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Abstract
The ultimate aim for classifying elbow versus shoulder torque intentions is to develop robust brain–
computer interface (BCI) devices for patients who suffer from movement disorders following brain
injury such as stroke. In this paper, we investigate the advanced classification approach classifier-
enhanced time–frequency synthesized spatial pattern algorithm (classifier-enhanced TFSP) in
classifying a subject’s intent of generating an isometric shoulder abduction (SABD) or elbow flexion
(EF) torque using signals obtained from 163 scalp electroencephalographic (EEG) electrodes. Two
classifiers, the support vector classifier (SVC) and the classification and regression tree (CART), are
integrated in the TFSP algorithm that decomposes the signal into a weighted time, frequency and
spatial feature space. The resulting high-performing methods (SVC-TFSP and CART-TFSP) are then
applied to experimental data collected in four healthy subjects and two stroke subjects. Results are
compared with the original TFSP, and significantly higher reliability in both healthy subjects (92%
averaged over four healthy subjects) and stroke subjects (75% averaged over two subjects) are
achieved. The accuracies of classifier-enhanced TFSP methods are further improved after a rejection
scheme is applied (~100% in healthy subjects and > 80% in stroke subjects). The results are among
the highest reliability reported in literature for tasks with spatial representations on the motor cortex
as close as shoulder and elbow. The paper also discusses the impact of applying rejection strategy
in detail and reports the existence of an optimal rejection rate on a stroke subject. The results indicate
that the proposed algorithms are promising for future use of rehabilitative BCI applications in
neurologically impaired patients.
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1. Introduction
Brain–computer interface (BCI) has been gaining much attention as an approach to detect an
individual’s intents and to convert brain signals into usable control commands [1–4]. The rapid
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development of this technique demonstrated that scalp EEG-based BCI is a feasible way to
provide a non-muscular control of a cursor on the screen [2,5]. Application of these studies in
rehabilitation engineering has been targeting ‘locked-in’ patients. Differently, we aim at
exploring the ability to use a scalp EEG-based BCI to control a neural prosthesis or other
devices to help patients who suffer from movement discoordination (such as patients with
moderate to severe motor impairment due to stroke or cerebral palsy). An example of this
discoordination is the abnormal coupling that exists between the shoulder abduction (SABD)
and elbow flexion (EF) following stroke. We hope to help these patients overcome this
abnormal coupling between shoulder and elbow by a well-designed BCI approach that can
classify the individual’s intent of a shoulder or elbow motor task with high accuracy. This is
a challenging task for the following reasons: First, shoulder and elbow are closely represented
at the motor cortex (about 10 mm between their respective centers of activity [6]. Second, the
cortex has been shown to reorganize following stroke: Yao and Dewald [7,8] have shown that
there is a significant increase in the overlap of cortical activity following stroke, which is likely
to make the classification between shoulder and elbow tasks considerably more difficult than
in able-bodied subjects.

Recently, we experimented using a time–frequency synthesized spatial patterns (TFSP) BCI
algorithm [9] to classify the intent of the generation of isometric SABD and EF torques with
high recognition rate in four healthy subjects. The TFSP algorithm provides detailed analysis
of event-related desynchronization (ERD) in spontaneous EEG rhythmic activity by
decomposing the signal into a time, frequency and spatial feature space. Time–frequency
segments are weighed based on their corresponding contribution and the weights are
synthesized during final classification. We found that the TFSP algorithm is an effective EEG-
based BCI approach for classifying SABD and EF intentions [10]. However, its prediction
power is constrained (especially for stroke subjects) since a simple comparison with minimal
training was used for the classification in the algorithm.

In order to achieve the full potential of the TFSP algorithm and investigate its possible use in
classifying SABD–EF torque intentions involving stroke subjects, in this paper we propose an
improved version of TFSP called classifier-enhanced TFSP and present detailed experimental
results in four healthy and two stroke subjects. In the classifier-enhanced TFSP, classifiers with
explicit training process and high recognition reliability are incorporated into the algorithm,
which are used to derive weight distribution of time–frequency grid with the help of a validation
process; the trained classifiers are used to obtain predicted labels on each time–frequency
segment for a new EEG trial. In addition, a rejection module is added to the algorithm to further
improve accuracy that may have important implications for the use of practical rehabilitative
devices.

