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Abstract

We suggest a symmetric-polar pixellation scheme which makes possible a re-

duction of the computational cost for expectation maximization (EM) iterative

algorithms. The proposed symmetric-polar pixellation allows us to deal with

3D images as a whole problem without dividing the 3D problem into 2D slices

approach. Performance evaluation of each approach in terms of stability and

image quality are presented. Exhaustive comparisons between all approaches

were conducted in a 2D based image reconstruction model. From these 2D

approaches, that showing the best performances was finally implemented and

evaluated in a 3D based image reconstruction model. Comparison to 3D images

reconstructed with FBP is also presented. Although the algorithm is presented

in the context of computed tomography (CT) image reconstruction, it can be

applied to any other tomographic technique as well, due to the fact that the

only requirement is a scanning geometry involving measurements of an object

under different projection angles. Real data has been acquired with a small an-

imal (CT) scanner to verify the proposed mathematical description of the CT
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system.
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1. Introduction

Image reconstruction in computed tomography (CT) has been dominated by

analytical methods like filtered backprojection (FBP) [1] because these methods

produce images of a reasonable quality with low cost in terms of computing time.

Advances in computer science enable the use of reconstruction techniques based

on iterative methods [2], [3] as an alternative to FBP, although the time needed

for image reconstruction increases considerably [4].

Iterative methods allow a detailed mathematical description of the physical

processes involved in tomographic systems, such as the attenuation and scatter

of photons in the body under study [5]. As a consequence of the improvement

of the image quality, less patient dose is needed during CT examination [6],

[7]. Promising results obtained at the Mayo Clinic in Arizona reported a 63 %

reduction in dose received by the patient when iterative reconstruction methods

were implemented instead of FBP [8].

Iterative methods consider the image reconstruction problem as a discrete

linear system, where the mathematical description of the tomographic system is

done through the so-called weights matrix. Noise in the iterative images can be

reduced by about 60% compared to the FBP results without compromising spa-

tial resolution [9]. Tomographic imaging systems have been greatly improved in

the last few years [10] whereas several methods have been proposed to accelerate

the convergence of iterative methods [11–15]. Great improvements have been

obtained by reducing the system matrix size taking into account the geometry

of the system [16], and consequently reducing the computational complexity.

Despite the complexity of the problem, several methods have been proposed to

improve the calculation of the weighting factor values [17], [18].

Small animal CT imaging has gained considerably importance as a method

for preclinical studies in the last decades [19]. Due to the high resolution needed
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when imaging small animals (typically 0.1 mm) accurate image reconstruction

algorithms are required. In this work, we focus on the development of a CT

system matrix description that allows us to use the maximum likelihood expec-

tation maximization (MLEM) and ordered subsets expectation maximization

(OSEM) algorithms reducing the computational complexity without decreasing

the quality and stability of images.

The final goal in this paper is to drastically reduce computational cost (200

times at least) allowing us to reconstruct three dimensional (3D) CT images

without losing quality.

Performance evaluation of the various approaches proposed in this work was

conducted with real data from a small animal micro CT. A dedicated phantom

with synthetic materials modelling different tissue densities has been designed

and manufactured for this study. The FBP algorithm has been implemented

to compare 3D iterative images against the customarily used algorithm for CT

image reconstruction.

2. Iterative reconstruction

The iterative image reconstruction can be regarded as a statistical estima-

tion problem. The expectation-maximization (EM) algorithms can be used to

compute the estimated maximum-likelihood when the projection data are not

equally spaced or the observation can be viewed as an incomplete data set [9],

[11] and [20]. The MLEM algorithm [2] has attracted considerable interest in

the area of tomographic image reconstruction, as it produces high quality im-

ages. However these methods are computationally intensive and may suffer from

a slow convergence rate. To overcome this, the OSEM algorithm was proposed

in 1994 [3]. The OSEM algorithm is a modified version of MLEM algorithm

that groups projections into subsets of angles. The image is updated as many
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times as the number of subsets, proportionally accelerating convergence for each

iteration.

