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a b s t r a c t

Background: Dendrites of cortical neurons are widely spread across several layers of the cortex. Recently
developed two-photon microscopy systems are capable of visualizing the morphology of neurons within
deeper layers of the brain and generate large amounts of volumetric imaging data from living tissue.
Method: For visual exploration of the three-dimensional (3D) structure of dendrites and the connectivity
among neurons in the brain, we propose a visualization software and interface for 3D images based on a
new transfer function design using volume rendered feature spaces. This software enables the
visualization of multidimensional descriptors of shape and texture extracted from imaging data to
characterize tissue. It also allows the efficient analysis and visualization of large data sets.
Results: We apply and demonstrate the software to two-photon microscopy images of a living mouse
brain. By applying the developed visualization software and algorithms to two-photon microscope
images of the mouse brain, we identified a set of feature values that distinguish characteristic structures
such as soma, dendrites and apical dendrites in mouse brain. Also, the visualization interface was
compared to conventional 1D/2D transfer function system.
Conclusions: We have developed a visualization tool and interface that can represent 3D feature values as
textures and shapes. This visualization system allows the analysis and characterization of the higher-
dimensional feature values of living tissues at the micron level and will contribute to new discoveries in
basic biology and clinical medicine.

& 2014 Elsevier Ltd. All rights reserved.

1. Background

Given the complex three-dimensional (3D) architecture of the
brain, it is essential to explore the morphology and activity of
neurons in all layers of the cortex. However, this can often be
challenging because the dendrites of cortical neurons are widely
spread across several layers, including deeper layers that are
difficult to observe by confocal or light microscopy. The length of
the dendrites can vary from 20 μm to 1 mm, and the width and
branching of the dendrites depends on the distance from the
soma. This suggests that spatial differences in brain morphology
relate to the functionality of the neuron including characteristics
of the dendrite and synaptic efficiency [1,2].

To understand the 3D structure of dendrites and the connectivity
among neurons in the brain, in vivo imaging and visualization have

significant roles. Recently, the improved performance of microscopy
systems enables the acquisition of large amounts of slice images
from living tissues. In comparison with confocal or other optical
microscopy systems, two-photon microscopy has an advantage in
visualizing the morphology of neurons within deeper layers of
living mouse brain [3–6]. Since the structures of tissues are stored
as volume data, volume visualization techniques [7,8] are focused
on the interactive exploration of the 3D images. When visualizing
unknown features in the deeper layers of the brain, prior knowl-
edge of the morphology of tissues [9,10] cannot be used. Further-
more, microscopic images are affected by optical characteristics
such as scattering within tissues and the presence of image noise
within deeper regions of the images. Because large amounts of
volume data are obtained through two-photon microscopy, there is
a demand for efficient visualization of local internal structures and
characteristic intensity distributions.

Volume rendering has been widely used for visualizing volume
data, where the rendered image is generated from the data by simula-
ting optical properties such as radiation and absorption [11,12]. In
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comparison with surface rendering, the volume rendering technique
generates a projection by converting the scalar values of sampling
points in 3D space into color and opacity (RGBA values) based on
transfer functions and integrating them along the viewing direction.
The user can interactively explore the micro-level structures included
in the volume data while changing the camera parameter, modifying
the transfer functions [13–15] or generating the cross-section of the
3D images. Unlike the pattern recognition approach [16–18], visualiza-
tion does not involve algorithm-based detection for specific objects. In
other words, the transformations when visualizing the 3D image as a
projection on the screen are only defined, and modifications of the
visualization parameters and final judgments about the structures
observed are left to the user.

