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Abstract

An automated method for detecting and eliminating electrocardiograph (ECG) artifacts from electroencephalography (EEG) without an
additional synchronous ECG channel is proposed in this paper. Considering the properties of wavelet filters and the relationship between
wavelet basis and characteristics of ECG artifacts, the concepts for selecting a suitable wavelet basis and scales used in the process are
developed. The analysis via the selected basis is without suffering time shift for decomposition and detection/elimination procedures after
wavelet transformation. The detection rates, above 97.5% for MIT/BIH and NTUH recordings, show a pretty good performance in ECG artifact
detection and elimination.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The electroencephalography (EEG) represents the excita-
tory and inhibitory postsynaptic potentials generated by cor-
tical nerve cells. EEGs enable brain functions to be investi-
gated via monitoring potential waves from the scalp surface.
Since EEGs were discovered by Berger in 1929, they have
been considered an important tool for diagnosing, monitoring,
and managing neurological states in clinical medicine. Nowa-
days, EEG measurement is widely used as a standard procedure
in research including sleep studies [1], epileptic abnormalities
[2–4], and the diagnosis of other disorders [5,6]. However, in-
specting large quantities of raw EEG records visually is a com-
plex and time-consuming operation. Visual screening of EEG
records requires an experienced professionals—the electroen-
cephalographer (EEGer). When understanding EEGs to identify
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specific conditions such as epilepsy or sleep stages, an EEGer
is guided by general definitions and subjective criteria based
on the causal relationship of extended EEG. Large quantities of
reviewing records, covering more than several hours or even a
day, are normally required to diagnosis disorders or determine
sleep stages. Since artifacts may cause inaccuracy or even crit-
ical errors during visually screening or computer analysis, pure
EEG records without artifacts will improve the accuracy of vi-
sual inspection or computer-based analysis in the long term.

In general, the relatively high electrical energy cardiac ac-
tivity is most likely to cause EEG artifacts. Electrocardiograph
(ECG) artifacts remain a major problem for EEG research.
Some automatic detection methods have been proposed in past
studies [7,8]. Algorithms for eliminating artifacts have been de-
veloped using the ensemble average subtraction (EAS) method
[7], independent component analysis (ICA), and adaptive noise
canceling theory [8]. Nevertheless, these methods cannot be
implemented without an additional reference ECG channel, and
the ECG signal is therefore required to use these algorithms.
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Recently, an energy interval histogram method based on the
Smoothed Nonlinear Energy Operator (SNEO) technique and
multiple thresholding schemes was proposed by Park and Jeong
[8]. The SNEO technique is known to be very sensitive to noise,
and EEGs contain abundant noise such as EMG artifacts and
other high frequency disturbances. As a result, several post-
processing procedures are needed to complete detection and
elimination of artifacts after SNEO processing. The total failed
detection rate for four subjects was 9.1% under restricted con-
ditions. Detection and elimination algorithms are thus worthy
of further investigation for the sake of the improvement of per-
formance.

The wavelet transform (WT) method has various uses in
biomedical applications [9]. Seizure detection in epilepsy pa-
tients is one of the most frequent uses of WT in EEG anal-
ysis [2–4,10]. WT is also used as a pre-processing or feature
extraction tool prior classification and clustering during EEG
analysis. Kalayci and Ozdamar used an artificial neural net-
work to discriminate between epileptic spikes and background
EEG activities, and chose to employ Daub-2 and Daub-10 as a
wavelet basis [3]. Shen and Sun also used Daub-2 as a basis,
and proposed a method to extract dynamic rhythms via Multi-
Resolution Analysis (MRA) such that four primary rhythms
were acquired individually and reconstructed by decomposition
of the raw EEG data [11]. It is obvious that the Daub-N basis
has been frequently applied [3,4,6,10,11]. However, applying
MRA with a Daub-N basis to decompose/extract ECG artifacts
entails certain problems.

This paper presents a novel method of detecting and elim-
inating ECG artifacts based on the WT technique. In contrast
to the foregoing studies, the proposed method takes advantage
of the WT technique’s localization and provides more temporal
accuracy when performing long-term detection and elimination
directly from EEGs. In other words, our algorithm does not
need an additional synchronous ECG channel to perform detec-
tion and elimination. Our ECG artifact detection and elimina-
tion procedures are described in Section 2. Section 3 provides
illustrations of detection and elimination schemes for both sin-
gle and multi-channel cases.

2. Methods

2.1. Wavelet transform

The WT of signal x(t) is defined as

C(a, b) =
∫

R

x(t)�a,b(t) dt =
∫

R

x(t)
1√
a
�

(
t − b

a

)
dt . (1)

Here C(a, b) are the WT coefficients of signal x(t), �(·) is the
wavelet function, a is a scale parameter, and b is a translation
parameter. a ∈ R+ − {0}, b ∈ R for continuous analysis;
a = 2j , b = k2j , and (j, k) ∈ Z2 for discrete analysis. j is the
decomposition level. Since the continuous wavelet transform
(CWT) method is capable of performing continuous translation
and is not restricted to a dyadic scale, it provides a higher
resolution with a continuous scale for dilation. This property of