Several pixellation configurations of the field of view (FOV) have been pro-

posed in order to decrease the computational cost and to improve the image

reconstruction quality using alternative models such as region of interest [21],

blobs [22–24], natural pixels and strip functions [25]. In order to take full ad-

vantage of the symmetry of the scanner geometry, we proposed to use polar dis-

cretization to arrange the pixels in the FOV [26], see Fig. 1(a). The FOV is split

into as many sectors as the number of projections and each sector is subdivided

into voxels. This division of the FOV allows us to recycle the weights between

consecutive projections, since the system matrix of the CT is constructed as a

block circulant matrix [27]. Since more than one hundred projections are usually

required to obtain a CT image, the polar description cuts down the time and

storage requirements of the weights matrix. The authors have recently studied

the 2D approach [28], showing that polar pixel-based weights matrices allow a

highly efficient implementation of the 2D MLEM. Three different methods of

obtaining the weights matrix using polar discretization are presented and com-

pared in the 2D CT case. The best 2D weights matrix model is extended to

3D, which allows full 3D iterative reconstruction in order to obtain volumetric

images.

To display images that are arranged in a polar configuration, it is necessary to

design an additional procedure to represent the information in a cartesian grid.

The transformation is based on an interpolation that converts the reconstructed

polar pixels image to another in square pixels and places each polar pixel on

a Cartesian-grid thin enough to keep the resolution of the original polar image

[28].

Preferred position for figure 1
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2.1. Weights matrix

The mathematical description of the CT scanner in iterative reconstruction

algorithms is contained in a weights matrix. The element wij of the weights

matrix represents the contribution of each voxel j to the attenuation of beam

i. The way the wij are defined, for each pixel (voxel in 3D), strongly influences

the quality of the reconstructed image obtained after the iterative process.

The number of wij elements required to consider all the contributions of a

voxel in all projections is too large to be stored and managed in a standard up-

to-date computer. Consequently, it is necessary to reduce as much as possible

the number of wij elements to be computed. Acquired data can be considered

as a sequence of measurements taken from each one of the projections of the

scanner, see Fig. 1(a). Therefore, the geometry of the scanner with a polar pixel-

lation has as many symmetries as projections have been taken, see Fig. 1(b).

This symmetry may be exploited to reduce the number of weighting factors

using polar geometry [26], [28]. Due to the polar symmetry, only the elements

related to the first projection have to be calculated while the matrix elements of

the remaining projections can be obtained through rotation of the first projec-

tion. Three methods have been chosen to calculate the weights matrix elements

in 2D nearest neighbour, Joseph, and intersected area. The objective of this

comparison is to study how much detailed matrix weight is required to achieve

an optimal image quality, since the size of the system matrix required to de-

scribe a cone-beam (3D) scanner is 100 to 1000 times larger than the one used

to describe a fan-beam (2D).

2.1.1. 2D weights matrix

Nearest neighbour. It considers that each pixel only contributes to the at-

tenuation measured in the closest beam.

Joseph’s Method (Joseph 1982). It assumes that each pixel contributes to
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the attenuation measured in its two surrounding beams. The weighting

factor decreases linearly with the relative distance of the pixel respect to

each beam [29].

Intersected Area. For this strategy a beam is defined as the area delimited

by the X-ray source and the two lateral limits of each detector element.

The pixels are polar sectors [28] and wij is defined as the intersected area

between pixel j and beam i.

2.1.2. 3D weights matrix

The 3D grid is constructed inserting a third cylindrical coordinate to turn

the 2D polar pixels into a 3D voxel, see Fig. 1(b) and Fig. 2. As it will be

described below, the ”intersected area” procedure described above for 2D has

produced the best results. For that reason, we have extended this procedure to

3D in order to determine the weight element wij . Now, each beam is considered

as a pyramid defined by each pixel in the detector and the focal spot, see Fig. 2.

The contribution of each voxel corresponds to the intersected volume between

the voxel and the beam.

Preferred position for figure 2

The volume is calculated in two steps. First, the area intersected between

the top cover of the voxel and the two lateral sides of the beam is calculated.

Points P1, P2, P3 and P4, see Fig. 3(a), are calculated and therefore, the area

between the points. The geometric center C of the area is also calculated.

Preferred position for figure 3

Figure is not to scale, focal distance between detectors and X-ray source is

diminished in order to enable us to see the intersected area. Second, the length

of the height intersected between the voxel and each beam at the midpoint C, see

Fig. 3(b), is calculated in such a way that the volume intersected by the beam

B1 through the pixel is the area previously calculated multiplied by height h1,
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the volume intersected by the beam B2 is the same area multiplied by the height

h2 and so on for beam B3 and height h3.