The final quality of projections obtained with volume rendering
significantly depends on the definition of the transfer functions.
For this reason, the design of transfer functions is regarded as an
important area of research for volume visualization [15,19,20]. So
far, one-dimensional (1D) transfer functions based on the histo-
gram of voxel intensity or its gradient [11,13] have been commonly
used. However, with 1D transfer functions, it is not possible to
achieve a visualization that distinguishes structures with the same
intensity values and gradient information. By defining transfer
functions based on feature values with higher dimensionality, it is
possible to visualize changes in texture and morphological char-
acteristics included in the images [19–22], but the high degree of
freedom in multidimensional transfer functions makes it difficult
for users to obtain the visualization result through manual para-
meter settings. For these issues, much effort has been made in the
past years to ease the transfer function design. Wu et al. [23]
proposed an interactive framework that allows editing and com-
bining of images rendered by different transfer functions. Semi-
automatic/automatic transfer function generation [24,25] has been
also studied. Läthén et al. [25] presented automatic tuning
techniques based on local intensity shift in vessel visualization
domain [26]. These approaches can assist the user's visualization
process based on the feature descriptors specified for the target
structures. However, in the case of visual exploration, there are
many situations for which feature descriptors have not been
formulated [27]. Some researchers have focused on this issue
and investigated methods for exploring high-dimensional feature
space. PCA, ICA and clustering techniques are commonly used for
dimensionality reduction of the feature space [28]. Julia et al. [27]
presented a high-dimensional clustering approach to support
classification tasks for knowledge-assisted visualization [29]. On
the other hand, our focus is interactive visualization of brain
neural structures in the biological domain. The deep layers of
brain tissue contain a variety of neural structures with complex
shapes such as soma, dendrites and white matter. Unlike in clinical
CT/MRI images, numerous minute or thin structures are closely
observed with optical scattering noise in microscopic images,

which makes it challenging for volume visualization. As far as
we surveyed, there are no reports on interactive feature explora-
tion software and interface for visualizing multi-layer neural
structures in microscopic images.

The main goal of our research was to investigate multidimen-
sional features for exploring brain neural structures based on
volume visualization. To do this, we designed a practical software
system and interface for visual exploration of feature descriptors.
It offers a means for intuitive observation of multidimensional
features on shape and texture included in the volume data. This
framework generates a feature space, which defines the 3D
distribution of feature values contributing to structural classifica-
tion within the image. Furthermore, it supports exploration for
internal structures and setting of arbitrary visualization para-
meters through a user interface that enables interactive explora-
tion and selection within the feature space generated. A final
rendering is then generated based on the multidimensional
transfer functions that define the color and opacity of voxels
corresponding to the specified region of interest (ROI). We applied
the proposed approach to two-photon microscopy images
obtained from live mice. Using the developed system, we have
elucidated a set of feature values that perform classified visualiza-
tion of soma, dendrites and hippocampus. In addition, in compar-
ison with conventional approaches, the proposed feature-based
visualization successfully visualized complex apical dendrite
structures.

2. Feature-based volume visualization

The purpose of the proposed framework is to optimize the
efficient visualization of features such as minute vascular and neural
structures or weak tonal changes where boundaries are indistinct in
3D images (scalar volume data) obtained by two-photon micro-
scopy. Fig. 1(a) shows the proposed data structure and algorithm
flow, taking the volume data to be visualized as the starting point.
The sequence of algorithms consists of the following three steps:
(1) calculate the localized feature values and generate a 3D feature
space representing the feature value distribution, (2) set the ROI in
the visualized feature value distribution and its color and opacity,
and (3) volume visualization based on the multidimensional transfer
functions.

In the first step, we evaluated volume data locally based on
various descriptors using filter operations and obtained feature
values Ck (k¼1, …, n) with equivalent size to that of the volume
data. In this research, we focused on a number of feature values
that quantify both texture and shape, generating an n-dimensional
feature space H with mapped statistical information. This process
is applied once to the volume data as preprocessing.

Fig. 1. Feature-based volume visualization framework. (a) Volume visualization algorithm using the multidimensional transfer function and (b) three-dimensional feature
space for visualization interface.
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Next, by selecting three axes arbitrarily from n axes in the
feature space H, the user can visualize the 3D feature values
obtained and observe them as a whole. Here, the feature value
distribution functions not only as a global map for volume
searches but also as an interface for setting visualization para-
meters. The second step involves managing user interaction in the
feature space and helping the user to select regions in the feature
value distribution of interest and to set visualization parameters
for each region.

Finally, the third step involves generating visualization results
based on multidimensional transfer function η reflecting the
visualization parameters set. The majority of these processes are
executed in parallel at high speed by the graphical processing unit
(GPU), so the user can adjust the transfer function η interactively
and obtain new visualization results.

By repeating these three steps, the user can interactively
explore the characteristic structures and tonal changes included
in the volume data, obtaining visual feedback from both the
feature value map and the results of volume visualization.

2.1. Feature values

This section explains the method of calculating the feature values
of textures and shapes and how to generate the feature space. First, we
convert the intensity pattern around each voxel and the probability
distribution of texture feature values into numerical values. To enable
visualization using the variation in the texture as an index of the
feature values obtained in relation to the local region of the image, we
calculated 10 feature values: local average, standard deviation, kurto-
sis, skewness, slice correlation in each axial x, y, and z-directions and
three eigenvalues of the Hessian matrix. To perform visualization that
distinguishes neural structures, we investigated a significant set of
features configured by biological scientists.

