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Abstract

X-ray computed tomography (CT) and positron emission tomography (PET) serve as the standard 

imaging modalities for lung-cancer management. CT gives anatomical detail on diagnostic regions 

of interest (ROIs), while PET gives highly specific functional information. During the lung-cancer 

management process, a patient receives a co-registered whole-body PET/CT scan pair and a 

dedicated high-resolution chest CT scan. With these data, multimodal PET/CT ROI information 

can be gleaned to facilitate disease management. Effective image segmentation of the thoracic 

cavity, however, is needed to focus attention on the central chest. We present an automatic method 

for thoracic cavity segmentation from 3D CT scans. We then demonstrate how the method 

facilitates 3D ROI localization and visualization in patient multimodal imaging studies. Our 

segmentation method draws upon digital topological and morphological operations, active-contour 

analysis, and key organ landmarks. Using a large patient database, the method showed high 

agreement to ground-truth regions, with a mean coverage = 99.2% and leakage = 0.52%. 

Furthermore, it enabled extremely fast computation. For PET/CT lesion analysis, the segmentation 

method reduced ROI search space by 97.7% for a whole-body scan, or nearly 3 times greater than 

that achieved by a lung mask. Despite this reduction, we achieved 100% true-positive ROI 

detection, while also reducing the false-positive (FP) detection rate by >5 times over that achieved 

with a lung mask. Finally, the method greatly improved PET/CT visualization by eliminating false 

PET-avid obscurations arising from the heart, bones, and liver. In particular, PET MIP views and 

fused PET/CT renderings depicted unprecedented clarity of the lesions and neighboring 

anatomical structures truly relevant to lung-cancer assessment.
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Index Terms
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I. Introduction

X-ray computed tomography (CT) and positron emission tomography (PET) serve as the de 

facto standard imaging modalities for lung-cancer management [1]–[3]. CT gives anatomical 

detail on diagnostic regions of interest (ROIs), while PET gives highly specific functional 

information. During the lung-cancer detection and staging process, a patient generally 

receives a co-registered whole-body PET/CT scan pair, collected as the patient breathes 

freely, and a dedicated high-resolution chest CT scan, collected during a breath hold. With 

this scan combination, multimodal PET/CT ROI information can be gleaned from the co-

registered PET/CT scan pair, while the dedicated chest CT scan enables precise planning of 

follow-on chest procedures such as bronchoscopy and radiation therapy [3]–[5].

For all of these tasks, effective image segmentation of the thoracic cavity is important to 

help focus attention on the central-chest region. The thoracic cavity, also referred to as the 

innerthoracic region or thorax, encompasses the lungs and mediastinum, where the 

mediastinum contains the heart, major vessels, central-chest lymph nodes, and esophagus, 

among other structures [6]. We present an automatic method for thoracic cavity extraction 

from 3D CT scans. We then demonstrate how the method facilitates 3D ROI localization and 

visualization in the PET/CT studies of lung-cancer patients.

In current clinical practice, the physician employs 2D section scrolling to interactively 

search for suspect cancer ROIs, be they lymph nodes or nodules. Unfortunately, a typical 3D 

PET or CT scan contains hundreds of scan sections, many of which do not pertain to the 

thoracic cavity. Because of this “data explosion,” interactive search proves to be highly 

tedious [7].

While segmentation of the lungs and other organs in CT has received much attention [8]–

[13], extraction of the mediastinum and complete thoracic cavity have proved to be more 

difficult [14]–[18]. Zhang et al. proposed a method for mediastinal segmentation, considered 

for the analysis of pulmonary emboli [14]. They pointed out, however, that the mediastinum 

has no obvious boundary. In addition, their method did not consider the lower diaphragmatic 

surface or the complete thoracic cavity. Chittajallu et al. were the first to propose a specific 

method for segmenting the thoracic cavity [15], [16]. Their method, nominally directed 

toward the diagnosis of cardiovascular disease, proposed a graph-based global energy-

minimization method for defining the thoracic cavity. Unfortunately, the method only 

extracts the chest wall and does not consider the actual top and bottom of the cavity. In 

addition, the method is computationally intensive, not suitable for high-resolution 3D image 

data, and only tested with non-contrast CT scans. Finally, Cheirsilp et al. proposed a 

preliminary thoracic-cavity definition method that did not satisfactorily define the 

diaphragmatic interface, upper mediastinum, or heart [18].
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Bae et al. presented the most complete effort to date for segmenting the thoracic cavity [17]. 