3. Materials and methods

3.1. Experimental device

Experimental data were acquired with a small animal micro CT scanner

[30]. It mounts a microfocus X-ray tube with a 35 µm focal spot size. Although

variable voltage settings from 0 to 50 kV were available, the tube voltage was

fixed to 40 kV in all the acquisitions performed for this study. A 0.5 mm

aluminum filter was used to attenuate photons with energies below 20 kV that

would increase the dose in peripheral organs while no contributing to image

quality [19], making it possible for us to simulate preclinical CT conditions as

well. The X–ray detector is a CsI scintillator flat panel with a 2400 × 2400

pixels array of 50 × 50 µm, totalizing a 120 × 120 mm detection area. The

X–ray tube and detector are mounted in a cone-beam configuration so that the

scanner has a FOV of 80 mm in diameter.

A cylindrical phantom of polymethylmethacrylate (PMMA) 50 mm height

and 55 mm in diameter was used, see Fig. 4. Five holes of 8 mm in diameter

were axially drilled at 16 mm off the axis. Three of the holes were filled with

8 mm in diameter inserts of polyethylene (PE), polyoxymethylene (POM) and

polytetrafluoroethylene (PTFE), which model adipose tissue, organs tissue and

soft bone respectively. A PMMA insert was placed in the fourth hole, and was

used to align the phantom in the scanner. The remaining hole was left empty

to model an air region inside the body.

Preferred position for figure 4

Data acquisitions consisted of 400 projections of the described phantom,

although 180 projections were enough to reconstruct the phantom considered in
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this study. However, the increase in the number of projections allowed a wider

range in the number of subsets. 1, 10, 20, 40 and 100 subsets were considered

during the reconstruction in this study. Increasing the number of projections

also improves the accuracy of the reconstructed image reducing the influence of

noise on experimental data into the obtained results.

The dose [31], [32] per projection was 0.8 mGy, producing a total irradiation

of 320 mGy in the case of 400 projections.

The experimental data set used for the comparison of algorithms in 2D was

obtained by selecting the central slice of each projection. This facilitates the

comparison among results obtained in 2D and 3D.

3.2. Image quality indicators

The performance evaluation of the various weights matrices considered in

this work was based on the monitoring of three quality indicators during the

iterative process. These parameters are evaluated in five cylindrical regions of

interest (RoI) defined in the center of each insert. The RoIs were 4.5 mm in

diameter, and 20 mm long in the 3D images. Parameters were monitored after

each image update so that it was possible to analyze the evolution of the val-

ues in each RoI to study the convergence process of the algorithm. Although

customary image reconstructions consist of no more than 50 updates, the itera-

tive process was extended to 500 updates in order to verify the stability of the

new polar arrangement of pixels and convergence of each approach considered.

These were the quality indicators considered:

• CT number (CT ) permits to study how fast each RoI converges on the

final value that will be appreciated in the reconstructed image.

CT =
1

NR

NR∑
i=1

xi, (1)
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where xi are the values of the pixels in the RoI, and NR the number of

pixels.

• Coefficient of variation (CV ) is an estimator of the average difference

among the pixel values in the RoI. The CV is divided by the average CT

number in the RoI in order to get a dimensionless estimator of the noise

in the RoI.

CV =
1

CT

√√√√ 1

NR − 1

NR∑
i=1

(xi − CT )2 100, (2)

• Contrast Recovery Coefficient (CRC) quantifies how precisely the image

reconstruction reproduces the relationships among CT number.

CRC = 100
(CT exp

RoI/CT exp
Back)− 1

(CTRoI/CTBack)− 1
, (3)

where CT exp
RoI and CT exp

Back are the average of the obtained CT values in

the RoI and in the PMMA background, while CTRoI and CTBack are the

CT numbers of the materials in the insert and background obtained from

[33], respectively.

4. Results

Detailed performance comparison among the approaches considered in this

work has been conducted in 2D. Once an exhaustive 2D evaluation was done, the

approach with the best performance was extended to 3D. Since similar behavior,

in terms of convergence rate and stability, has been observed in all RoIs (see

section 3.1), only the results corresponding to PE are shown in this paper.