Various classifiers have been employed in BCI technique including linear classifiers such as
Fisher’s linear discriminant [11], signal space projection [12], and nonlinear classifiers such
as distinction sensitive learning vector quantization (DSLV) [13], and the hidden Markov
model [14,15]. Following the consensus on choosing BCI classifiers based on low error rate
and fast response time [16,17], we chose to introduce support vector classifier (SVC) [18,19]
and classification and regression tree (CART) [20,21] into the TFSP. To our knowledge, these
two high performing classifiers have never been explored in the context of BCI for a
challenging task such as separating shoulder versus elbow motor intents and deserve to be
studied in this context. The first classifier SVC has been widely regarded as one of the most
reliable classifiers with good generalization capability [21,22]: when most classifiers are based
on empirical risk minimization that minimizes the summed error on training samples which
may lead to overfitting, SVC follows the principle of structural risk minimization which targets
better prediction of unknown testing samples and thus increases the reliability during
applications. The second classifier CART is a multi-stage classification scheme that has a fast
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testing phase. It follows one path of a trained tree, goes through a set of linear decisions
(bounded by the level of the tree) and stops when reaching any leaf node with a classification
target. In this paper, the TFSP algorithm with SVC as the classifier is called SVC-TFSP, and
similarly the TFSP algorithm with CART is named CART-TFSP.

In this study, using our classifier-enhanced TFSP algorithms (SVC-TFSP and CART-TFSP),
we are able to achieve a very high recognition rate of 92% averaged in four healthy subjects
when classifying a shoulder versus elbow task. In addition, two stroke subjects are included in
the experiments of this paper, and an average recognition rate of 75% is achieved, which is
better than the results observed with original TFSP. The rejection scheme reduces the error
rate and improves the accuracy even further: an accuracy rate higher than 80% is achieved in
stroke subjects while an accuracy rate close to 100% in every healthy subject. The results
suggest that, the classifier-enhanced TFSP BCI algorithm can reliably detect a subject’s intent
of generating a shoulder or elbow torque; and thus may provide a reliable control for neural
prostheses using non-invasive high-density scalp EEG.

2. Experimental setup and signal preprocessing
2.1. Experimental protocol

Scalp EEG signals were collected from four able-bodied and two stroke subjects. Table 1 lists
the information of these subjects.

Each subject learned to self-initiate the generation of isometric SABD or EF at a level of 25%
of his/her maximum voluntary torques (MVTs). EEG and torques were collected during the
generation of isometric elbow/shoulder torque.

Subjects were cast at the wrist and secured to a six degree of freedom (DOF) load cell with
shoulder at 70° abduction angle. The tip of the hand was aligned with the median sagittal plane
of the subject and located at a distance from the body which yields an elbow angle of 90°, with
0° representing full extension of the elbow, and the shoulder at approximately a 40° flexion
angle. In order to minimize the effect of trunk muscle activation, subjects were seated in a
Biodex chair with the trunk secured and the shoulders strapped to the back of the chair. A
computer monitor was placed in front of the subject to provide visual feedback of the torque
generation during the training protocol.

Scalp recordings were made using a 163-channel EEG system with active electrodes. The
electrodes are mounted on a stretchable fabric based on a  system positioned as illustrated by
Fig. 1. The cap was fitted on the head of the subject lining the Cz electrode with the intersection
of the planes defined by the nasion, inion, and pre-auricular points. The skin under each
electrode site was prepared and conductive gel was injected to achieve electrode impedances
lower than 5 kΩ throughout the experiment. EEG data were collected at 1000 Hz sampling
rate. Antialiasing filtering (100 Hz) was provided before data acquisition. The system was
equipped active electrodes that provide a first amplification stage, allowing for the recording
of EEG signals with a higher SNR and quicker preparation.

2.2. Signal preprocessing
The recorded 163-channel EEG signals were preprocessed using Brain Vision Analyzer V1.04
software (Brain Products GmbH, München, Germany). Using this software, we first manually
removed the noisy channels, bad intervals of eye artifacts and drifting signals. The remaining
data were segmented from −1800 to −100 ms pre-torque onset, and then were baseline corrected
and down sampled to 256 Hz. In order to reduce the smearing effects on EEG measurements
due to the head volume conductor, a spatial high-pass filter, i.e., finite difference surface
Laplacian (SL) [23], was applied to signal from each of the channels before exporting the data
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for further analysis. As a result, peripheral electrodes were removed and preprocessed EEG
signals from the remaining inner 131 electrodes were exported for BCI classification. Fig. 2
shows some typical time traces of the EEG signals.