CWT makes it possible to localize features in both time and
frequency domains for accurate detection. In many situations,
however, the discrete wavelet transform (DWT) method is suffi-
cient to satisfy the requirements of analysis. The DWT method
is a dyadic WT when the scaling parameter a is a number with
a power of two, i.e., a = 2j , j ∈ Z. Mallat’s fast algorithm for
DWT is computed as follows [12]:

Aj(n) =
+∞∑

k=−∞
g(k − 2n)Aj−1(k), (2)

Dj(n) =
+∞∑

k=−∞
h(k − 2n)Aj−1(k). (3)

Here Aj is termed the j th approximation, or approxima-
tion at level j ; and Dj is termed the j th detail, or detail at
level j . The filters h(·) and g(·) used to decompose signals
are called wavelet filters (high-pass) and scaling filters (low-
pass), respectively. Transformation via these filters is known
as MRA and is used to decompose signals into sub-bands
with scale-dependent bandwidths [12]; the time-dependent
spectral features of physiological signals can then be decom-
posed into individual levels. Therefore, dyadic WT can be
considered to yield a set of equivalent filter-banks generated
by the original wavelet functions via spectral analysis. When
the decomposition level is set as m, the raw EEG is filtered
into each level by filter-banks H1(�), H2(�), . . . , Hm(�) and
G1(�), G2(�), . . . , Gm(�), where Hj(�) and Gj(�) at each
decomposition level j are defined as follows [13]:

⎧⎨
⎩

Gj(�) =
j−1∏
l=0

G(2l�),

Hj (�) = H(2j−1�)Gj−1(�).

(4)

The band of each filter at each decomposition level can
thus be obtained. For example, the multi-band frequency
of wavelet basis, Coiflet-1, is shown in Fig. 1. The main
frequency band of each level can be roughly defined as
(fs/2j−1)�‖Hj‖�(fs/2j ), which implies that the bandwidth
at the current level is approximately half of that at the previous
level.

2.2. Wavelet basis and scale selection

Choosing a suitable wavelet basis for EEG analysis relies on
three aspects: the temporal morphology (pattern) relationship
between the EEG and the wavelet basis, the frequency band
allocation relationship between the EEG and the wavelet basis,
and the properties of the wavelet filters.

As for the aspect of frequency, WT decomposes a signal into
several bands, of which some specific bands will contain the
critical features of an EEG. As a consequence, the overriding
consideration is to choose a suitable decomposition level/scale
corresponding to the bands containing critical features. As for
morphological aspects, choosing a basis with a similar temporal
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Fig. 1. The frequency response of the filter-bank of Coiflet-1. The gray section is the main frequency distribution of ECG artifacts.

pattern corresponding to the temporal features of the EEGs is
the natural option. This reflects the fact that the shape of the
detail at the j th level, Dj , has considerable similarity with the
wavelet basis via MRA processing. The original signal is con-
volved with wavelet filters in decomposition and reconstruction,
as shown in Eqs. (2) and (3). This is to say that the wavelet co-
efficients contain periodic and shifted versions of the j th level
wavelet filter. The correlation coefficients are therefore esti-
mated as a measure of similarity between the ECG artifacts and
wavelet bases. Here x and y are two signals with N samples:

R(x,y) =
∑N

i=1(xi − x̄)(yi − ȳ)√∑N
i=1(xi − x̄)2∑N

i=1(yi − ȳ)2
. (5)

In addition, the properties of wavelet filter-banks must be
examined [13]. The phases of the Symlet-8 and Coiflet-1 filters
at each decomposition level used in this work are approximately
zero. When the phase function of a filter reaches zero phase or
approximately zero phase, the time-shift function will be almost
zero [13]. As a consequence, the result of decomposition has no
time shift via MRA if the filters have zero phases. In contrast,
time shift has already occurred at level 2 via the Daub-2 filters.
The time-shift functions of three selected wavelet filter-banks
at each decomposition level can be found in [13].

The concepts of the basis and scale selection of WTs can be
illustrated pictorially. Fig. 2 shows the procedures for detect-
ing ECG artifacts and eliminating from an EEG. The suitable
wavelet basis and decomposition scale are selected on the ba-
sis of frequency features, temporal morphology, and wavelet

Fig. 2. The procedures for detecting ECG artifacts and eliminating from an EEG.

filter properties. The following sections utilize the foregoing
concepts to perform artifact detection and elimination from
EEGs.
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Fig. 3. Comparison of the energy coefficients at scales 22 and 23. (a) The raw EEG with ECG artifacts (indicated by arrows); (b) at scale 22, the local
maxima (peaks of energy coefficients) correspond to the R-peaks of ECG artifacts and the detections will be achieved correctly (indicated by arrows in (a));
(c) there are many false sections circled by dash line in the decomposition at 23 scale, i.e., the local maxima do not correspond to the R-peaks of ECG
artifacts (indicated by arrows in (a)); (d) the reference ECG channel for verifying the detection points.

2.3. Wavelet-based ECG artifact detection and elimination

The proposed method of detecting and eliminating ECG ar-
tifacts in EEGs is based on the foregoing concepts according
to the power spectra of an ECG signal [14]. The proposed al-
gorithm for the detection and elimination of ECG artifacts is
described as follows.