4.1. Comparison between 2D methods

The comparison among the approaches considered to calculate the weights

matrix elements was done by analyzing the evolution of the CT number (Fig. 5),
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and the CV (Fig. 6), during the iterative process in each RoI. All the methods

were compared using 1, 10, 20 and 100 subsets per iteration.

Preferred position for figure 5

Preferred position for figure 6

When 1 to 20 subsets were considered for the CT number, the iterative

process converged on the final value after roughly 50 updates, with little varia-

tions, see Fig. 5. Differences arose when 100 subsets were considered. Instead

of remaining stable after the initial convergence, an undesired oscillation was

observed when 100 subsets were used. For the intersected area approach, the

oscillation occurred around the value at which the image converges when 1,

10 or 20 subsets were used. In the remaining two approaches the CT number

oscillated around different values leading to an incorrect solution.

Although CT number nearly converged on the same value in all approaches,

except when 100 subsets were utilized, strong differences were observed in the

noise (CV ) obtained in the various approaches considered, see Fig. 6. CV values

above 22% were measured when the nearest neighbour approach was considered.

In the Joseph’s method it fell to 6% and using the intersected area approach,

noise levels displayed in the image further improved to 4%. Slight variations in

CV were observed when considering different number of subsets. Transversal

slices of the reconstructed object are shown in Fig. 7. Strong artifacts were

obtained for the nearest neighbour approach. Artifacts diminished considerably

for Joseph’s method, although slight artifacts were still visible. No evidences of

ring artifacts were observed in Fig. 7 when the weights matrix elements were

calculated using the intersected area approach.

Preferred position for figure 7

Therefore the approach with the best 2D performance, i.e. intersected area

was extended to 3D.
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4.2. Effect of the number of subsets

The number of subsets considered during the iterative process influences

the convergence of the reconstructed image. The convergence of the iterative

process in the intersected area approach when 1, 10, 20, 40 and 100 subsets were

considered is shown in Fig. 8 (2D) and in Fig. 9 (3D). Similar results to those

shown in 2D Fig. 8 were observed in 3D Fig. 9. When less than 20 subsets were

used, CT number in the RoI rapidly converged during the 50 initial updates

and remained stable up to the end of the iterative process. The same effect was

observed in the CRC which tended to 80%.

Preferred position for figure 8

Preferred position for figure 9

As expected, CV increased during the iterative process. However, CV values

below 5% were obtained with 2D images and slightly smaller values below 4%

with 3D reconstructed images.

Taking into account the obtained results in Fig. 8 and Fig. 9, 20 subsets

per iteration were used in all the remaining reconstructions performed for this

study.

4.3. Quantitative comparison between system matrices

In order to make a 3D polar and cartesian matrices comparison by us-

ing the same computer (6 GB RAM) we had to simplify the calculation of

the cartesian matrix. The comparison between both matrices at voxel size of

0.4 × 0.4 × 0.4 mm3 and 0.8 × 0.8 × 0.8 mm3 is shown in Tab. 1.

Preferred position for table 1

Polar matrix generation times are between 5 seconds and 12 seconds, de-

pending only on the voxel sizes. In the case of cartesian matrix, generation

times are between 88 seconds and 630 seconds, depending not only of the voxel

size, but also on the number of projections.
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The polar matrix size did not change significatively with the number of

projection angles. However, the size of the cartesian matrix increased linearly

with the number of projection angles. For the case of 0.8 × 0.8 × 0.8 mm3

voxels, the smallest matrix, similar reconstruction times were measured with

polar and cartesian matrices.

4.4. Comparison of results for FBP and OSEM

3D reconstructed images with FBP and MLEM are shown in Fig. 10. When

comparing reconstructed images with the same voxel size of 0.8 mm, OSEM

exhibits a superior quality. If the voxel size in the FBP reconstruction is reduced

to 0.4 mm of the image quality improves, being comparable to that in obtained

with iterative methods, see Fig. 10(c).

Preferred position for table 2

Preferred position for table 3

Preferred position for figure 10

A quantitative comparison between FBP and iterative method OSEM is

shown in Tab. 2 and Tab. 3. The iterative reconstruction procedure consists

of 5 iterations with the OSEM algorithm and 20 subsets. Results in Tab. 2

reflect an increase of the noise levels in all RoIs when the number of projections

diminishes.

5. Discussion

In the 2D case, the intersected area approach produces reconstructed images

with higher quality when compared with the other two considered approaches

(see Fig. 5 and Fig. 6), being less sensitive to produce ring artifacts (see Fig. 7).