In microscopic images, soma have a spherical structure. Den-
drites have a linear shape, are often aligned in the same direction
(the z-direction in this paper), and have complex minute fringe
structures called spines. In deeper layers of the cortex, we can
observe white matter, which can be noisy because of scattering
effects. To achieve simultaneous visualization of several distinct
structures, we used the local average of intensity μ and standard
deviation σ, the slice correlation rz in the z axis, which is the long
axis of the dendrites, and labeled the image with the background
region removed from the original image. The average intensity μ
and standard deviation σ were also used by Haidacher et al. [22],
who demonstrated that this method can enable visualization that
is resistant to noise.

Slice correlation is used for classifying lung tumors and
pulmonary vasculature in the field of medical image processing,
and it has been confirmed to be effective [18]. Because it is mainly
used for identifying and observing minute structures that are close
to the limit of resolution with microscopic images, this technique
is useful for our analysis. The diameter of the visualized soma and
dendrites are extremely small, in the range of one or two voxels in
some places, and they can appear non-contiguous in the image.
Unlike the eigenvalue of the Hessian [15,17] that is also considered
effective for classifying shapes, slice correlation does not require
differential operations. This enables visualization of locations with
many closely grouped minute structures in microscopic images,
with less influence from surrounding structures. The coefficient of
correlation is found with Eqs. (1)–(4).

rz ¼ σf g=σfσg ; ð1Þ

σf g ¼
1

T2 ∑
T

x ¼ 0
∑
T

y ¼ 0
ðf ðx; yÞ�mf Þðgðx; yÞ�mgÞ; ð2Þ
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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∑
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s
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

∑
T

x ¼ 0
∑
T

y ¼ 0
ðgðx; yÞ�mgÞ2

s
; ð4Þ

where f ðx; yÞ and gðx; yÞ are the intensity of pixels at position ðx; yÞ
in the z and zþk slice images in the z axial direction, respectively,
and mf ;mg is the average pixel value in the filter region T � T
centered on position ðx; yÞ. The calculated coefficient of correlation
is defined as the evaluation value for quantifying the local shape
through normalization.

2.2. Feature space

Next, a feature value distribution is expressed by plotting the
three evaluation values obtained for each voxel unit in 3D space.
When the feature values are defined as C1;C2;C3, the frequency of
appearance of the ðC1;C2;C3Þ set obtained by scanning the whole
volume is registered in its 3D position corresponding to
X¼ ðC1;C2;C3Þ. In other words, the feature space is a 3D histogram
when the intensity volume is evaluated with the three statistics
above. Therefore, even in cases where classification is not possible
with only intensity values, it is possible to achieve visualization
with each voxel classified statistically based on variations in
localized feature values. In these cases, the local average for voxel
μ, standard deviation σ, and slice correlation r were used as feature
values, and because there are three dimensions, the feature space H
is discretized as 3D volume data comprising 2563 voxels. Each voxel
HðXÞ comprising H is quantized by an 8-bit scalar value. The volume
data obtained with this procedure are called feature volumes.

Fig. 1(b) shows the feature space H of the lung field in the CT
data obtained from the chest. In this research, by volume visua-
lization of the feature space and by defining a color map for
frequency of feature values that appear, it is possible to observe
the total 3D distribution and frequency of the feature values in the
ROI. For example, if several tissues with similar feature values are
present in the ROI and if the evaluation values are clearly different
from other regions, then feature value distribution clusters are
formed corresponding to each tissue in the feature space. If the
boundaries of this group of clusters can be defined and spatially
zoned, clear structural classification is possible, but in many cases,
it is difficult to establish clear boundaries in the actual images,
even when using several evaluation axes.

In addition to mechanically classifying these feature spaces, we
also aimed to provide the user with a global map for observing the
total feature value distributions in the image. This would allow the
user to explore using the space itself as an interface and explore
structures of interest interactively. Feature value distributions with
characteristic structures present in the body overlap and are
spatially offset from the distributions of the majority of normal
tissue. Because of the tendency of feature values to be distributed
around the margins of the main cluster, this method provides a
framework for achieving visualization according to the user's
intention and exploration with a high degree of freedom.