Step 1: Decomposition scale
The gray part of Fig. 1 indicates the main frequency band of

ECG artifacts, and it is clear that the frequency distribution of
the QRS complex generally covers the scales of 23 and 22. Most
artifact energy spectra are in the 23 scale. Thus, we initially
chose the scale 23 to extract the R-peak of ECG artifacts, and
this should be the general principle of decomposition. While
inspection of the spectrum in Fig. 1 shows that the 22 scale
contains less energy than the 23 scale, the extracted signal may
avoid most variations like beta activity and sleep spindles at this
scale. We therefore selected both 23 and 22 scales so that we
could test the reliability of the algorithm via detection process-
ing and simulation results. A comparison of results at different
scales is shown in Fig. 3. A further discussion is presented in
the next section.

Step 2: Wavelet basis selection
Based on the basis and scale selection criterion mentioned

above, the first step of selection is to find a basis which has
a sharp and spiky waveform consistent with spike-like ECG
artifacts. We chose the basis, Coiflet-1, which has the great-
est similarity with ECG artifacts, as shown in Figs. 4(a) and
(b). Wavelet transformation using Coiflet-1 also avoids the
problem of time shift due to the zero phase at each decom-
position scale. Furthermore, Daub-2 (Fig. 4(d)) and Symlet-8

Fig. 4. (a) The ECG artifact in the EEG (in the frame); (b) Coiflet-1 wavelet
basis; (c) Symlet-8 wavelet basis; (d) Daub-2 wavelet basis.

(Fig. 4(c))—bases often used in the literature—were also used
for the sake of comparison.

Step 3: Adaptive thresholding
The main goal of an adaptive thresholding algorithm is to

reveal artifacts and make the focal points stand out. The thresh-
old values depend on the local variation of the wavelet energy
coefficients. The threshold values can be used to shrink the
wavelet energy coefficients over specific intervals—called win-
dow length L—to ensure correct detection. The wavelet details
of the j th decomposition level obtained via MRA are desig-
nated Dj , and the energy of coefficients at this resolution level
is defined as Ej(k) = D2

j (k). An adaptive threshold scheme is
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Fig. 5. Adaptive thresholding procedure. (a) The adaptive thresholds are determined via a sliding window according to the local variation of the MRA energy
coefficients; (b) the detection points after adaptive thresholding.

proposed as follows:

T (k) = max

[
Ej

(
k − L

2
: k + L

2

)]

for k = L

2
,
L

2
+ 1, . . . . (6)

Here T (k) is the threshold at the kth time index and L is
the length of a moving window. In Fig. 5, the adaptive thresh-
old values are determined according to the variations in each
segment of energy coefficients, E2, by a moving window. This
procedure allows the determination of the local maximum of
energy corresponding to the R-peak of ECG artifacts in a spe-
cific segment.

Furthermore, window length L is also an important parameter
affecting the correctness of the adaptive thresholding scheme.
Detection will be achieved correctly when the window length
is within the range of I < L < 2I , where I is the interval
length between two adjacent R-peaks (R–R intervals). In ac-
cordance with experimental results, the pre-defined length of
a sliding window was set as 300 data points (1.2 s). Detection
was achieved correctly as long as the R–R intervals were in the
range of 0.6–1.2 s. Nevertheless, R–R intervals will change in
long-term recordings due variation in heart rhythm. Window
length was therefore updated every 10 s in order to ensure the
correctness of detection. The current window length was deter-
mined on the basis of the mean value of the intervals between
detection points during the previous 10 s.

Step 4: Elimination of ECG artifacts
Suppose that an artifact-contaminated EEG can be expressed

as y(n)= x(n)+ s(n), where x(n) represents the original EEG
without ECG artifacts and s(n) represents the ECG artifacts.
Using CWT, the extracted wavelet coefficients are taken as the
estimated artifacts, ŝ(n). Since we use the single scale wavelet
decomposition, the WT cannot extract the total energy of the
true artifacts, that is, the amplitude of extracted artifacts should
be lower than that of the true ones. Therefore, the amplitude
of the estimated artifacts ŝ(n) must be multiplied by a constant
K—called the recovering parameter—to approach the true am-
plitude of artifacts. Since the analysis of WT via Coiflet-1 has
no time shift, the elimination of ECG artifacts can be achieved
by directly subtracting the estimated artifacts ŝ(n) from the

contaminated EEGs y(n). The artifact-cleaned EEGs x̂(n) can
be defined as follows:

x̂(n) = y(n) − Kŝ(n). (7)

Due to the variability of cardiac activity, the energy of
ECG artifacts may change in long-term recordings for one
subject or between subjects. The recovering parameter was
estimated every 10 s for each recording in order to ensure
the correctness of artifact elimination. The recovering param-
eter K(i) is estimated as the ratio between the amplitudes
of EEGs and the extracted wavelet coefficients at the times
of detection points (corresponding to the R-peak times of
ECG artifacts) in the ith 10-s epoch. It can be expressed as
K(i) = ∑m

j=1y
(i)
j (p)/

∑m
j=1ŝ

(i)
j (p), where y

(i)
j and ŝ

(i)
j are

the respective relative amplitude of the j th R-peak in ith 10-
s epoch of an ECG-contaminated EEG and of the extracted
wavelet details. The index p is the time when the signal reaches
the R-peak of ECG artifacts; it can be obtained from the time
index of detection points. To prevent estimation error caused
by failed detections, K(i) is regarded as a correct value within
a reasonable range of 1–2.5. K(i) is substituted as the previ-
ous correct estimation, K(i−1), when the value is outside this
range. Artifact-cleaned EEGs can be obtained by Eq. (7) using
the estimated recovering values, K(i), in each 10-s epoch.