They proposed a semi-automatic method, whereby the airways, lungs, and ribs are first 

segmented. In the second step, the segmented organs contribute toward defining five 

surfaces delimiting the thoracic cavity. Next, heart segmentation, assisted by two manually 

selected seed points, is performed, and the previous results are then combined to yield the 

final segmented region. The method was successfully tested on a series of CT scans from 

patients suffering from chronic obstructive pulmonary disorder (COPD). Limits of their 

method include the need for manual interaction, the imprecise interpolated definition of the 

superior mediastinal surface, and the use of subsampled data during surface definition. In 

addition, their tests only considered non-contrast CT scans, all reconstructed with the same 

parameters.

Depending upon the clinical application, it is clear from the discussion above that significant 

latitude exists in the definition of the thoracic cavity. We consider the thoracic cavity from 

the standpoint of facilitating lung-cancer detection and staging. In particular, our interest lies 

in limiting the search space for detecting central-chest lymph nodes and nodules. To this 

end, physicians now universally draw upon the Mountain-Dressler TNM (tumor-node-

metastasis) system guidelines to help localize relevant ROIs during interactive search [1], 

[19], [20]. In particular, to localize the central-chest lymph nodes, physicians use the TNM 

system’s International Association for the Study of Lung Cancer (IASLC) lymph-node map. 

The IASLC lymph-node map gives anatomical criteria specifying 14 distinct thoracic nodal 

stations. Unfortunately, these stations involve complex, overlapping, loosely-defined 3D 

zones. Regarding thoracic nodule localization, the TNM system’s guidelines entail elaborate 

3D juxtapositions of various organs and airways. Thus, the TNM system is difficult to 

translate when analyzing a 3D scan consisting of a stack of 2D sections.

Our proposed method for segmenting the thoracic cavity from a 3D CT scan involves three 

major steps: organ segmentation, contour approximation, and volume refinement. Following 

established anatomical criteria and TNM-system specifications, the method assumes that the 

thoracic cavity is delineated by the rib cage and spine, bounded below by the diaphragm/

liver interface, and approximately bounded above by the top of the sternum [6], [14]–[17], 

[19], [20]. The various method steps draw upon 3D digital topological and morphological 

operations, active-contour analysis, and key anatomical landmarks derived from the 

segmented organs [21]–[25]. The result is a fully-automatic computationally-efficient 

method for 3D thoracic-cavity segmentation.

We next show how the segmentation greatly facilitates ROI localization in patient PET/CT 

imaging studies by effectively focusing the search space on all 2D scan sections. The 

segmented thoracic cavity produces an especially large data reduction for ROI localization 

in co-registered PET/CT scan pairs, which span the whole body. Finally, we demonstrate 

how thoracic cavity segmentation greatly improves the multimodal visualization of 3D 

PET/CT data sets by removing considerable obscuring scan data.

Section II describes the thoracic-cavity segmentation method. Drawing upon a 3D PET/CT 

scan database derived from a series of lung-cancer patients and spanning a wide range of 

scan protocols, Section III then presents results demonstrating the segmentation method’s 
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accuracy and computational efficiency. Section III also illustrates how the segmented 

thoracic cavity effectively focuses PET/CT ROI search and enables improved fused PET/CT 

visualization in a multimodal image-analysis system. Finally, Section IV offers concluding 

comments.

II. METHODS

A patient’s CT scan I serves as the input for our method, where I is a 3D digital image 

consisting of Nz 2D transverse-plane sections. Quantity I(x, y, z) denotes the intensity value 

in Houndsfield units (HU) for voxel (x, y, z). Equivalently, Iz(x, y) will denote the HU value 

of voxel (x, y) on section Iz. For the CT scans arising in our work, we draw upon either 

whole-body co-registered PET/CT studies, acquired while the patient freely breathes, or on 

focused chest CT scans, acquired while the patient maintains a breath hold (Fig. 1). For 

these situations, the spacing Δz between sections equals either 3.0 mm (free-breathing scans) 

or 0.5 mm (breath-hold scans). For both scan types, the number of sections per scan varies, 

depending on the patient’s size. All scans have transverse-plane resolutions Δx, Δy < 1.2 

mm, per Table I in Section III.