2.3. Multidimensional transfer function

This section describes a visualization method using the feature
volume generated by defining the color and opacity of characteristic
structures and tone distributions in the volume data. Visualization is
achieved by converting the RGBA values from X¼ ðμ;σ; rÞ, the 3D
statistic obtained from the voxel units. In this research, we introduce
a multidimensional transfer function η that defines the conversion
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from each feature space point HðXÞ to RGBA space points.

η : HðXÞ-RGBA ð5Þ
The distribution of each point HðXÞ in the feature space is visualized
with volume rendering. Fig. 2(a) is an image of the multidimen-
sional transfer function η settings using the visualized feature space.
In this example, two regions, D1 and D2, are specified in the feature
space, and each region is assigned a color and opacity. Fig. 2
(b) shows the results when the color and opacity of each region
are applied to each point in the feature space. In this way, the RGBA
value assigned to point HðXÞ is determined. The three-dimensional
distribution of HðXÞ with the assigned RGBA values directly
expresses the transfer function η.

In the rendering process, the normal 1D transfer function
where intensity volume I is converted into an RGBA value is used
concurrently, and that setting is used preferentially in relation to
the voxels for which the RGBA value is defined in (4). This
determination and conversion is performed by the GPU in the
rendering process. Specifically, each volume data containing the
evaluation values μ;σ; r is sent to the memory in the GPU as a 3D
texture. In the rendering process, when deciding the value that
each voxel contributes in generating the final image, the color and
opacity given to a single point HðXÞ in the feature space corre-
sponding to the relevant voxel is used.

3. Interface for transfer function design

The transfer function η is expressed by color and opacity values
assigned to the three-dimensional distribution of feature values in
the volumetric feature space. In order to configure η efficiently, it
is desirable for the user to be able to specify regions intuitively and
simply. In our system, we provided an interface with two options
for specifying ROIs in the feature space using a generic two-
dimensional pointing device such as a mouse or a touchscreen.

3.1. Drawing-based (or pointing-based)

When a single point on the rendered feature space is specified
by a pointing operation (e.g. a mouse click), a set of voxels X with
positive values is set as the selected region D in a spherical or a
cubic region with a radius l centered on a three-dimensional
position PAR3. This framework is simply described by

fXADj jX�Pjr l4HðXÞ40g ð6Þ
In order to determine P in 2D operation, when the user

indicates a pixel on the rendered image, our framework estimates
the corresponding voxel in the volumetric space by accumulating

voxel values (i.e. frequency values in the 3D histogram) at sampled
feature points in the eye direction. This process is similar to the ray
casting protocol [11] commonly used in the volume rendering
scheme. Once the accumulated values exceed a threshold, we
simply assume that the voxel at the current feature point
X¼ ðμ;σ; rÞ has been selected by the user. The radius l can be set
with the mouse wheel. By detecting the position in each rendering
as above, the continuous regions of the adjacent isosurface of the
feature value distribution can be acquired by changing the point-
ing position by dragging with the mouse.

3.2. Bounding box based

To select a wide area that includes the inside of the feature
value distribution, a cuboid bounding box is used. Each side of the
cuboid is parallel with the axes of the feature space, and the center
and the length of each side can be controlled with six parameters.
The center of the bounding box PAR3 can also be specified by
direct pointing on the rendered image as described in the
pointing-based interface.

Fig. 3 shows the appearance of the user interface. The interface
consists of three main areas, with the feature volume displayed at
the bottom right and the rendering results with color and opacity
assigned at the left. At the bottom right are the controls for setting
the parameters used for specifying the region of the feature space.
After specifying a ROI in the feature space with (1) or (2) above,
the user sets the RGBA values specified in the region with a color
palette. The user can check the effect of the settings in the
visualization results and if necessary, perform other operations
such as adjusting the region and the RGBA values, or adding a
region.

4. Results

We implemented the sequence of algorithms using Cþþ ,
OpenGL, GLSL (Open GL Shader Language), and NVIDIA CUDA
(Compute Unified Device Architecture) as a software package
called FeatureVis. The software, the user guide and the tutorial
movies are available at our web site. We applied the developed
software to two-photon microscopic images and verified the
visualization of the characteristic structures and intensity distri-
bution included in the images. For the 3D microscopic image and
visualization of its feature volume, we used the texture-based
rendering scheme [12] to achieve high-speed volume rendering
using the texture interpolation and synthesis functions of the GPU.
For validation and testing, we used a PC with the following
specifications: OS: Windows 7 Ultimate (64 bit), CPU: Intel Core

Fig. 2. Multidimensional transfer function interface. (a) Configuration of multidimensional transfer function using feature space and (b) user-defined feature volume with
color and opacity.
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i7 870 (2.93 GHz), memory: 16.0 GB, and GPU: NVIDIA GeForce
580GTX.

