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Abstract

The transient data of the pinch force produced between the human forefinger and thumb have been shown to fit
the functional form of the well-known lognormal density function. Isometeric force generation is achieved by the
stochastic recruitment of individual motor units, which sum together. Evidence from animal and human experiments
demonstrates that the force generation can be modelled by underdamped terms. It is shown that a lognormal time
series (distribution) can be fitted to a sum of exponential decaying sinusoidal terms.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The motivation for this study of the pinch force is a desire to gain a better model of the natural
mechanisms and processes of a musculoskeletal system and then to test it with people who have lost
hand functionality. It does not follow that the model of a hand with normal functionality can be directly
applied to an abnormal hand or vice versa but experiments and theories for both normal and abnormal
cases should confirm similarities and highlight differences. A weak grip can be strengthened through the
electrical stimulation of the nerves connected to the flexor muscles of the fingers and thumb. Mathematical
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models of the muscles (actuators) allow for good design of an electronic controller for a stimulator in
order to obtain stable and robust responses to demand inputs. A better understanding of the normal
musculoskeletal systems of the upper limb will lead to improvements in the functionality of, for example,
stroke patients. A model does not need to contain all the features of the plant but sufficient information is
needed in a form that is useful for analysis and subsequent controller design. Also the model can be used
in simulations to identify the types of sensors needed and to investigate suitable control algorithms.

Muscles are organised in a complex way from the macroscopic to the microscopic [1]. Sarcomeres
are the basic units of skeletal muscle and consist of thick (myosin) and thin (actin) filaments. At the
cellular level, a sarcomere can be characterised in terms of several linear force-length equations for the
ascending, plateau and descending parts. Different disciplines, Biological, Medical, Physical, Chemical
and Engineering influence the modelling approach and the adoption of different mathematical expressions
used. There are several and well-known models which are described briefly to put the approach adopted
in this paper into context.

Most distinguished of the early models is attributed to Hill [2]. He discovered experimentally that a
rectangular hyperbola relates the force to the velocity of muscle shortening at optimal length:

(F + A)(v + B) = (Fo + A)B, (1)

where F is the steady-state force for shortening at a velocity v, Fo is the maximal and isometric force at
optimal contractile length and A and B are constants with units of force and velocity, respectively.

Huxley proposed the cross-bridge (or sliding filament) theory which combines the mechanical and
biochemical properties of contraction with the structure of skeletal muscle [3]. In this theory muscle
shortening is caused by the thin myofilaments sliding past the thick ones. He found good agreement
between the predictions from his theory and the experimental results of Hill. The dynamics of the theory
are still under investigation [4].

Generation of muscle force is brought about by the process of changing chemical energy into mechanical
energy which is based on adenosinetriphosphate (ATP) as an energy storage device [1]. Cleavage of the
phosphate bond results in a release of energy:

ATP4− + H2O → ADP3− + P2−
i + H+ + energy. (2)

In this paper, the force produced by a pinch grip in the human hand on a hard object is investigated which
is largely isometric force generation in contrast to an object that has compliance where the fingers, thumb
and palm will move as the grip-force increases.

2. Functional electrical stimulation

Evidence from animal experiments demonstrates that a transfer function, M, can be fitted to the data
for FES as an input and force generation as an output [5,6].

A dynamic model of the medial gastrocnemius muscle for cats is given by

M = Ke−sT

(s + a)2 , (3)
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Fig. 1. Closed loop model.
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Fig. 2. Root locus for the double pole at −a.

where K is a gain term, T is a delay constant and a is a parameter. This second order system is appli-
cable to isometric conditions where there is no velocity feedback. With length feedback only, a suitable
arrangement is shown in Fig. 1.

In practice there is a gain term in the feedback path and also a delay. However, for the purpose of
studying the loop response, these can be lumped together into a single gain and delay.

The root locus plot for the open loop system without the delay term is shown in Fig. 2.
As the gain increases the poles of the closed loop system remain parallel with the vertical axis forming

a complex conjugate pair. The natural frequency of the oscillations to an impulse response increases while
the decay rate of the transient remains constant.

The closed loop transfer function is given by

M

1 + M
= K

(s + a)2 + K
. (4)

The FES input is approximately an impulse (less than 300 �s) when compared to the time constants and
duration of the stimulation (period 25–50 ms).

For a unit impulse the input is

R(s) = 1. (5)
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Fig. 3. Root locus for the double pole at −a with a zero at −z and a pole at −p.

The output from the closed loop is

C(s) = K

(s + a)2 + K
. (6)

Hence the output transient is given by

c(t) = � exp(−at) sin(�t),
where � = K1/2. (7)

The decay rate is constant and the frequency is dependent on the square root of the gain.
A simulation of the system with a delay produces similar trends. As the gain increases, the time taken

for the output to rise from zero, reach a peak and to fall to zero again (time to the first zero crossing)
decreases which corresponds to an increase in the oscillatory frequency.