3. Methodology—classifier-enhanced TFSP algorithm
In this paper, two classifier-enhanced TFSP algorithms, namely SVC-TFSP and CART-TFSP,
are developed based on the TFSP algorithm by Wang et al. [9] and Deng et al. [10]. Fig. 3
shows the complete flow chart of classifier-enhanced TFSP BCI algorithm including the
training and testing processes. In an effort to remain brief, we explain each of the modules
following the data flow sequence while focusing on modules newly developed in this paper.

3.1. Presorting and time–frequency feature decomposition (modules 1, 2 and Te1)
First of all, a presorting procedure divides EEG trials for each motor task into two subsets of
different levels of covariance complexity, using the average complexity value of all trials as
the dividing line. The purpose of this step is to consider the possibility that subjects may use
different strategies for the same motor task [10].

Time–frequency feature decomposition is then conducted on the presorted data using the TFSP
algorithm [9,10]. EEG signals are decomposed ranging from 5 to 34 Hz into a series of
frequency bands (totally 13 bands) using a group of constant Q value (Q = 4) band-pass filters.
We then use Hilbert transformation to extract the profiles of the oscillatory activities in the
temporal domain, and the resulting profiles were divided into equal-length intervals (55 ms of
each interval) with a 50% overlap. Following the divisions in both frequency and time domains,
we calculated the instantaneous power (i.e. integration of the profile) in each of the time–
frequency grid in the spatial domain. Accordingly, a single-trial EEG signal was represented
in a new spatial, time and frequency space by a time frequency spatial pattern p131*61*13.
(vectors and matrices are represented by bold font with dimensions specified using subscripts.)
For details of above two procedures, see [10].

3.2. Classifier training (module 3)
After the features are extracted, a training data set is used to train the classifier. This training
process was not included in the original TFSP algorithm. Instead, in original TFSP algorithm,
classification was done by a similarity comparison of the trial with different types of average
spatial patterns in training data [9]. In this study, we introduce the classifiers of high recognition
abilities—SVC and CART—into the algorithm. An explicit classifier training process (the
module 3 in Fig. 3) is now included for each of these two classifiers.

(1) Support vector classifier (SVC)—The basic idea of SVC is to find an optimal
separating hyperplane for different classes [19,22]. When there are only two classes involved,
like in this study, the hyperplane is a line. The training process of SVC obtains the weight
vector ws and offset b of the hyperplane by solving the optimization problem that maximizes
the margin of the two classes as follows (the margin is the distance between the bounding
planes of the two data sets and equivalent to 2/||ws ||2):

(1)

where ξi are called slack variables which ensure that the problem has a solution when the data
are not linearly separable; li is the label of the ith training trial, I is the size of the training set,
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C is the regularization parameter, and Φ(·) is the implicit mapping of the sample from the raw
data space to a feature space, which enables SVC to work with nonlinear problems. It satisfies
the property 〈Φ(x1),Φ(x2)〉 = k(x1,x2), with 〈·, ·〉 as inner product of two vectors and k as a
potentially nonlinear kernel function.

The optimization problem can be solved using Lagrange theory, which will give us the weight
vector ws and offset b as below:

where αi are the Lagrange coefficients.

(2)

where SV is the set of support vectors (a subset of training samples that participate in defining
the optimal hyperplane, and hence the name of the classifier).

(2) Classification and regression tree (CART) [20]—For CART, the training process
is to build a decision tree based on training data. At each node of the tree, a split of branches
is made during training such that the decrease in Gini criterion is maximized. Gini criterion
for a given node t is defined as

(3)

where class labels ωi, ωj ∈{abdI, abdII, efI, efII}, p(ωi|t) is the proportion of training samples
in node t with class label ωi. Once the tree is built, each branch is associated with a rule
generated by splitting (which indicates the value range of spatial pattern) and each leaf node
of the tree is associated with one category (which is the majority label of samples in the leaf
node).