4.1. Generating a feature space

For verification, we used three volume data sets taken from
live, genetically modified mice, using a Nikon two-photon micro-
scope (A1MPþ). The neurons in the second and fifth layers of the
cortex were labeled by a fluorescent protein (GFP, green fluores-
cent protein). The study was carried out in accordance with the
recommendations in the Guidelines for the Care and Use of
Laboratory Animals of the Animal Research Committee. The
protocol was approved by the Committee on the Ethics of Animal
Experiments.

These data capture a tomogram with a depth close to 1.4 mm
from the surface layer of the cortex [4], which, to the best of our
knowledge, is the deepest visualized layer that has been obtained.
This is important because the visualization of these deep layers
have applications in the biological and medical fields. Together,

these data verify that we successfully visualized fluorescently-
labeled neurons from the second and fifth cortical layers from a
live mouse. The visualization results for the whole volume using
the earlier 1D transfer function is shown in the left panel of Fig. 3.
The volume data have a size of 512�512�325 voxels, and the
range of capture is 512�512�1300 μm3. For reference, we
sampled the brain region from clinical MR imaging data
(512�512�512 voxels) of the head and built feature volumes.
We used a 7�7�7 filter size for this test, bearing in mind the
structures to be explored in the volume data, and k¼3 for
calculating the slice correlation.

The feature volumes generated are shown in Fig. 4. It shows
that the brighter the tone of each voxel, the higher the frequency
of appearance of the feature value. In Fig. 4(a) and (b), the feature
volumes generated from the two-photon microscopic image are
shown, where the feature values are distributed broadly in 3D. All
axes contribute to the evaluation of the local features in the image.
Fig. 4(c) shows the feature volume in the brain region of the MR
image for reference. As the brain tissue has homogeneous pixel

Fig. 3. Appearance of transfer function setting interface. The user defines ROIs with direct selection of feature points distributed in the feature space and sets the RGBA
values with a color palette (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).

Fig. 4. Three-dimensional feature space examples (a) and (b) two-photon microscopic images (in vivo mouse brain), and (c) MRI brain tissues.
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values, its feature volume has a biased distribution. A feature of
the proposed method is that the feature volume enables the user
to completely observe the trend in distribution of characteristics in
the image, while defining the color and opacity of this distribution
supports the discovery of characteristic structures in the image.

4.2. Comparison with previous 1D/2D transfer functions

To examine the effectiveness of interactive searching using the
proposed feature volume and visualization interface, we used the
microscopic image in Fig. 5(a) to set transfer functions. First, we
set the selection range of the μ axial direction for the bounding
box from 0.16 to 1.00 and the selection range of the r axial
direction from 0.05 to 1.00, and assigned red to the relevant
region. The resulting characteristic volume and visualization
results can be seen in Fig. 5(a). As with conventional two-
dimensional (2D) transfer functions, the soma and their

surrounding structures are visualized simultaneously. With the μ
axis and r axial direction selection range fixed, Fig. 5(b) shows the
image when the σ axial direction selection range is changed from
0.16 to 1.00, and (c) shows it changed from 0.36 to 1.00. The
structure of interest is largely restricted by μ and r, and visualiza-
tion is achieved with the soma distinguished by σ. The same result
could not be obtained with only μ and r, but a 3D transfer function
with σ added enabled visualization of the soma.

Next, Fig. 6(a) shows the result with the selection range of the
μ axial direction set from 0.0 to 0.10, and the selection range of the
σ axial direction set from 0.05 to 1.00. Fig. 6(b) and (c) shows
the state in (a) with the selection range for the μ axial direction
fixed, and the selection range of both the σ and r axial directions
changed. By adjusting the selection range while checking the visual-
ization results, we successfully visualized the apical dendrites,
distinguished from their periphery. Throughout the image, σ and r
were effective for evaluating fluorescence in microstructures.

Fig. 5. Interactive volume exploration of soma using 3D transfer function (a) ðμ; rÞ is modified, (b) and (c) σ is modified by fixing ðμ; rÞ.