3. Evaluation and results

The EEG recordings in this study were separated into two
groups. The data in Group 1 consisted of “sleep” recordings
obtained from the Polysomnographic Database established by
Massachusetts Institute of Technology and Beth Israel Hospi-
tal (MIT/BIH) [15]. The EEGs in this group were originally
contaminated with ECG artifacts. The performance of the pro-
posed method based on CWT and DWT was derived for EEGs
of different subjects and sleep stages.

The data in Group 2 consisted of “wakeful” recordings ac-
quired from the Department of Neurology, National Taiwan
University Hospital (NTUH). In order to verify the performance
of the proposed method under various conditions, i.e., perfor-
mance under different level of contamination and with corre-
lation of signals before and after processing, the ECG artifacts
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Fig. 6. The procedures of the automatic ECG artifact detection and elimination (sleep recordings): (a) the raw EEG contains ECG artifacts (arrows); (b)
extracted ECG artifacts via CWT with a Coiflet-1 basis; (c) the wavelet energy coefficients (powers of extracted ECG artifacts); (d) the detection of ECG
R-peaks after using the adaptive thresholding procedure; (e) the artifact-cleaned EEG; (f) the synchronous ECG signal was used to verify the detection results.

in this group were taken from a synchronous ECG channel and
incorporated into the EEG signals by linear addition at various
amplitudes.

3.1. Performance indices for statistical assessment

The rules for scoring the results of automatic detection ad-
dressed the two main considerations of the identification of
detections and the time accuracy of detections. Detection was
taken to be completed correctly when these two criteria were
both satisfied. The first rule is to count the false positive (FP)
and false negative (FN) detections, which are described as fol-
lows:

FN beats: the number of missed detection while ECG artifacts
are present.
FP beats: the number of additional unexpected detections when
the ECG artifacts are not present.
The second rule is to identify the time accuracy of detections.
This rule specifies that a detection is performed only when it is
located within a range of 0.1 s around the true temporal location
of an ECG artifact. The two scoring rules were used to test the
robustness and accuracy of the proposed algorithm.

Spike-to-EEG energy ratio (SER): Elimination performance
was evaluated by estimating the SER [8] before and after the
elimination procedures. The SER is defined as the ratio of the
mean energy of a spike region (QRS wave) to the mean energy

of the background EEG in a recording:

SER = (1/Nk)
∑Nk

k=1((1/N
(k)
S )

∑N
(k)
S

n=1SE(k)(n))

(1/NB)
∑NB

n=1EE(n)
. (8)

Here SE(k)(n) represents the signal energy of the kth QRS re-
gion with N

(k)
S samples; Nk is the number of total spike seg-

ments in the recordings; EE(n) represents the signal energy of
the EEG background in the non-spike region with NB samples
in the recordings. The estimated SER can be regarded as the
degree of ECG artifact contamination in both groups and can
be used to regulate the added ECG energy level in the cases in
Group 2.

Correlation: The correlation coefficient is a normalized mea-
sure of the degree of linear correlation between two signals.
It is used to verify the correlation between signals before and
after processing in the NTUH cases. Correlation coefficients
are defined in Eq. (5), where x and y are signals with N sam-
ples, and R(x, y) is the correlation coefficient between x and
y. The correlation coefficients used in this work are described
as follows:

R(rEEG,rEEG+rECG): The mean correlation between the orig-
inal non-ECG-contaminated EEG (rEEG, Fig. 7(a)) and the
ECG-contaminated EEG (rEEG + rECG, Fig. 7(c)) in the
recordings.

R(rECG,eECG): The mean correlation between original added
ECG spikes (rECG, Fig. 7(b)) and the ECG spikes estimated
by WT (eECG, Fig. 7(g)) in the recordings.
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R(rEEG,eEEG): The mean correlation between original non-
ECG-contaminated EEG (rEEG, Fig. 7(a)) and the artifact-
cleaned EEG (eEEG, Fig. 7(g)) in the recordings.

3.2. Group 1: sleep recordings

3.2.1. Subjects and recordings
The selected EEG records from the MIT/BIH database were

originally contaminated with ECG artifacts. The three sub-
jects were male, aged 33, 38, and 44, with weights of 95,
145 and 89 kg, respectively, and suffering from obstructive
sleep apnea syndrome. EEG data were acquired with elec-
trodes placed at C4-A1, O2-A1, and C3-O1 in accordance with
the standard 10–20 electrode placement system. The sampling
rate was 250 Hz and the resolution of the EEG data was 12-
bit. Supplemental EMG and EOG records were also included
to determine sleep stages manually by RK rules [16]. The
recordings of the three subjects were employed to evaluate
the overall performance of the proposed algorithm for differ-
ent subjects, sleep stages, and WT types (CWT and DWT).
In this study, recordings containing ECG artifacts were arbi-
trary acquired; each test recording was about 60–90 min in
length. A simultaneous ECG channel was used in all cases
as a reference when we scored detection results. Five sleep
stages and wakeful stages were also included in the selected
recordings.

