Precision F1 Acc MCC Sn Spc AUC
Result of single classifier algorithms

SVM 0.8788 0.7809 0.7918 0.5894 0.8019 0.7832 0.860
NB 0.8263 0.7359 0.7546 0.5165 0.7706 0.7407 0.7990
LR 0.9021 0.8041 0.8128 0.6342 0.8182 0.8088 0.8823
DT 0.6627 0.7087 0.7224 0.4535 0.7187 0.7256 0.7219

Result of using different ensemble classifiers
Random Forest 0.8801 0.7379 0.7765 0.5724 0.8500 0.7315 0.8483

Adaboost 0.8153 0.7217 0.7409 0.4901 0.7476 0.7357 0.7887
Ensemble Voting 0.9009 0.7779 0.7965 0.6048 0.8184 0.7794 0.8775

Result of feature subspacing ensemble classification
SVM+SVM+SVM 0.9315 0.8007 0.8310 0.6833 0.9225 0.7764 0.9137

NB+NB+NB 0.9155 0.8386 0.8500 0.7065 0.8694 0.8339 0.9059
LR+LR+LR 0.9302 0.8048 0.8276 0.6680 0.8860 0.7882 0.9144
DT+DT+DT 0.8251 0.8070 0.8106 0.6280 0.7993 0.8223 0.8619

SVM+NB+LR 0.8932 0.8070 0.8283 0.6692 0.8813 0.7904 0.88024
NB+LR+SVM 0.9012 0.7932 0.8219 0.6598 0.8892 0.7780 0.8896
LR+SVM+NB 0.9002 0.8060 0.8288 0.6704 0.8860 0.7890 0.8831
DT+SVM+DT 0.8993 0.8263 0.8382 0.6843 0.8647 0.8176 0.8876
SVM+DT+DT 0.8900 0.8106 0.8243 0.6553 0.8448 0.8083 0.8796
LR+LR+DT 0.8974 0.8116 0.8293 0.6686 0.8677 0.8011 0.8840

SVM+LR+DT 0.8779 0.7837 0.8097 0.6351 0.8659 0.7716 0.8584
SVM+NB+DT 0.8846 0.7999 0.8179 0.6659 0.8533 0.7918 0.8686

Table 6: Experimental Result on RNA editing dataset.

3.2.3 A-to-I RNA Editing Site Prediction

We present the experimental results on the A-to-I RNA editing sites prediction problem in Table 7.

Note that, this is relatively smaller dataset compared to the other datasets. Here the performance

of the single classifiers shown in the first part of the table are dominated by the logistic regression

classifier in terms of all the performance metrics. Here, among the ensemble methods ensemble voting

method performs significantly better compared to Random Forest or AdaBoost algorithms. However,

SubFeat once again outperforms all these methods in terms of performance. This is clearly shown in

the values reported in the lower part of the table. Here, we see that SubFeat follows the same trend

as the previous datasets, that it the ensemble is working better when same classifier is chosen as base

classifier. However, Naive Bayes is performing slightly better and SVM and logistic regression follows

closely.

The ROC analysis for this dataset is shown in Figure 4. Note that, for this dataset though SubFeat

is still superior in performance in terms of AUC values, the difference is not that high as compared to

the other datasets. Here, single classifier is working better compared to other datasets.
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Figure 4: ROC analysis for RNA editing prediction problem dataset.
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Algorithm Precision F1 Acc MCC Sn Spc AUC
Result of single classifier algorithms

SVM 0.7925 0.6986 0.7108 0.4279 0.7472 0.6812 0.7849
NB 0.5512 0.6643 0.5754 0.1623 0.5577 0.6297 0.5708
LR 0.8129 0.7303 0.7333 0.4696 0.7555 0.7130 0.7995
DT 0.5864 0.6273 0.6189 0.2387 0.6272 0.6103 0.6187

Result of using different ensemble classifiers
Random Forest 0.7821 0.7072 0.7000 0.4009 0.7058 0.6940 0.7769

Adaboost 0.7145 0.6760 0.6673 0.3358 0.6734 0.6611 0.7190
Ensemble Voting 0.7768 0.7181 0.6922 0.3879 0.6753 0.7160 0.7583

Result of feature subspacing ensemble classification
SVM+SVM+SVM 0.9051 0.7741 0.7227 0.4833 0.6641 0.8697 0.9004

NB+NB+NB 0.6075 0.6908 0.5990 0.2256 0.5704 0.7042 0.6440
LR+LR+LR 0.8788 0.8128 0.7903 0.5905 0.7488 0.8542 0.8822
DT+DT+DT 0.6617 0.6694 0.6634 0.3276 0.6728 0.6538 0.6987