3.3. Weighting process (module 4)
Once the training is complete, we apply the trained classifiers on a validation data set, which
is distinct from the training and testing data sets. When using SVC as the classifier, the class
label for a validation trial p(t,f) is obtained as

(4)

where pj(t,f) is the spatial pattern of jth trial in the set of support vectors SV; lj is the desired
label of the jth trial in SV.
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When a CART is used as the classifier, the validation trial goes down the branches following
the rules until reaching a leaf node, and we have the class label for a validation trial as

(5)

In this study, LibSVM package [24] with Matlab interface is used for the implementation of
SVC and Matlab statistics package is used for CART. The size ratio of training and validation
sets is set to 9:1 for stroke subjects and 7:3 for healthy subjects based on a rough search for
optimal ratios (increased difficulty in classification may cause having more training samples
necessary for stroke subjects, which offsets the disadvantage of a smaller test set.) The same
classification process is applied to module Te2 for a testing trial to obtain class labels on each
time–frequency segment.

After a class label is assigned to a time–frequency grid for a validation trial, a weight w(t,f) ⊂
[0,1] is determined based on the recognition rate of going through all single trials in the
validation dataset as follows:

(6)

where Th is the threshold and grids with recognition rates lower than Th are discarded (set to
0.4 in our experiment). r(t,f) is the recognition rate achieved on the specific time–frequency
grid (the left box in the “weighting process” of Fig. 3). With the introduction of validation set,
r(t,f) is calculated as below:

(7)

where Nv is the number of samples in the validation set; li is the desired label for the ith trial
in the validation set; d̂i(t, f) is the class label of the ith trial in the validation set assigned by the
trained classifier SVC or CART. The outcome of module 4 is the weight matrix on time–
frequency grid, W(t,f)61*13.

3.4. A weighted synthesis (module Te3)
The weight matrix W(t,f)61*13 is used to derive a judging decision R(p) regarding the class of
a single-trial EEG in the testing dataset by synthesizing the weighted results over the entire
time–frequency grid:

(8)

where p represents the spatial pattern of a testing trial. d(t,f) is the label assigned to the testing
trial by the classifier SVC or CART on the specific time–frequency domain. A positive R(p)
indicates that the synthesized decision for the test trial is a SABD-related event, while a
negative one indicates a EF-related event.
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3.5. Rejection scheme for classifier-enhanced TFSP algorithm (module Te4)
A rejection scheme is introduced in the classifier-enhanced TSFP algorithm by setting a
threshold on the absolute value of the synthesized sum. With the rejection scheme, the
synthesized decision of Eq. (8) is now changed to the following decision making process, with
the threshold denoted as Th_REJ:

If 

then test trial i is rejected.

else if  

then test trial i is a SABD-related event.

else

test trial i is an EF-related event.

End

In the above rejection scheme, w(t,f) is calculated using Eq. (6); d(t,f) ∈ {−1,+1}: +1 if the
classifier considers the trial as SABD on the specific time–frequency segment and −1
otherwise.

With rejection scheme introduced, it is common to evaluate the accuracy of an algorithm which
is defined as

(9)

where Nc is the number of correctly predicted test trials, Nt is the total number of test trials,
and Nr is the number of rejected trials. Accuracy indicates the reliability of an algorithm (i.e.,
how reliable is the algorithm’s decision on the label of a test trial if it is not rejected). When
no rejection is generated, accuracy is equivalent to recognition rate.

The value of Th_REJ is lower bounded by 0 and upper bounded by either of the two cases: (1)
when all test trials in a test set are rejected and we can not further increase the Th_REJ; or (2)
the accuracy has reached 100% and it is no longer necessary to increase the Th_REJ.

4. Experimental results
We used the leave-five-out cross-validation method (i.e., dividing the whole dataset into multi-
folds with five trials per fold for each of the motor tasks) to train and test the BCI algorithm.
Using this method, one of the folds was taken iteratively as the testing data, while the rest were
used as the training and validation data. The result for a subject is the average of testing
performances over all folds.

In order to compare with the original TFSP, we reported the recognition rates of CART-TFSP
and SVC-TFSP in the same four healthy subjects as compared with our previous work [10]
and list the results in Table 2. Table 2 shows that, in four healthy subjects, the results of CART-
TFSP and SVC-TFSP are comparably high with the average recognition rate of 92%; both
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types of classifier-enhanced TFSP reported average recognition rates of 3% higher than the
original TFSP. The results we achieved are the highest recognition rates reported for tasks with
such close spatial representations on the motor cortex.