3.2.2. Experimental results
Fig. 6 shows adaptive thresholding procedure for automatic

ECG artifact detection and elimination procedures. The raw
EEG still contains ECG artifacts (arrows) in Fig. 6(a). The
ECG artifacts were extracted via CWT with a Coiflet-1 basis,
as shown in Fig. 6(b). The wavelet energy coefficients (powers
of extracted ECG artifacts) are shown in Fig. 6(c). As shown in
Fig. 6(d), the detection of ECG R-peaks is achieved after using
the adaptive thresholding procedure (as shown in Fig. 5). The
artifact-cleaned EEG is shown in Fig. 6(e). The synchronous
ECG signal was used to verify the detection results, as shown
in Fig. 6(f).

3.2.3. Statistical assessment results
The number of heart beats was 16,690 over a total period

of 231 min, with a mean heart rate of 72.25 beats/min. The
recordings were utilized to test performance of the proposed
algorithm via CWT and DWT, respectively. The performance
evaluation for each recording is listed in Table 1. The proposed
algorithm via DWT yielded an overall 1.61% FN detection
rate and an overall 0.61% FP detection rate. Via CWT, the
algorithm’s FN detection and FP detection rates were 1.59%
and 0.53%, respectively. The original mean SER (SERr), 5.64,
was reduced to 1.41 (the artifact-cleaned SER, SERe). The
detection performance for individual sleep stages is shown in
Table 2.

In Table 2, the failed detection rates in stages 3 and 4 were
less than 1.06% via either CWT or DWT. The highest failed
detection rates occurred during sleep stage 1 and the wakeful

stage and were roughly 3.20–5.49%. The failed detection rate
during rapid eye movement (REM) stage was a little lower
than those during the wakeful stage and stage 1, which were
3.24% via DWT and 2.50% via CWT. The failed detection rates
during stage 2 were 1.65% and 2.03% via DWT and CWT,
respectively.

3.3. Group 2: wakeful recordings

3.3.1. Subjects and recordings
The recordings of 10 normal wakeful subjects from NTUH

were randomly selected from data previously recorded with an
EEG 1000 system (Nihon Kohden Co., Japan) with a sampling
rate of 200 Hz. Two subjects were male and eight were female,
aged from 11 to 64 (mean age of 28.5). The recordings included
the data from six EEG channels (FP2-A2, F3-A1, C4-A2, T5-
A1, P4-A2, and O1-A1, according to the standard 10–20 elec-
trode placement system). Each recording was about 4–5 min in
length.

Since the locations of the EEG channels were chosen to
cover various locations on the scalp, the wakeful EEG with
more noise could be used to test the robustness of the proposed
method. The reference ECG channel was filtered in the range
of 5–40 Hz to remove most non-spike waves and then added
to each EEG channel with various amplitude levels to verify
the detection and elimination performance. A general QRS de-
tection algorithm [17] was used to detect QRS peaks of the
reference ECG channel used to evaluate performance.

3.3.2. Experimental results
Fig. 7 shows step by step automatic ECG artifact detec-

tion and elimination procedures. Fig. 7(a) shows the raw EEGs
(rEEGs) without ECG artifacts. In Fig. 7(c), ECG-contaminated
EEGs (rEEGs + rECGs) are constructed by adding filtered
ECGs to rEEGs, as shown in Fig. 7(b). In this example, the
ECG SER was set as 10 (SER will be described in the next
section). The EEGs with artifacts are then transformed into
level 2 detail, D2, via WT with a Coiflet-1 basis, as shown in
Fig. 7(d). The extracted detail (estimated ECGs and eECGs)
reveals the hidden artifacts. In Fig. 7(e), the wavelet energy
coefficients are computed and the extracted artifacts are even
more evident than at the previous stage. Finally, as shown in
Figs. 7(f) and (g), the detected temporal points and the ener-
gies of ECG R-peaks are determined following the adaptive
thresholding procedure, and the artifact-cleaned EEGs (eEEGs)
are also obtained. To see the nature of the residual artifacts,
Fig. 7(h) shows the residual signal: raw EEG compares to ECG-
cleaned EEG (rEEG–eEEG).

3.3.3. Statistical assessment results
The total number of ECG artifacts from six EEG channels

at five SER levels was 102,120. The length of recordings was
42.97 min, with a mean heart rate of 79.22 beats/min. The
detection and elimination performance for each recording at
specific SER levels is listed in Table 3. The mean failed detec-
tion (FD, equal to FN + FP) rate of all recordings at all SER
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Table 1
Performance evaluation with respect to subjects (MIT/BIH cases) via DWT and CWT

Recording No. Total beats dFN beats dFP beats Failed detection (DWT) (%) cFN beats cFP beats Failed detection (CWT) (%) SERr SERe

slp01 5773 37 20 0.99 38 23 1.06 5.44 0.63
slp02 6528 88 19 1.64 115 15 1.99 6.61 1.85
slp67 4389 144 63 4.72 112 50 3.69 4.17 1.74

Sum 16 690 269 102 265 88

Mean 2.22 2.12 5.41 1.41

dFN/dFP beats: the number of false negative/ positive detections after DWT; cFN/cFP beats: the number of false negative/ positive detections after CWT;
SERr: original SER; SERe: ECG-eliminated SER.