The scanners we employ abide by standard chest-CT HU-calibration conventions [26]. In 

particular, pure air and water correspond to the calibrated values of −1000 HU and 0 HU, 

respectively. Image data constituting the lung parenchyma generally appears with values 

near −1000 HU. Soft-tissue structures, such as fat, muscle, vessels, blood, and lymph nodes 

exhibit HU values in the range [−200 HU, 200 HU], while blood in contrast-enhanced scans 

can exhibit values in the range [200 HU, 400 HU]. Solid (pure) bone exhibits values near 

1000 HU, while metallic structures, such as pacemakers and certain stents, exhibit high HU 

values > 1000 HU. Note that partial volume effects, arising from the limitations of having 

sampled data, adversely influence the HU values of voxels interfacing multiple regions [8], 

[27]. For example, thin bony structures, such as the ribs, typically exhibit values > 300 HU, 

but substantially < 1000 HU. In addition, voxels bordering the lung parenchyma and 

diaphragm/chest-wall muscles often give values in the range [−400 HU, 0 HU].

Given CT scan I, our goal is to define a solid 3D region delineating the thoracic cavity 

ℛthorax. Our method involves three major steps (Fig. 2). First, Organ Segmentation extracts 

several organs and related anatomical structures pertinent to localizing ℛthorax. Next, 

Contour Approximation defines a set of 2D contours giving an initial approximation to 

ℛthorax. Finally, Volume Refinement performs additional operations to arrive at the final 

ℛthorax. Sections II-A through II-C give a complete description of these steps. Finally, 

Section II-D discusses implementation details.

A. Organ Segmentation

Because ℛthorax occurs inside the body, the first operation in Organ Segmentation defines 

the body region. Subsequent operations then segment the airway tree, aorta, lungs, and 

bones. These structures either constitute or partially delimit ℛthorax and prove useful in later 

analysis steps. Details on these operations appear below.
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As a convention, all 3D (2D) digital topology operations we use, such as connected-

components analysis and cavity filling, assume 26-connectivity (8-connectivity) [21], [22]. 

In addition, many anatomical landmarks contribute toward defining the thoracic cavity. A 

number of these arise from a segmented regions’s 3D minimum bounding cuboid (MBC), or 

bounding box. We use the notation Ω(ℛ) to signify the 3D MBC of region ℛ, where Ω(ℛ) 

is represented by the following set of six limits in 3D digital image I’s x-y-z coordinate 

space [28]:

(1)

MBC limits of the form (1) will be used freely in the discussion to follow. Since each 

anatomical region has its own MBC limits, we will use superscripts to refer to region-

specific limits. For example, quantity  refers to the top 2D CT section containing the 

segmented airway tree. Because the lungs correspond to the dominant structure constituting 

ℛthorax, we will use the unsubscripted MBC limits (1) to refer to quantities defining 

Ω(ℛlungs).

Body segmentation masks out the body, while deleting the external air, scanner bed, and any 

blanket that may cover the patient during scanning. A series of morphological and 3D 

topological operations applied to input scan I easily produce the result Ibody, a body-masked 

version of the original CT scan. Given the simplicity of this task, we omit the details and 

refer the reader to reference [29]. In parallel with body segmentation, the airway tree ℛtree 

and aorta ℛaorta are also segmented in scan I, using the methods of Graham and 

Taeprasartsit, respectively [13], [30]. We have successfully applied both methods to many 

real pulmonary CT applications [28], [31], [32].