For those reasons, the intersected area approach was chosen for the 3D study.

In spite of using the same projection data in 2D and 3D reconstructions,

slight differences are observed between Fig. 8 and Fig. 9. Results are slightly
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different because 2D results of Fig. 8 were calculated using 2D RoIs and 3D

results of Fig. 9 were calculated using cylindrical volume of interest (VoIs).

A detailed analysis of the effect of the number of subsets used over the

image quality was carried out in 2D and 3D. In all three approaches considered

to calculate the weights matrix, a decrease in image quality was appreciated as

the number of subsets increases. Common experience with OSEM has shown

that the main advantage is a gain factor in processing time roughly equal to the

number of subsets. But there is a limit for this effect. The OSEM algorithm

is more likely to diverge when few projections per subset are considered [34],

[35]. So, there is an optimal number of subsets. In our case about 20 subsets is

an optimal number, it can be observed that results slightly worse are obtained

for 40 subsets and the worst results are obtained for 100 subsets. Therefore, a

satisfactory concurrence between theoretical and image reconstructed values is

observed in Fig. 8 and Fig. 9.

The main advantage of the CT system matrix when using the polar scheme

is its reduced size when compared with the cartesian matrix size (Tab. 1). More-

over, the polar matrix was a great deal smaller and could stay in RAM memory

in a standard computer, thus allowing faster access speed for 0.4× 0.4× 0.4mm3

voxels. Polar matrix makes possible to reconstruct 3D images with a standard

computer (6 GB RAM), while in some cases, swapping do not allow us to re-

construct images with a cartesian matrix.

In order to compare the results obtained with iterative methods using polar

matrix approach against FBP reconstructed images, the same set of CT data

has been reconstructed with both methods.

The Feldkamp [1] algorithm has been implemented. Experimental measure-

ments were binned, so that the projection bin and the reconstructed image voxel

sizes were similar. The same binning was done for OSEM and FBP in order to
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compare results.

Although high resolution images with pixel sizes as small as 80 µm can be

achieved with the FBP, voxel sizes of 0.8 mm and 0.4 mm were considered in

order to compare the reconstructed images.

The iterative method provides images with less noise than FBP in all RoIs,

except that corresponding to Teflon (soft bone-like), see Tab. 2. In all soft tis-

sues RoIs (fat/adipose tissue-like, soft tissue-like, and organs-like), noise values

provided by OSEM were comparable to those provided by FBP, but the lat-

ter required an increase in the number of projections two to four times higher.

Therefore, the iterative method allows a reduction of roughly 50% in the number

of projections (and consequently the dose) needed to provide an image quality

comparable to FBP.

We have found that the variation of CRC with the number of projections

is negligible, about ±1%, in both FBP and OSEM algorithms. However, de-

pending on the RoI under analysis, CRC values obtained with the OSEM in

the soft bone and fat inserts are 95 % of those measured with the FBP. The

slower convergence speed of the OSEM in low-count regions [36], [37] leads to

larger differences in the CRC values measured in the air region. Although be-

ing smaller than those measured with the FBP, CRC values obtained with the

OSEM are above 80% in all cases.

Results in Fig. 10 confirm that useful images for medical applications in

small animals using voxel sizes as big as 0.8 mm are possible when iterative

methods are considered. FBP reconstruction requires voxel sizes smaller than

0.4 mm to provide useful images, therefore increasing their sizes.

Preferred position for figure 11

Figure 11 shows the same phantom rendered to an opaque volume Fig. 11(a)

and semitransparent volume Fig. 11(b). These figures were obtained by render-
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ing the entire volume of Fig. 10(c).

6. Conclusions

In this work we have developed a 3D polar matrix for OSEM iterative image

reconstruction method (or MLEM) which allows us to study 3D measurements

in a standard computer (6 GB RAM) without losing quality or stability in the

reconstructed images. Three different polar 2D matrices have been compared,

the one offering us the better results has been extended to 3D.

It is worth pointing out that the proposed polar discretization reduced the

computer storage requirements of the system matrix by a factor that equals the

number of projections used in the tomographic system. As this number is usually

close to 200 projections, this implies a huge reduction in storage requirements.

As the computational complexity was significantly reduced, reconstructions of

three dimensional (3D) CT images were permitted without losing in quality.