Table 2
Performance evaluation with respect to different sleep stages (MIT/BIH cases) via DWT and CWT

Stage 1 Stage 2 Stage 3 Stage 4 REM Wakeful

Total beats 455 7619 940 2124 3118 2434
dFP beats 17 101 5 8 78 60
dFN beats 8 25 4 4 23 38
Failed detection (DWT) (%) 5.49 1.65 0.96 0.56 3.24 4.03
cFP beats 17 127 6 5 61 49
cFN beats 7 28 4 3 17 29
Failed detection (CWT) (%) 5.27 2.03 1.06 0.38 2.50 3.20

Fig. 7. The procedures of the automatic ECG artifact detection and elimination (wakeful recordings): (a) the raw EEG (rEEG) without ECG artifacts; (b) the
original ECG channel filtered in the range of 5–40 Hz (rECG); (c) the ECG-contaminated EEG (rEEG + rECG); (d) the extracted ECG (eECG) from the
ECG-contaminated EEG by Coiflet-1; (e) the energy of extracted ECG; (f) the detection after adaptive thresholding on (e); (g) the ECG-cleaned EEG (eEEG)
after elimination procedure; (h) the residual signal: raw EEG compares to ECG-cleaned EEG (rEEG–eEEG).

level was 2.09%. The mean and standard deviation of FD for
all subjects at various electrode locations are summarized in
Table 4.

The correlations between signals before and after process-
ing at distinct SER levels are listed in Table 5. As for ECG
spikes extraction, the mean correlations between rECG and
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Table 3
Performance evaluation with respect to subjects (NTUH cases) at distinct SER level

Recording No. SERr

3 5 10 15 20
FD (%) SERe FD (%) SERe FD (%) SERe FD (%) SERe FD (%) SERe

ntuh01 11.75 1.39 2.66 2.10 0.41 3.44 0.14 4.74 0.00 6.03
ntuh02 8.60 0.85 2.92 1.24 0.43 2.01 0.16 2.79 0.16 3.57
ntuh03 3.61 1.34 1.91 2.04 0.67 3.40 0.36 4.75 0.26 6.09
ntuh04 2.43 1.23 0.63 1.87 0.09 3.11 0.18 4.35 0.18 5.58
ntuh05 1.89 1.28 0.57 1.97 0.28 3.32 0.28 4.65 0.28 5.97
ntuh06 2.93 1.40 0.21 2.07 0.10 3.29 0.00 4.47 0.00 5.64
ntuh07 5.92 1.58 2.99 1.43 1.03 2.40 0.57 3.42 0.57 4.45
ntuh08 12.43 1.56 5.41 1.76 0.39 3.11 0.24 4.49 0.15 5.89
ntuh09 8.36 1.36 1.91 1.60 0.05 2.80 0.00 4.02 0.00 5.25
ntuh10 13.46 0.79 5.57 0.83 1.14 1.38 0.34 1.95 0.27 2.53

Mean FD ± SD 7.14 ± 4.17 1.28 ± 0.27 2.48 ± 1.87 1.69 ± 0.42 0.46 ± 0.38 2.83 ± 0.69 0.23 ± 0.17 3.96 ± 0.95 0.19 ± 0.17 5.10 ± 1.2

FD: failed detection; SD: standard deviation of FD among subjects.

Table 4
Performance evaluation with respect to electrode location (NTUH cases)

Electrode location Mean FD (%) SD (%)

FP2-A2 2.43 2.64
F3-A1 1.92 1.33
C4-A2 1.49 1.42
T5-A1 1.66 1.84
P4-A2 1.59 1.44
O1-A1 3.29 2.39

SD: standard deviation of FD rate among subjects at the location.

Table 5
Correlations between signals at distinct SER levels (NTUH cases)

Correlation SERr

3 5 10 15 20

R(rEEG,rEEG+ECG) (%) 85.15 76.57 70.26 65.35 61.38
R(rECG,eECG) (%) 80.32 82.45 83.24 83.66 83.93
R(rEEG,eEEG) (%) 85.01 79.48 75.00 72.69 69.43

R(rEEG,rEEG+ECG): mean correlation between rEEG and rEEG + rECG
in recordings; R(rECG,eECG): mean correlation between rECG and eECG
in spike regions; R(rEEG,eEEG): mean correlation between rEEG and eEEG in
recordings.

eECG in spike regions, R(rECG,eECG), is above 80% at all SER
levels. R(rEEG,rEEG+rECG) and R(rEEG,eEEG) reveal correlations
between EEGs before and after elimination procedure.

4. Discussion

This study proposes the concepts of wavelet basis/scale se-
lection and wavelet-based methodology for ECG artifact de-
tection and elimination. The proposed method achieves pretty
good performance. The key element of the proposed methodol-
ogy is the selection of suitable wavelet basis. The selected basis
can improve the overall performance of detection and elimina-
tion directly from EEG without an additional ECG signal.

The wavelet bases used with our algorithm avoid the prob-
lem of time shift after processing. This advantage enhances
temporal accuracy when using the WT technique. A wavelet
basis with pattern corresponding to EEG/ECG characteristics
allows a good projection from the characteristics via WT, and
the extracted signal can match the specific waveform even more
closely.