Continuing, lung segmentation in a chest CT scan is straightforward, as demonstrated by 

many previous methods. Our method draws upon digital topology operations, similar to 

[10], [13], [14], [17], [28]. It begins by extracting likely air voxels:

Next, operation

removes the airway tree, while
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(2)

gives the final lung fields. Operation (2) denotes a 3D connected-component operation that 

keeps all connected components in ℛlungs that: (i) intersect the airway tree’s MBC; and (ii) 

have a volume ≥ 30% of the largest component’s volume. Operation (2) effectively handles 

situations where a given lung appears disconnected into two parts because of phenomena 

such as lung scarring. It also rejects the pulmonary vasculature and other small air-filled 

regions, such as any remnants of the esophagus, stomach, or visible intestine. An important 

consequence of lung segmentation is that it sets both the top-to-bottom section limits [zmin, 

zmax] and the right-to-left horizontal limits [xmin, xmax] we use throughout to delimit Ibody 

and, as suggested by Zhang et al., ℛthorax [14]. Fig. 3 gives examples of airway tree, aorta, 

and lung segmentation.

The final segmentation operation extracts bony structures situated within the thoracic 

cavity’s scope; namely, the ribs, spine, and sternum. They are readily segmented using 

topological operations and landmarks from previously segmented regions [17], [28], [33]. 

To begin,

(3)

extracts likely bone voxels while rejecting suspect metal regions. Next, all cavities are filled 

in each 2D section of ℛbones.

As noted in the Introduction, the IASLC lymph-node map specifies criteria for localizing the 

central-chest lymph-node stations [19]. As several stations — and, hence, our desired 

ℛthorax — depend on specific landmarks delimiting the spine and sternum, the next several 

operations derive approximations to the spine and sternum from ℛbones.

The spine and sternum are long, vertical, centrally-situated structures that are approximately 

parallel to each other. The spinal and sternal MBCs, Ω(ℛspine) and Ω(ℛsternum), thus share 

the right-to-left limits

(4)

while their top-to-bottom limits are given by [zmin, zmax]. The liberal right-to-left limits of 

(4) help focus analysis on centrally-situated bony structures (Fig. 4), while the top-to-bottom 

limits restrict attention to the lung-field range. Anterior-to-posterior (y) limits, of course, 

differ for the spine and sternum because the spine must be posterior to the trachea. For the 

spine, we identify a reference 2D tracheal cross-section situated a short distance below the 

lung-field apex. This cross-section is found via

(5)

where ztrachea = zmin + 2 cm and conn_comp8(·) finds the largest 2D connected-component 

of its argument. Next,
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isolates bony components posterior to the trachea and within the lungs, where the anterior-

to-posterior limits of Ω(ℛspine) are given by

(6)

The final estimated spinal region is then given by the longest 3D connected component in 

the z direction in ℛspine.

Sternum definition begins by finding bony components anterior to the lungs. This is done 

via

(7)

for all sections , zmin ≤ z ≤ zmax. In (7), the quantity yz, min refers to the specific 

minimum (frontal) location of the lung field located on section . This restriction takes 

into account how the lung field’s shape — and corresponding neighboring sternal location 

— changes from top to bottom. Next, we project the reference 2D tracheal cross-section 

ℛtrachea onto each 2D section of the initial sternal mask ℛsternum and locate the topmost 

section that contains a bony component anterior to the tracheal section — this section index 

 denotes the top of the sternum (Fig. 4c). Finally, we apply

and identify the longest 3D connected component in ℛsternum in the z direction. Fig. 5 gives 

examples of segmented bony structures. Notice that the segmented spine and sternum also 

contain portions of the ribs. This is of no consequence, as all of these bony structures will be 

removed from ℛthorax during Volume Refinement.

B. Contour Approximation

Contour Approximation defines a set of 2D closed contours within Ibody that approximately 

circumscribe the desired thoracic cavity ℛthorax (Fig. 2). Denote this set of contours as

(8)

where one contour z ≡ (x, y, z) is derived for each transverse-plane section , z = 

zmin,…, zmax.

For this purpose, we employ active-contour analysis. In its general form, active-contour 

analysis employs an iterative procedure driven by a cost function to derive an optimal 
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contour circumscribing a desired region [23], [24]. The cost function combines contour 

shape constraints and gray-scale-based region-edge characteristics to drive the optimization. 

The method has been applied successfully in many chest CT applications [25], [34], [35]. 

We incorporate active-contour analysis to define C as follows:

1. Reference Contour Definition: Compute reference contour zref on section .

2. Sequential Section Analysis: For the remaining subvolume sections in Ibody, use 

zref to sequentially derive the remaining contours.