Fig. 6. Interactive volume exploration of dendrite structures (a) ðμ; σÞ is modified, (b) and (c) ðσ; rÞis modified by fixing u.
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Fig. 7 shows another comparison result between intensity-
based visualization and the proposed feature-based visualization.
As shown in Fig. 7(b), we succeeded in visualizing the apical
dendrite structures by making fine adjustments to the selection
range in the σ and r axial directions. This indicates that searching
with a focus on the marginal regions of feature value distributions
leads to the discovery of biologically significant structures. It is
difficult to obtain visualization parameters that meet these condi-
tions through trial and error in images where prior knowledge
cannot be used. Therefore, this is an example of a situation that
allows the transfer functions to be changed interactively while
observing the feature value distribution contributing to the dis-
covery of characteristic structures.

4.3. Visualization with neural structures

Fig. 8 shows visualization examples of multiple structures
based on 3D transfer function settings configured by biological
scientists. We could distinguish the dendrites, apical dendrites,
soma, and white matter in the cortex, as well as hippocampal
regions. We also could simultaneously visualize multiple struc-
tures by maintaining the changes to color and opacity defined for
each feature value ðμ;σ; rÞ in the feature volume. While analyzing
the transfer functions, it is possible to change additional settings
and adjust the characteristics of interest. Fig. 8 shows the results of
making all feature values of everything other than the soma and
hippocampus transparent, and making the feature values of the

Fig. 7. Comparison of visualization results on apical dendrite structures. (a) Intensity-based and (b) our feature-based visualization results.

Fig. 8. Visualization of neural structures of the cortex. Two examples of visualization are shown in (a) and (b). The intensity-based visualization is on the left and the feature-
based visualization is on the right in each panel.
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dendrites opaque. This is achieved when the mouse is clicked on a
point on the feature volume, the surface point detected by ray
casting [11] is set as the start position, and a contiguous region
related to the color and opacity in the characteristic volume is
obtained.

We have confirmed that the visualization results reflecting
adjustments of the transfer function are obtained at 18–21 frames
per second, and natural, interactive operations are possible while
re-rendering the scene. In the pre-computation process, the soft-
ware generates the feature volumes from the initial intensity
volume. A total of ten feature values are calculated in our case,
and it takes 25–30 s through per-voxel parallel processing of
CUDA. This is reasonable computation time for visual exploration
of three-dimensional microscopic images.

5. Discussion

In this study, a practical system and interface for defining the
conversion of each feature value to colors and opacities has been
introduced and applied to volume visualization. Applying this
approach to two-photon microscope images of the mouse brain
enabled visualization that distinguished characteristic structures
such as soma, dendrites and apical dendrites, which are difficult to
visualize with earlier 1D or 2D transfer functions. Additionally, it
appears that through characteristic volumes, the user can evaluate
the total distribution of feature values in the image. In this way, by
searching the marginal regions, the user can discover parameters
that enable visualization of characteristic structures.

The limitation of the developed system and interface is that the
number of features is obviously limited to three in feature space
visualization. In the experiments, we have discussed with biological
researchers and have chosen three feature values that can generate
visually appropriate visualization results. Although interactive visua-
lization is possible after selecting feature values, this also implies
that trial-and-error process is needed to explore high-dimensional
feature space. To make this process more systematic, incorporating
PCA, ICA and other clustering techniques [29] into the developed
software would be interesting. Actually, we have confirmed that the
eigenvalues of Hessian [17,18] and the indices for the size of the
structures [19] were also effective to visualize overlapping neural
structures. Quantitative analysis of feature values of microscopic
images and searches that combine the visualization of a wider range
of structures with effective feature values are areas of future work.

6. Conclusions

This paper proposed a visualization software and interface for 3D
microscopic images using the generation of a 3D feature space and a
color and opacity interface using volume rendered feature spaces. It
allows for the total observation of multiple indices of shape and
texture included in the volume data. It also provides an environment
in which the user can achieve the desired visualization while
interactively and intuitively setting the parameters for multidimen-
sional transfer functions. However, with the feature values used in
this study, it was not possible to clearly visualize the microstructures
in the white matter or the complex end structures of the apical
dendrites. By optimizing visualization algorithms and interfaces that
can handle feature values of three dimensions or more, we aim to
establish visualization systems that contribute to new discoveries in
biology, medicine and molecular modeling through the analysis of
feature values of tissue at the micron level.
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