It should be noted that 22 was chosen as the alternative de-
composition scale. Although the energy at the 22 scale is lower
than that of the 23 scale (see Fig. 1), extraction results at the
22 scale are better than that at the 23 scale, as shown in Fig.
4. This is because the most beta activity and sleep spindles are
also extracted simultaneously at the 23 scale. In other words,
the extracted wavelet coefficients at the 23 scale contain much
unnecessary EEG activity. It is clear that results at the 22 scale
are much better, and the relative high energy coefficients cor-
respond to the R-peaks. In addition, results at the 23 scale have
much false extraction, as shown in Fig. 4(c).

Since the sampling frequency (fs) of EEG might be different
in other applications, it should be noted that the wavelet scale
used to extract artifacts will not be fixed. The selection of a
proper scale is relative with respect to the sampling frequency
of the EEG signal. As mentioned above, the most proper scale
for ECG artifact detection and elimination will be 2(n−1). The
decomposition level n can be determined by a manner that the
main frequency band of the wavelet filter at 2n scale can locate
in the range of 10–30 Hz approximately (main frequency band
at each level can be defined for different sampling frequency,
see Section 2.1). For sampling frequency at 200 Hz in our case,
the main frequency band of the wavelet filter at scale 23 is in the
range of 12.5–25 Hz, so we choose 23−1 as the decomposition
scale.

The detections at each stage showed high adaptability and
reliability in the diverse environment of the background EEG,
as shown in Table 3. It is clear that a suitable basis and decom-
position level make the detection algorithm much more pow-
erful and avoid the effects of EEG variability, even when the
artifacts are not visually obvious. Due to the transformation
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without time shift, the extracted ECG artifacts can be directly
subtracted from the contaminated EEG. It should be noted that
the phase of ECG artifacts may be different in recordings (pos-
itive or opposite). However, the types of phase do not influence
the results of elimination. The phase of extracted signals de-
pends on that of the ECG artifacts. Spikes were also removed
by the same elimination procedure.

4.1. MIT/BIH database

The application of the proposed algorithm to subjects with
obstructive sleep apnea syndrome showed excellent results. The
manual scoring statistics and assessment in Table 1 indicate
that detection performance significantly depends on the subject,
which means that the properties of subjects’ EEG signals influ-
ence the detection rate. EEG activities and artifacts are likely to
remain consistent for one subject, but may differ considerably
between subjects. For instance, the EEG of subject slp01 dis-
played less contaminating high frequency noise than the other
recordings, and detection performance for subject slp01 was
therefore superior to that for the other subjects. On the other
hand, the EEG of subject slp67 was frequently contaminated
with much more high amplitude EMG noise. When this situa-
tion occurs, the extracted ECG signal is mixed with EMG noise
and failed detections tend to occur relative to the quantity of
noise. It should be noted that detection can also be achieved
accurately when EMG noise is not severe (relative amplitude
is not much greater than background EEG).

In Table 2, the failed detection rates at stages 3 and 4 were
very low (less than 1%) regardless of whether DWT or CWT
was used. This suggests that the background frequency of the
EEGs was lower than ECG artifacts during deep sleep, and also
indicates that the detection algorithm worked well. The high-
est failed detection rates occurred during the wakeful stage,
sleep stage 1, and REM stage. This is explained by the fact that
the many EMG artifacts and body movements occurring dur-
ing these stages contaminated the EEGs. ECG spikes and the
frequency bands of these disturbances overlapped each other.
The failed detection rate rose with an increased number of dis-
turbances. It should be noted that the total beats in recordings
during stage 1 were much less than during other stages (the
original recordings contained many fewer episodes of stage 1
sleep). The failed detection rate during stage 1 in our experi-
ments was thus higher than during the wakeful state. Manual
scoring experience suggests that detection during the wakeful
stage (when most EMG artifacts and body movements occur)
is quite difficult. The occurrence of sleep spindles during stage
2 led to a higher detection rate during stage 2 higher than dur-
ing stages 3 and 4. Another reason for failed detections was the
occurrence of unexpected spikes, which had a frequency very
close to that of ECG artifacts. The above-mentioned situations
were not disregarded in the final manual score, which means
that all detections were counted even though the ECG artifacts
were almost invisible. The only situations in which scores were
not taken into account were sleep stages that were labeled as
MT (moving time), when the EEG amplitude was more than

300 �V (typical threshold of normal EEGs), and when the EEGs
had no contaminating ECG artifacts.

Tables 1 and 3 show comparative results for DWT and CWT.
While CWT should generally yield more accurate analytical
results than DWT due to its continuous scales and shifts, our
experiments indicated that the performance of CWT is not en-
tirely superior to that of DWT. We found that CWT produced
more false detections than DWT in some cases. The reason for
this result was that the use of DWT with the proposed algo-
rithm also employed the 22 scale, and the filters shifted with a
four sampling interval, i.e., �t = 4/250 = 0.016 s. This short
shift interval was sufficient to achieve the desired accuracy for
detection of ECG artifacts in the experiments. DWT is thus
more efficient with fast algorithms and demonstrated satisfac-
tory performance in the experiments.