This process assumes that the desired region consists of one cavity-free component per 

section, has a slowly changing shape from one section to the next, and has automatically 

identifiable seed boundary points on every section. The discussion below gives complete 

detail on this two-step process.

1) Reference Contour Definition—To begin, we identify reference section  that 

contains the largest 2D lung cross-section. Next, a three-stage procedure derives reference 

contour zref. First, we transform  into a 2D cylindrical-coordinate space:

(9)

where (cx, cy) is the centroid of , r is the distance from (cx, cy), and θ is an angle in the 

range [0°, 360°]. Transformation (9), suggested by Chittajallu et al., exploits the observation 

that the thoracic cavity has approximately a cylindrical shape with its central axis roughly 

parallel to the spinal column [15]. In addition, (9) facilitates seed-point detection and 

ordering for our method as discussed below. For each (r, θ) in (9),  is found using 

nearest-neighbor interpolation on . Radial coordinate r is sampled such that Δr = Δx(= 

Δy), while θ takes on integer values between [0°, 360°]. See Fig. 6a for an example 

transformed section .

We next detect a set of pixels  that will serve as boundary seeds for active-contour 

analysis. To find candidate seeds, we search each column of  to find the first pixel, if 

any, bordering the lungs and before any bony structures. Specifically, for each column, 

, θj = 0°, 1°, …, 360°, we find the maximum radius rlungs such that (rlungs, θj) = 

last location in ℛlungs and the minimum radius rbones such that (rbones, θj) = first location in 

ℛbones, ℛspine, or ℛsternum, where ℛbones is given by the largest 3D connected component 

contained in the likely bone mask of (3). We then select the largest ri in the half-closed 

interval [rlungs, rbones), if any exists, such that . (Radius ri increases 

from the body center outward.)

At most one potential seed s = (ri, θj) is found per column. As shown in Fig. 6, a typical 

section may yield 50–250 seeds and clusters of connected seeds often occur between bone/

lung interfaces. Therefore, to reduce the computation of the next step, we reduce this set to n 

= 16 seeds that are approximately evenly spaced across the 360° range of θ. The final set
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(10)

specifies a set of confirmed boundary seeds in  ordered by increasing θj.

We now apply active-contour analysis to produce the desired zref. Our method, given by 

Algorithm 1, derives a closed contour by finding the optimal segment connecting each 

consecutive pair of seeds in S on section Izref. It builds upon a method for connecting two 

pixels first suggested by Mortensen and Barrett and later modified by Lu and Higgins [34], 

[35]. In Algorithm 1, a search process finds the optimal segment linking each pair of ordered 

seeds (si, si+1). For each seed pair, an active pixel list L is first reset, and the cost of L’s 

initial member b is initialized to 0 (lines 9–10 of Algorithm 1).

Next, the main optimization search occurs between lines 11 and 23. To obtain an optimal 

segment, the method draws on Dijkstra’s algorithm to build a weighted graph [36]. Each 

graph node represents a pixel p in image Izref, while each edge designates the local cost of 

moving from pixel p to one of its neighbors q ∈ N(p), where N(p) denotes the 8-

neighborhood of p. Before the search begins, no pixel p has yet been expanded in the 

search; this condition is designated by the default pixel setting e(p) = FALSE. At line 12, 

function min-cost(L) identifies the next pixel p ∈ L having the lowest-cost path tracing 

back to beginning seed b — p is the next pixel to expand in the search. During this 

expansion (lines 15 through 21), each suitable neighbor q gets assigned (i) a path tracing 

back to b via the pointer function ptr(q) and (ii) a path cost g(q). To compute path cost g(q), 

we add the local cost between pixels p and q, as computed by function local-cost(p, q), to p
′s path cost g(p) (line 16).

Eventually, the termination pixel t is identified as the next pixel to expand — this implies 

that the optimal segment from b to t has been found and the algorithm moves on to the next 

segment. Function path(b, t) then computes the complete segment of pixels from b to t by 

tracing back through the pointers. This segment is retained in data structure , and the 

previous end seed t now begins the next segment. After the optimization completes,  traces 

out a complete sequence of pixels defining the optimal closed contour zref passing through 

seed set S.