We further tested classifier-enhanced TFSP in two stroke subjects with results listed in Table
3, again with comparison to the original TFSP algorithm. The results show that improvements
on recognition rates can again be obtained by using classifier-enhanced TFSP. In this case,
SVC-TFSP reported the highest average recognition rate of 75%. A paired t-test was used to
compare the overall performance of TFSP combined with different classifiers across all
subjects (control and stroke). Results of the paired t-test showed that compared to the original
TFSP method, both the CART-TFSP (p = 0.046) and SVC-TFSP (p = 0.042) methods achieved
significant levels of improvement in recognition rates in the tested six subjects. However, there
is no significant difference (p = 0.17) between the performance obtained by the CART-TFSP
and the SVC-TFSP methods.

For SVC-TFSP, we did a search of suitable kernel functions. We found that linear and third
degree polynomial kernels work the best for our purpose. In particular, these two kernels
achieved the same average accuracy (92%) in healthy subjects, while in stroke subjects, the
averaged accuracy of SVC-TFSP linear kernel is 73%, which is 2% lower than what we
obtained with the polynomial kernel, but still better than the original TFSP and CART-TFSP
(the results of SVC-TFSP in Tables 2 and 3 are based on linear and polynomial kernels,
respectively). We also found that a radial basis (Gaussian) kernel appears not suitable for our
purpose. These observations indicate that there may be a slightly increased polynomial
nonlinearity in stroke subjects along the classification boundary of different motor tasks.

The weight distribution in stroke and control subjects obtained by CART-TFSP and SVC-TFSP
are shown in Fig. 4. We can see from the figure that weights assigned to time–frequency
segments by SVC-TFSP and CART-TFSP are very different. For the SVC approach (the right
column), there are a few time–frequency segments that carry very high weights compared with
other segments and they are visually highlighted as “islands” on the time–frequency grid. These
“islands” correspond to important contributions from lower α (5–8 Hz), α (8–12 Hz) and β
(12–24.5 Hz) bands.

Fig. 5 shows the changes of accuracy rates with the increase in rejection rates for CART-TFSP
and SVC-TFSP methods. We can see from Fig. 5 that the impact of applying the rejection
scheme on improving the accuracy is quite apparent. Very high accuracy rates (close to 100%)
can be achieved in healthy subjects with reasonable rejection rates lower than 40%. In stroke
subjects, maximum increase in accuracy rates is higher when compared with able-bodied
subjects. For stroke subject S1, whose data present the most difficult classification problem in
this study, there exists an optimal rejection rate as marked with dashed ovals: with CART-
TFSP, this occurs when the rejection rate is around 50%, when the highest accuracy (> 80%)
can be obtained; with SVC-TFSP, the optimal rejection rate is higher, which helps to boost the
accuracy to an even higher rate. Further increasing rejection rates beyond the optimal point
would not help increasing accuracy. For stroke subject S2, whose data is easier to classify, we
do not observe such optimal rejection rate, instead, we can boost the accuracy to almost 100%
using both SVC-TFSP and CART-TFSP, but with much higher rejection rates compared with
control subjects.

As a comparison, we also tested the changes of accuracy rates with the increase in rejection
rates for the original TFSP, shown in Fig. 6. We can see that the introduction of rejection
mechanism also increases the accuracy of the original TFSP; however, the cost on rejection
rates is higher in general (the lines stretch to the right side of the graph). In addition, SVC-
TFSP and CART-TFSP deliver higher overall accuracy.
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In order to evaluate the potential of using TFSP algorithms with signals from as many as 163
electrodes in a real-time BCI application, we estimated the response times of the original TFSP,
CART-TFSP and SVC-TFSP as listed in Table 4. The measurements were testing time per
trial in milliseconds. The experiments were conducted on Matlab 7.0.1 on a 3 GHz Pentium 4
PC with 1 G RAM.1 The operating system was Windows XP. Only the duration of the testing
process was measured since that is when the predictions of the new trials were performed.

5. Discussion
Compared to our previous report on the performance of a time–frequency spatial patterns
(TFSP) algorithm that uses a primitive classifier [10], the classifier-enhanced TFSP BCI
algorithms in this study applied classifiers with potentially higher recognition capabilities into
the synthesis process. This led to a better recognition rate of intended motor tasks in both
healthy subjects (92% averaged over four healthy subjects) and stroke subjects (75% averaged
over two subjects). The percentage of accurate estimates is further improved by employing a
rejection scheme (~100% in healthy subjects and > 80% in stroke subjects).