Including a joint in the system adds an extra pole and zero to the open loop transfer function:

J = K(s + z)

(s + p)
. (8)

The root locus plot is shown in Fig. 3.
As the gain increases the pole starting at ‘−p’moves along the real axis to the zero at ‘−z’. The impulse

response to this pole is a transient, with no oscillations, which decays more quickly as the gain increases.
The oscillatory frequency of the transient from the double pole at ‘−a’ increases and decays more slowly
eventually becoming constant at higher values of gain.

At high enough gains the presence of a joint does not significantly add to the transient response for a
muscle. At lower values the single pole near ‘−p’ may dominate but this is seen as a damped response
which is similar to the muscle on its own. This outline of the system behaviour is based on animal
experiments. Assuming that the model is transferable to a man (this is explored further in the discussion)
then the only difference will be the parameter values which dictate the position of the complex conjugate
pair of poles in the s-plane and hence the damping and frequency of any oscillations. Also for the pinch
experiments considered in this paper the force should be essentially isometric and therefore if there is
joint movement it will be small and does not need to be included in a model.
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3. Pinch force

The force exerted on an object (width 60 mm) by the forefinger and thumb of human subjects has been
investigated by Ramsay et al. [7]. In their experiments, a subject was required to generate a transient
pinch force from 2 to 10 N on a force meter. A typical time record shows that the force, starting from
a constant background value, increases to a peak and then decays down to the background force. The
time-series data were shown to fit a lognormal model of the following form:

f − f0 = Fmax exp

[
−{ln(t − t0) − ln(tmax − t0)}2

2�2

]
, t > t0, (9)

where f is the force exerted at time t, f0 is the targeted background force, Fmax is the maximum force, t0
is the time of the origin of the force, tmax is the time at the maximum force and � is a shape parameter.

It seems reasonable to suppose that the generated pinch force is the result of the recruitment of motor
units and that such units have the time relationship from a second order model (Eq. (7)). The forces that
they generate individually will sum together to form the overall smooth force, fs, given by the following
equation:

fs =
N∑

i=1

Ki exp{−ai(t − ti)} sin{�i(t − ti)}, t > ti , (10)

where the number of terms, amplitudes, frequencies, decay rates and time origins are N, Ki,, �i , ai and
ti , respectively.

4. Computation

The sum of squares between the force from the lognormal Eq. (9) and the decay exponential Eq. (10)
was minimised in order to determine values for the parameters Ki , �i and ai . The time origins started at
0.034 s and were incremented every 0.0005 s. For 86 terms the two forces are shown in Fig. 4 with the
difference between them in Fig. 5. A linear relationship was used between the first (i = 1) and last term
(i = 86) for the amplitudes, frequencies and decay rates. Table 1 shows the parameter values.

The transfer function of a typical second order system is given by

G = �2
n

s2 + 2��ns + �2
n

. (11)

The impulse response of this function is

c = �n√
1 + �2

exp(−��nt) sin

(
�n

√
1 − �2t

)
for � < 1. (12)
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Fig. 4. The forces f and fs (in the original data the force is generated from a base line of 2 N).
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Fig. 5. Difference between the forces f and fs.

The damping and natural frequency are related through Eqs. (7) and (12) by the following expressions:

� = a√
�2 + a2

, (13)

�n =
√

�2 + a2. (14)

The values are shown in the right-hand columns of Table 1.
Fig. 6 shows that the sum of squares decreases as the number of terms (N) increases and hence the

closer the values of the sum of decaying sinusoids to the lognormal function. A single term results in
the largest value (464.1). However, after six terms the sum of squares is constant (mean 0.401) and the
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Table 1
Parameter values for N = 86

Ki �i ai ti � �n

First i = 1 0.0702 52 19.0 0.034 0.343 55.3
Last i = 86 0.945 3.79 36.7 0.0765 0.995 37.1
Increment 0.0103 −0.566 0.211 0.00472 0.00767 −0.214

Sum of squares = 0.447.
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Fig. 6. Sum of squares against the number of terms.

smallest value was obtained for 11 terms (0.334). For a single term a better fit is obtained by adjusting
the time origin. The sum of squares can then be reduced to 70.5.

5. Experiment

Eq. (9) was fitted to a single trace of the pinch force to determine how good a fit could be made for a
single waveform. The experiment of Ramsay et al. [7] was repeated where a subject was asked to make a
pinch force between the thumb and first finger. The force was measured using a Honeywell FSG-15N1A
force sensor and the data collected on a Tektronix TDS 3032 digital oscilloscope.

Fig. 7 shows a sample waveform and the fitted function for 10 terms with the difference between the
two sets of data shown in Fig. 8 (note that the time origin is zero). Table 2 shows the parameter values
using 10 terms. For comparison Table 3 shows the values for 10 terms of lognormal Eq. (9).
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Fig. 7. The forces from a sample experimental waveform and fs from a base of 2 N.
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Fig. 8. Difference between the sample experimental force waveform and fs.