4.2. NTUH clinical recordings

The proposed method was validated again using the record-
ings with supplemental experimental indices. Data for all sub-
jects were recorded while they were in a wakeful condition.
As mentioned above, detections were difficult to achieve dur-
ing the wakeful stage since most noise and EEG/ECG variation
generally occurred during this stage. The wakeful stage record-
ings can therefore be considered as relatively extreme cases.
Looking at real ECG-contaminated cases, the setting of SER
levels should be sufficient to cover most situations in which
ECG artifacts occur.

In the very low ECG-contaminated cases (e.g., SER < 3),
ECG artifacts were almost invisible and tended to be sub-
merged in the background EEG. The failed detection rate thus
increased with the reduction of SER. The reason for this was
that in some recordings, especially at low SER levels, ECG
spikes were not sharp enough to be differentiated from high
frequency EEG activity, implying that the failed detection rate
increases when ECG artifacts are unusually submerged in the
EEG signals. However, the overall detection performance did
not deteriorate severely and still remained acceptable under
such conditions. As for the aspect of elimination performance,
according to the standard deviations of SERes, the differences
between artifact-cleaned SERs (SERes) and other recordings
with the same SERrs were not significant. The waveforms and
amplitudes of extracted ECG spikes were therefore adapted to
those of real ECG spikes. The proportion subtracted from the
EEG in the spike regions was thus equivalent for each pair (ex-
tracted and real) of spikes. Furthermore, ECG artifacts were
almost completely eliminated in most real ECG-contaminated
situations (SERr � 10) according to the satisfactory results of
SERe (SERe < 3).

In terms of the detection performance for specific electrode
locations, we can see that failed detections occurred most fre-
quently in the frontal (FP2-A2) and occipital (O1-A1) positions.
However, according to the standard deviations in Table 4, the
FD rate for identical locations was quite different in the case of
different subjects. The index RCC was above 80% for all SER
levels and it could be interpreted that the correlation between
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contaminated and extracted ECGs in spike regions after trans-
formation is high. Further, R(rEEG,rEEG+rECG) and R(rEEG,eEEG)

described the improvement of correlations of contaminated and
eliminated EEGs with the original non-contaminated EEGs.
Improvements suggest that the removal of ECG artifacts causes
the waveform of eEEGs to more closely approximate those of
the rEEGs. The background EEGs in non-spike regions also
maintained their original waveforms and were not disturbed
by the elimination procedure. At a SER level equal to 3, the
R(rEEG,eEEG) was slightly lower than the R(rEEG,rEEG+rECG).
Since the effects of spikes are relatively less than those of non-
spike regions in extracted ECG at the low SER levels, the sub-
traction of extracted ECGs from the EEGs influenced the pro-
motion of R(rEEG,eEEG). It should be noted that, in practice, it
was not necessary to perform elimination procedures since the
ECG artifacts were almost submerged in other EEG activities.

Unlike previous studies conducted under restricted limited
conditions [8], under unrestricted conditions the average FD
rate of single channel cases (MIT/BIH) was 2.12% and that of
multi-channel cases (NTUH) was 2.10%. The SER of artifact-
cleaned EEGs was within the acceptable contamination limit for
clinical practice. The proposed algorithm’s conceptual clarity,
simple procedures, and high efficiency make it very suitable
for other applications.

5. Conclusions

A reliable and feasible wavelet-based methodology for ECG
artifact detection and elimination is presented in this study. The
main contribution of the proposed method is the successful
application of the concepts of wavelet basis and scale selec-
tion to biomedical signals. The proposed algorithm provides a
pretty good performance in ECG artifact detection and elimi-
nation. The reliability and validation of the proposed method
were verified by various experimental indices. The experimen-
tal performance of the method shows that WT is an excellent
analytical method when the optimal scale and a suitable basis
are employed.

The specific frequency band and temporal features of other
waveforms, such as epilepsy spikes, sleep spindles, and K-
complexes, have rhythm extraction and ECG artifact detection
aspects similar to those addressed by our algorithm. We believe
that our proposed method can also be used for other applications
involving these types of waveforms.

6. Summary

An automatic analysis method for detecting and eliminating
electrocardiograph (ECG) artifacts in electroencephalography
(EEG) is proposed in this paper. Considering the properties
of wavelet filters and the relationship between wavelet basis
and EEG characteristics, the criterion for selecting the suitable
wavelet bases and scales used in EEG analysis is developed.
Based on the selection criterion of wavelet basis, the EEG anal-
ysis via the selected bases is without suffering time shift in
the process of decomposition and detection/elimination after
wavelet transformation. The effective separation of alpha, beta

rhythms and slow wave activity is achieved and the results con-
form to the clinical concern. Based on the similar concepts of
proposed wavelet analysis, an automatic and adaptive method
with high reliability to detect and eliminate ECG artifacts from
EEGs without an additional synchronous ECG channel is also
developed. An extensive of performance evaluations with re-
spect to both of MIT/BIH database and NTUH clinical subjects
is conducted. The achieved average detection rate of ECG ar-
tifacts is above 97.5%. After elimination procedure, the inter-
ference of ECG artifact is almost removed below an acceptable
contamination level for clinical practice. The performance eval-
uations have demonstrated that the proposed wavelet-based ap-
proach can be successfully implemented for biomedical signal
processing with accurate analysis.
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