5.1. Impact of using enhanced classifiers on TFSP BCI algorithm (weights change and rate
change)

The recognition rates achieved by the SVC-TSFP and CART-TFSP (see Table 2) have clearly
shown that combining the enhanced-classifiers with TFSP BCI algorithm can improve the
classification performance. Such an improvement is expected mainly due to the high
recognition abilities of the two enhanced classifiers, which increase the reliability of weights
of time–frequency feature segments and the synthesized classification. In addition, a different
weight assignment method is used in this paper: weights of the time–frequency feature
segments were obtained based on the recognition rate r(t,f) on a validation set. In the original
TFSP, the calculation of the average patterns pabd(t,f)131*1 and pef(t,f)131*1 (used as the base
for comparison) involves all training samples including the trial p(t,f)131*1 with which the
spatial correlation is compared and the label is determined. It was a reasonable strategy for a
simple classification based on similarity comparison. However, since SVC and CART are
algorithms with distinct training and testing processes, we assign the weight of the feature
segment based on the generalization capability (i.e. prediction of the label of unseen data)
instead of the performance on seen data. We expect the strategy of using a validation set to
have a greater impact when larger data sets are being used.

The weight distribution on time–frequency grids reflects the property of different classifiers.
Comparing weight distributions for CART-TFSP, SVC-TFSP and the original TFSP (see Fig.
3 of [10]), we find that the two linear classifiers (i.e., CART and the classifier of the original
TFSP) have more widely distributed weights, while SVC-TFSP, which can solve nonlinear
problems with the help of a kernel function, has a more focalized distribution especially in
stroke subjects. This may explain why a better recognition rate is obtained using SVC-TFSP
in the two stroke subjects. This phenomenon suggests that for the separation of upper arm
motor tasks in brain-injured patients, a nonlinear classifier such as SVC with polynomial kernel
may provide more discriminating power than a linear classifier; while for healthy subjects,
both types of classifiers work well. It implies that SVC-TFSP may be preferred in future clinical
applications for neurological impaired subjects for the purpose of reducing error rates, given
that both methods satisfy the speed requirement.

For a real-time BCI system, the ideal response time from acquiring to processing and then to
responding to the brain signal should be on the order of milliseconds [34]. As an example in

1SVC-TFSP calls several C-language subroutines, which may cause some difference in the software platforms used by the algorithms.
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literature, Millan et al. [35] reported a response time of 500 ms for an online EEG-based BCI
system. We measured the processing time of the two enhanced algorithms as well as the original
TFSP. As listed in Table 4, all three methods, especially the two classifier-enhanced algorithms,
satisfy the speed requirement of a potential real-time BCI system. Building algorithms into
digital signal processing (DSP) hardware will further increase the speed of the algorithms in
the future. We also observe that the original TFSP algorithm is relatively slow, which may be
explained by the nearest neighbor strategy it employs that does not produce a trained model—
nearest neighbor classification belongs to the so called “lazy learning” models which need a
relatively longer testing time [36].

5.2. Impact of applying rejection scheme
Applying rejection scheme reduces the error rates and increases the accuracy on testing data.
Meanwhile, more rejected trials typically occur. The choice of Th_REJ (0–100%) determines
the trade-off between the rejection rate and error rate. If Th_REJ is set to 0.0, no rejection is
generated. On the other hand, if Th_REJ is set too high, then all the trials would be rejected
and the recognition rate will become zero. As seen in Fig. 5, rejection scheme can improve the
accuracy of the algorithm both on healthy and stroke subjects while increasing the number of
rejected trials. More importantly, there exists a subject-specific optimal rejection rate. Such
optimal rejection rate defines the limit of the boost in accuracy and corresponds to the highest
accuracy rate that can be obtained by rejecting trials. In our results, this happens for the most
difficult subject, stroke subject S1. This suggests that a search of the optimal rejection rate for
subjects may be necessary, especially for stroke subjects. Despite the rejected trials, we think
that rejection scheme will be an important component for future online clinical BCI
applications. For example, during adaptive training for rehabilitation device, when a trial is
rejected due to unclear motor intent, several choices can be employed; the intent can be ignored
and the patient can be asked to retry, or a guess is presented back to the patient without actual
muscle stimulation, based on which s/he can adaptively re-generate the signal to help shorten
the learning curve of using the rehabilitative device. On the other hand, a wrongly judged intent
may lead to unintended stimulation with undesirable effects.