6. Discussion

A frequency response study of the human ankle by Bawa and Stein concluded that mechanically the
cat and human muscles have similar characteristics [8]. They inserted needle electrodes into the leg of a
subject to locate and stimulate a population of motor neurons of the soleus muscle. Keeping the simulation
duration short, they observed no H-wave reflex. The stimulation pulses were applied by distributing them
in time according to the gamma distribution. They fitted the resulting force data to a second order model.
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Table 2
Parameter values for N = 10

Ki �i ai ti � �n

First i = 1 0.430 18.3 5.75 0 0.299 19.2
Last i = 10 4.66 4.02 10.8 0.0388 0.937 11.5
Increment −0.470 1.59 −0.558 0.00430 −0.0709 0.858

Sum of squares = 14.2, results from the waveform shown in Fig. 7.

Table 3
Parameter values for N = 10

Ki �i ai ti � �n

First i = 1 0.472 51.0 18.9 0.034 0.347 54.4
Last i = 10 9.28 2.49 39.4 0.0765 0.998 39.5
Increment −0.979 5.39 −2.28 0.00472 −0.0724 1.66

Sum of squares = 0.345015, results from the lognormal Eq. (9).

The damping ratios were mainly less than unity. In their experiment with twitch contractions they found
nonoscillatory responses with damping ratios less than one. These results suggest that Eq. (6) is a good
representation of the dynamics of a muscle under isometric conditions.

When an object is held in a pinch grip there are several muscles contributing force on the object in order
to maintain a stable system. A transient increase and then decrease in force is achieved from muscles that
move the first finger and the thumb. A major muscle connected to the first phalanx of the forefinger is the
flexor digitorum profundus, sited deep in the forearm [9]. This muscle attaches to the distal phalanx of
all four fingers. To form a pinch grip requires a finger and the thumb to be in opposition. The thumb is
rotated so that the plane of fingernail is parallel to that of the thumbnail. Rotation of the metacarpal at its
saddle-shaped joint with the Trapezium is produced by the skew pull of the Oppenens Pollicis muscle.
Opposition is assisted by the Abductor Pollicis Brevis, which abducts and slightly rotates the proximal
phalanx at the metacarpal–phalangeal joint.

To generate a voluntary pinch force, the number of motor units recruited and the time at which they
become active varies. The results show that a transient smooth force can be generated using different
combinations and numbers of motor units and that they have a similar time series. A single output of
force is produced from a complex and distributed system. Also the smaller and slower units are recruited
first followed by the larger and faster ones. The results show that the first terms have smaller amplitudes,
larger frequencies and slower decay rates (smaller ai), in keeping with the natural characteristics. Between
a muscle and the tips of the finger and thumb are tendons and joints which will change the magnitude
of any force generated by a muscle. Electrical stimulation suggests a critically damped response under
isometric conditions but this will change if a joint is included and there is compliance in the object. The
feedback of signals from sensors in the muscle, joints and skin will also alter any response. As Bawa and
Stein point out, under the conditions where a foot or finger is moving then a fourth order system may
better describe the behaviour due to the addition terms from joints and masses.
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The computation was repeated using terms which are only critically damped (two identical poles in
their transfer function). The force is then given by

fs =
N∑

i=1

Ki(t − ti) exp{−ai(t − ti)}, t > ti . (15)

The sum of squares is much greater than that for the underdamped case and there are significant differences
especially at the peak force.

Since the logarithm is minus infinity for a value of zero, care has to be taken in using the lognormal
equation and hence the use of offsets in the force and time origin (f0 and t0).

The results demonstrate that a lognormal function (distribution) can be approximated by a sum of
decaying sinusoidal terms (Eq. (10)). For isometric muscle contraction, this result can be related to the
individual motor units if they are represented by a second order differential equation. The relationship
maybe of value in time-series data found in other disciplines [10]. For example, the lognormal distribution
has been fitted to reaction times [11]. Also the summation could be used for identifying components in
data from the natural and social sciences.

7. Conclusions

It has been found that the lognormal function (distribution) can be approximated by a sum of lagging
terms consisting of exponentially decaying sinusoids. For the pinch force generated between the first
finger and thumb on a solid object, the terms are modelled by a second order differential and underdamped
equation. The summation suggests that individual motor units can be characterised by these equations.
The summation maybe of use to other systems found in the natural and social sciences where a lognormal
distribution fits the data.

8. Summary

The transient data of the pinch force produced between the human forefinger and thumb have been
shown by Ramsay and colleagues to fit the functional form of the well-known lognormal density function.
Isometeric force generation is achieved by the stochastic recruitment of individual motor units, which
sum together. Evidence from functional electrical stimulation experiments demonstrates that the force
generation can be modelled in terms of systems which are governed by second order differential equations.
The impulse responses of these systems produce a force that is underdamped and consists of exponential
decaying sinusoidal terms. Parameter values are determined by minimising the square of the sum of
the difference between the summated force consisting of exponential decaying sinusoidal terms and the
lognormal function. It is shown that a lognormal time series (distribution) can be fitted to a sum of
decaying sinusoidal terms and could therefore be applied to other systems found in the natural and social
sciences.
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