SVM+NB+LR 0.7923 0.7620 0.7105 0.4524 0.6578 0.8363 0.7618
NB+LR+SVM 0.7914 0.7602 0.7071 0.4465 0.6543 0.8357 0.7644
LR+SVM+NB 0.7900 0.7568 0.7055 0.4406 0.6550 0.8234 0.7615
DT+SVM+DT 0.7791 0.7288 0.7041 0.4117 0.6861 0.7291 0.7647
SVM+DT+DT 0.7810 0.7365 0.7120 0.4277 0.6918 0.7403 0.7714
LR+LR+DT 0.7914 0.7770 0.7538 0.5135 0.7241 0.7976 0.7744

SVM+LR+DT 0.7934 0.7715 0.7427 0.4944 0.7071 0.7993 0.7734
SVM+NB+DT 0.7704 0.7258 0.6735 0.3639 0.6362 0.7525 0.7477

Table 7: Experimental Result on DNA binding proteins dataset.

3.2.4 DNA Binding Proteins Prediction

Experimental results on the DNA binding proteins prediction problem is reported in Table 7. We could

note the similar trends for this dataset as well. Logistic regression performs best in the single classifier

group. Similar to that performance combination of logistic regression classifier used in the SubFeat is

best among all the classification algorithms. The performance of this combination is slightly weaker

in terms of AUC comapred to the all SVM combination. This is due to the better precision values

obtained by the SVM combination which is also reflected in the specificity values reported in the table.

The ROC analysis is shown in FigureZ5 in more details. The plot shows the superior performance of

SubFeat over all other methods.

3.3 Discussion

As a method, SubFeat shows better performance in all metrics compared to single and ensemble

classifiers as found in the results and analysis shown in the previous section. That establishes the

claim of the hypothesis of using an ensemble and dividing the feature space into subspaces. However,
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Figure 5: ROC analysis for DNA binding proteins prediction problem dataset.
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another subtle observation could be made from the results that using similar classifier as base classifier

is achieving better results compared to the mix of the classifiers. This study was limited to four

datasets and this remains still a question to be explored in details if the mix parameter can also bring

good results. We believe that might be utilized as well. Two of the variables or parameters of the

SubFeat framework is less explored in this paper. They are np, number of partitions which is set to 3

in all the experiments and overlap which is kept false for all the experiments.

We believe answer to the performance largely depends on the feature space or the feature repre-

sentation. In this work, we have limited to use only sequence based features. In problems like DNA

binding protein prediction, we have noticed application of structural and evolutional features have been

used successfully [7, 6]. In the cases of DNA and RNA sequences as well, the researchers have used

many other types of feature representation technique. Note that the knowledge number of partitions

for the feature space will obviously enhanced by selection of such techniques, as previously we have seen

group based feature selection to be performing better in a wide range of problems [25, 8]. However, in

those works, the idea of ensemble method was not explored. We kept the experimental setting simpler

and thus not extended the feature space. We believe using a larger and enhanced feature space will

improve the results.

Another parameter is the overlapping of the feature spaces. Though we have not reported the

results, for these four datasets we have seen that the overlap parameters are not working well. We

observed that sensitivity suffers of we accept overlap too much. Note that in a previous work [3],

overlapping has been found effective for promoter prediction. The results presented in this paper are

much superior compared to the ones reported in [3]. However, note that the objective of this paper is

limited to show the effectiveness of the ensemble based on feature subspacing.

3.4 Python Package

We have made our method, SubFeat available as a Python based package. It is freely available for

use from https://github.com/fazlulhaquejony/SubFeat. The package includes all the parameters

that we have discussed and provided as option for the method. A simple to follow user guide is also

provided on how to install and use the package along with example runs/experiments. We strongly

believe that further exploration are possible for this package and it will be useful for the computational

biologists working in the relevant fields.
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4 Conclusion

In this paper, we have proposed a ensemble method where the full feature space was divided into

subspaces. From the results we can conclude that the subspace method provide better prediction

result compared to both the single classifiers and the best ensemble algorithms like AdaBoost, Random

Forest, etc. We have tested the performance of the algorithm on a full space feature representation for

protein, DNA and RNA sequences datasets. However, it is possible to improve our accuracy by using a

different feature space and feature selection techniques. We have only tested our method on balanced

binary classification biological datasets. We have tested using overlaps of the feature-spaces however

the number of sub space is still a parameter to be tested comprehensively. Therefore, in future we

plan to work with imbalance data, independent and large number of dataset. The simplicity of these

method help to increase the accuracy of biological sequence datasets.
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