5.3. Frequency band difference between healthy and stroke subjects
Using the two enhanced classifiers, high weights are assigned to α and β bands in the four
healthy subjects. This observation is more obvious in the weight distribution obtained by SVC-
TFSP method. Contributions from α (8–12 Hz) and β (12–24.5 Hz) are consistent with widely
accepted results that the Rolandic μ (10–13 Hz) and central β (14.5–18 Hz) rhythms are two
important rhythmic activities showing characteristic spatiotemporal patterns during the
imagination, planning and execution of movements [4,28–33]. In the two stroke subjects, the
contribution from lower α (5–8 Hz) band are stronger compared with that in healthy subjects.
This may indicate that the difference associated with cognitive functions of temporal
awareness, anticipation and motor memory between the two tasks may be important for the
classification in stroke subjects.

5.4. Application of our BCI algorithm for rehabilitation of neurologically impaired subjects
The reported results, especially by SVC-TFSP, are among the highest for EEG-based BCI
motor tasks reported in literature, including the separation of left versus right hand movement
(67–95%) [11,16,17,37,38], despite that the task of separating SABD versus EF is harder than
studies aiming to separate left and right hand movement intents (whose cortex representation
are on opposite hemisphere and about 10 cm apart while shoulder and elbow movements
correspond to two closely neighboring areas in the cortex of only about 10 mm apart).

In addition, research in the area of brain reorganization has found that the brain injury following
stroke causes an increased overlap between cortical activities for different motor tasks in the
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sensorimotor cortical (SMC) regions[7,8]. This increased cortical overlap could make
predicting torque directions generated by brain-injured subjects even more difficult which
could provide an explanation of the relatively low recognition rates compared with able-bodied
subjects [25–27].

We need to make a note that the stroke subjects evaluated in this study show feasibility of our
TFSP approach in the case of a moderate to large size white matter subcortical stroke (subject
1, Table 1) and following a moderate to large size cortical combined with a white matter stroke
(subject 2). We are currently expanding our work to a larger group of moderately to severely
affected stroke survivors who are most likely going to benefit from future development in brain
machine technologies to regain upper limb function.

Another issue of importance for any future clinical application of our high density EEG
approach is limiting the number of electrodes. This is important for several reasons: first of
all, limiting the number of electrodes could reduce the annoyance of applying the montage to
the patient and secondly, optimally numbered and positioned electrodes could potentially
provide signals of a smaller redundancy and may improve overall accuracy of our classifier-
enhanced TFSP approach. Determination of the optimal number of electrodes will be examined
as part of our future work.

In the long term, by estimating motor intent of a subject via EEG signals, rehabilitation
techniques using real-time interaction with neural prostheses or other devices may be
developed for the treatment of abnormal movement disturbances in muscular coordination
including the presence of abnormal upper limb synergies following hemiparetic stroke [39].
Being among the earliest experiments conducted in stroke subjects, this study provides a
potentially effective EEG-based classification approach towards non-muscular BCI-controlled
neural prosthesis for stroke rehabilitation. This paper also reported that the response time of
the TFSP algorithm is promising for the application in real-time BCI systems.

6. Conclusions and future work
The improvement on recognition rates confirms that by using classifiers of high recognition
reliability, the classifier-enhanced TFSP can improve the prediction power of the original TFSP
for challenging BCI problems.

Currently the TFSP method weights the time and frequency information, but the spatial
information is treated equally. In the future, spatial information can also be weighted based on
the contribution of different EEG electrode channels. Classifier-enhanced TFSP brings another
potential advantage of channel selection to facilitate the research toward this direction. For
example, it has been observed that in CART-TFSP, an inherent electrode selection is conducted
and only limited number of electrodes are involved in the decision making process. Similarly,
SVC can also be used to do channel selection [16]. We plan to incorporate channel selection
and spatial information weighting into the TFSP algorithm, which may lead to deeper
understanding of spatial information of EEG signals corresponding to elbow versus shoulder
torques and further improvement of the prediction reliability.