A major health concern today is related to the reduction of dose to the

patient which means limiting either the X-ray source intensity or the number

of projections [38], [39]. Iterative methods allow a high reductions dose [6], [9],

due to the reduction in the number of projections necessary to reconstruct the

image, but iterative methods have the disadvantage of the computational cost

and the size of the system matrix used for the reconstruction. The proposed

polar matrix allows us the use of the MLEM and/or OSEM algorithms with

more detailed matrix (decreasing in the voxel size) with the same computer

resources.

It should be pointed out that the proposed polar discretization can be easily

implemented in large human CT, therefore allowing the use of iterative methods,

such as MLEM and OSEM, as the time needed to reconstruct diagnostic images

is compatible with time requirements of the clinical daily routine.
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Table 1: Comparison between 3D cartesian matrix and 3D polar matrix.
cartesian matrix polar matrix

No voxels 96× 96× 88 192× 192× 175 102× 102× 88 204× 204× 175
Voxel size (mm3) 0.8× 0.8× 0.8 0.4× 0.4× 0.4 0.8× 0.8× 0.8 0.4× 0.4× 0.4

No projections 100 200 100 200 100 200 100 200
Size 1.2GB 2.5GB 3.9GB 8.5GB 60MB 60MB 224MB 224MB

Matrix generation 88s 190 s 271s 630s 5 s 5 s 12s 12s
Iteration time1 1.4s 3.5s 8.5s - 2 1.8s 3.9s 7.1s 14.9s

(1) (40 for MLEM and 5 for OSEM) iterations are used to reconstruct images of this paper.

(2) Iteration time was higher than 30 minutes due to swapping.

Table 2: Comparison of the dependence with the number of projections of the CV (in %)
measured in each RoI (see Fig. 4). 20 subsets and 5 iterations were used for OSEM recon-
tructions.

Num Projections
400 200 100 80 50

Air
OSEM 6.2 6.4 7 6 11.3
FBP 21 28 38 46 58

Fat/adipose tissue-like
OSEM 1.5 1.8 2.6 3 4.3
FBP 2.4 3.2 4.7 5.8 7.6

Soft tissue-like
OSEM 1.4 1.8 2.5 2.7 3.4
FBP 1.9 2.6 3.6 4.2 5.5

Organs-like
OSEM 1.2 1.6 2.3 2.5 3.2
FBP 1.5 2 3 3.6 4.9

Soft bone-like
OSEM 1.5 1.8 2.3 2.5 3.1
FBP 1.2 1.4 1.9 2 2.6

Table 3: Comparison of the CRC (in %) measured in each RoI (see Fig. 4). 20 subsets and
5 iterations were used for OSEM reconstructions.

OSEM FBP
Air 83 91

Fat/adipose tissue-like 86 92
Soft bone-like 82 85
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Figure 1: (a) Symmetries for a CT scanner with a polar pixellation. (b) Diagram of pixel
weight calculation.

Figure 2: 3D Voxel scanned by three beams. Figure is not to scale.

(a) Top view (b) Lateral view

Figure 3: Voxel/beam intersection. Figures are not to scale.
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Figure 4: Phantom with material inserts. The numbers on the image correspond to: 1 Air,
2 PFTE, 3 PMMA, 4 PE and 5 POM.
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Figure 5: CT number (in Hounsfield Units, HU) of reconstructed images for Polyethylene
(PE) RoI as a function of the number of updates.
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Figure 6: CV of reconstructed images for Polyethylene (PE) RoI as a function of the number
of updates.
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(a) Nearest (b) Joseph (c) Area

Figure 7: 2D reconstructed images.
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Figure 8: Results obtained for 2D sector matrix as a function of update number for 1, 10, 20,
40 and 100 subsets for Polyethylene (PE) RoI.
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Figure 9: Results obtained for 3D sector matrix for Polyethylene (PE) RoI as a function of
update number for 1, 10, 20, 40 and 100 subsets .
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(a) FBP 0.8 mm (b) FBP 0.4 mm (c) Iterative 0.8 mm

Figure 10: Comparison of transversal 3D images reconstructed with OSEM and FBP with
several voxel sizes.

(a) (b)

Figure 11: Phantom reconstructed with OSEM polar matrix rendered to (a) opaque volume
and (b) semitransparent volume.
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