Algorithm 1

— 2D Contour Definition.

1: Input: ordered seed set S = {s1, s2, …, sn}

2:  = ∅ // Initialize contour

3: i = 1

4: while i ≤ n do

5: if i ≠ n then

6: b = si, t = si+1 // Set beginning/end seeds for ith segment

7: else

8: b = sn, t = s1 // Get segment connecting last and first seeds
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9: L = ∅ // Reset active pixel list for ith segment

10: b → L, g(b) = 0 // Start active list and initialize segment cost

11: while L ≠ ∅ do // Main search for ith segment

12: min-cost(L) → p

13: e(p) = TRUE // p is the active list’s next pixel to expand

14: if p ≠ t then

15: for each q ∈ N(p) such that e(q) == FALSE do

16:   gtmp = g(p) + local-cost(p, q)

17:   if q ∈ L and gtmp < g(p) then

18:     g(q) = gtmp, p → ptr(q)

19:   else if q ∈ L then

20:     q → L // Place q onto active list

21:     g(q) = gtmp, p → ptr(q)

22: else // Optimal path found for ith segment

23: go to 24 // Terminate search

24: path(b, t) →  // Append segment to contour

25: i = i + 1

26: return 

Function local-cost(p, q) computes the quantity

(11)

as the local cost to travel from p to q. The quantity l(p, q) in (11) represents a modified form 

of the function l(p, q) first suggested by Mortensen and Barrett [34]. In (11),

is a normalized gradient-magnitude cost at q, where

is the gradient magnitude of image Izref at pixel q. Also, as defined in [35], fZ (q) is a 

Laplacian zero-crossing cost, and fD1(p, q) and fD2(p, q) are gradient-direction costs 

between p and q, with Izref serving as the input image. Quantity fM is a new term, defined as

(12)

effectively forces a possible contour pixel q to be a member of control region ℳ by 

assigning an infinite cost to non-member pixels; i.e., pixels q ∉ ℳ are skipped during the 
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search. For the reference section, ℳ = ℛbody. Finally, we employ the weights wG = 0.4, wZ 

= 0.17, ,wD1 = 0.33, and wD1 = 0.1 as done previously in a general chest CT segmentation 

application and used successfully for segmenting lymph nodes, nodules, and other structures 

in chest CT scans [28], [31], [32], [35]. Fig. 6 gives a complete example of Reference 

Contour Definition.

2) Sequential Section Analysis—The reference contour zref now drives the 

computation of the remaining contours of C per (8); i.e., contours z, zmin ≤ z ≤ zmax, such 

that z ≠ zref. This involves a sequential process for each series of sections in Ibody above and 

below z = zref. This process, which adapts a general 3D segmentation method of Lu and 

Higgins to thoracic-cavity definition, entails three basic operations for each involved section 

[28]: 1) defining a working area, 2) detecting a set of seeds, and 3) applying active contour 

analysis to derive the desired contour. Details appear below.

The process for the bottom series of sections in Ibody with indices z = zref + 1, …, zmax, 

begins with the assignment

where ref represents the optimal contour derived from the previous adjacent section . 

To continue, we next project ref onto  and perform the 2D dilation

(13)

where ℛ⊕B4 denotes the binary dilation of region ℛ by structuring element B4 and B4 is a 

disk-shaped structuring element of radius 7.5 mm [22]. Fig. 7b illustrates how ℳ appears as 

a thickened ring-like version of the projected contour ref. As such, it restricts the scope of 

z’s allowed deviation from reference contour ref. ℳ also serves as the working area for 

subsequent seed selection. B4’s radius in (13) conservatively defines an expected lung/bone 

interface zone for locating seeds and accounts for the Δz = 3 mm section spacing 

encountered in our PET/CT studies.

A transformation as in (9) now converts  and ℳ into cylindrical-coordinate analogs, 

and ℳc, with (cx, cy) equal to the centroid of z−1. Next, a set of seed pixels S as in (10) is 

detected, using the process of Section II-B1 with two enhancements. First, candidate seeds 

must lie within the working area ℳc, which again in general can result in a candidate seed 

set S having many seeds.