7. Summary
The ultimate aim for classifying elbow versus shoulder torque intentions is to develop robust
BCI devices for patients who suffer from movement disorders following brain injury such as
stroke. In this paper, we investigate the advanced classification approach classifier-enhanced
TFSP in classifying a subject’s intent of generating an isometric SABD or EF torque using
signals obtained from 163 scalp EEG electrodes. Two classifiers, the SVC and the CART, are
integrated in the TFSP algorithm that decomposes the signal into a weighted time, frequency
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and spatial feature space. The resulting high-performing methods (SVC-TFSP and CART-
TFSP) are then applied to experimental data collected in four healthy subjects and two stroke
subjects. Results are compared with the original TFSP, and significantly higher reliability in
both healthy subjects (92% averaged over four healthy subjects) and stroke subjects (75%
averaged over two subjects) are achieved. The accuracies of classifier-enhanced TFSP methods
are further improved after a rejection scheme is applied (~100% in healthy subjects and > 80%
in stroke subjects). The results are among the highest reliability reported in literature for tasks
with spatial representations on the motor cortex as close as shoulder and elbow. The paper also
discusses the impact of applying rejection strategy in detail and reports the existence of an
optimal rejection rate on a stroke subject. The results indicate that the proposed algorithms are
promising for future use of rehabilitative BCI applications of neurologically impaired patients.
In the future, different EEG electrode channels can also be weighted to further improve the
reliability of the algorithm. Introducing online learning mechanisms are also important for
applying the algorithm to stroke rehabilitative applications.
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Fig. 1.
The electrode montage. For EEG signal recording, 163 electrodes were used: scattered regions
A to F. Two additional eye movement detection electrodes were also placed on the zygomatic
positions for horizontal eye movement and on the supra- and infra-orbital margins for detection
of vertical eye movement.
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Fig. 2.
Time traces of EEG signals in different channels for subject S1 shoulder abduction. The traces
are for the first training trial. Due to space limit, only signals from channels A3-A22 are shown.
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Fig. 3.
Flow chart of the classifier-enhanced TFSP algorithm.
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Fig. 4.
The time–frequency weight distribution for subjects with CART-TFSP and SVC-TFSP.
Brighter colors indicate bigger weights. Frequency band was divided into 13 frequency bins
(1: 5.3–6.8 Hz; 2: 6.0–7.7 Hz; 3: 6.9–8.8 Hz; 4: 7.8–10.0 Hz; 5: 9.0–11.5 Hz; 6: 10.2–13.2 Hz;
7: 11.7–15.0 Hz; 8: 13.4–17.2 Hz; 9: 15.3–19.6 Hz; 10: 17.5–22.5 Hz; 11: 20.0–25.7 Hz; 12:
22.8–29.3 Hz; 13: 26.0–33.5 Hz). Time interval from 1800 to 60 ms prior to the onset of torque
(denoted as time point 0) was divided into 61 segments (1: −1800 to −1745 ms; …; 10: −1554
to −1449 ms; …; 20: −1280 to −1226 ms; …; 30: −1007 to −952 ms; …; 40: −734 to −679 ms;
…; 50: −460 to −405 ms; …; 60: −159 to −105 ms). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5.
Changes in accuracy rates with increase in rejection rates for SVC-TFSP and CART-TFSP
methods. Dashed ovals indicate the optimal accuracy rates observed on stroke subject S1.
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Fig. 6.
Changes of accuracy rates with increase in rejection rates for the original TFSP.
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Table 2

Recognition rates (without rejection scheme) for four able-bodied subjects.

Subject # Original TFSP (%) CART-TFSP (%) SVC-TFSP (%)

N1 90 91 92

N2 86 88 85

N3 91 94 96

N4 89 93 95

Mean 89 92 92

Comput Biol Med. Author manuscript; available in PMC 2010 May 6.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zhou et al. Page 23

Table 3

Recognition rates (without rejection scheme) for two stroke subjects.

Subject # Original TFSP (%) CART-TFSP (%) SVC-TFSP (%)

S1 64 69 74

S2 73 72 76

Mean 69 71 75
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Table 4

Testing time based on Matlab platform.

Subject # Original TFSP CART-TFSP SVC-TFSP

N1 132 66 108

N2 118 55 95

N3 118 53 96

N4 144 70 110

S1 119 53 94

S2 116 51 82

Mean 125 58 98

Per test trial in milliseconds.
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