As before, S is reduced to a set of ≤16 seed pixels. Note that if reduced set S only contains 

two seeds, s1 and s2, then subsequent active contour analysis is guaranteed to trace a 

segment from s1 to s2 and back again on the same segment from s2 to s1, resulting in a 

degenerate “contour.” As another case, if S only contains one seed s1, then no valid contour 

can be defined using Algorithm 1. Managing these cases necessitates the second 

enhancement to the Section II-B1 process.
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To begin, we cut ℳc into an open ring  at the column (·, θj) containing seed s1 — note 

that the open region  is only “open” in the sense that column (·, θj+1) is no longer 

considered to be connected to column (·, θj). We then “split” seed s1 into two seeds situated 

on opposite sides of the cut: the original seed s1 at its original location (ri, θj) and a new seed 

se = (ri, θj−1) located on the opposite side of the cut. Thus, each seed lies on opposing ends 

of . This process of cutting ℳc and splitting seed s1 gives the final seed set S and 

ensures that a proper closed contour z can now be computed for the degenerate cases 

highlighted above. Fig. 7c illustrates an example ℳ̅ in Cartesian coordinates after seed 

splitting.

We now apply Algorithm 1 to define z. The algorithm uses S as the seed set and ℳ̅ as the 

control region for cost fM in (12). Fig. 7d gives example of a final contour. The process 

above then repeats for section z = z + 1 until all bottom-series sections have been processed. 

Two situations cause the sequential process to terminate. First, if the seed set contains no 

seeds (S = ∅) for section , then the process stops and no further action occurs for the 

remaining sections , z < z̄ ≤ zmax. As a second situation, if S contains one seed but the 

dilation (13) produces a filled region ℳ having no cavities, then this seed cannot be split 

and the process again must terminate. These situations occur for more peripheral sections 

where weak lung and muscle/tissue interfaces exist and where ℛthorax has a small cross-

sectional area.

The upper series of sections (zmin ≤ z < zref) are then processed in a similar manner. 

Completion of this step results in a preliminary estimate of ℛthorax as delineated by contour 

set C.

C. Volume Refinement

Many sections near the top and bottom of the preliminary ℛthorax as defined by 2D contour 

set C in (8) tend to consist of disconnected components and have a small cross-sectional 

area. Hence, these sections are likely to be ill-defined. Furthermore, contour set C in general 

also encompasses extraneous regions corresponding to the heart and portions of the bones, 

liver, and diaphragm. Volume Refinement removes these regions in two stages, as discussed 

below.

1) Heart Definition—The heart is a region that definitely must be avoided during a 

cancer-staging procedure. It also, of course, contains no lymph nodes or suspect cancer 

nodules. Furthermore, the heart often exhibits “false alarm” regions of high PET avidity [1]. 

For these reasons, we delete the heart from ℛthorax. Unfortunately, the heart’s considerable 

motion as manifested in a typical chest CT scan I makes precise heart definition 

problematic. Also, Bae et al. noted the inherent challenges in defining the heart accurately in 

a CT scan [17]. Our goal, therefore, is to derive a suitable approximation.

Since the ascending aorta emanates from the heart, heart definition starts by designating the 

ascending aorta’s bottom-most 2D section as the heart’s top-most section. We denote this 

2D section as . The next operation involves applying active contour analysis, similar 
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to the approach of Section II-B. In particular, for , the following 

operations occur:

1. Convert 2D section  into a cylindrical-coordinate form  as in (9). For the 

first section, (cx, cy) equals the centroid of the ascending aorta as it appears in 2D 

section , while for subsequent sections (cx, cy) equals the centroid of the 

previously computed contour.

2. Identify a preliminary set of candidate seeds (r, θ). Candidate seeds must be a 

member of one of three previously segmented structures that bound the heart’s 

exterior boundary; these structures in order of precedence are the descending aorta, 

lungs, and contour set C. Thus, candidate seeds (r, θ) are found as follows. For 

each θ ∈ [0°, 360°], we find the minimum r > 0, if any, where either 

, or z(r, θ) is non-zero, where  represents the 

2D descending aorta cross-section in . The candidate seed set is then reduced 

to a set of at most 16 seeds approximately evenly sampling the [0°, 360°] range for 

θ.

3. Apply Algorithm 1 to compute the desired 2D contour .

This gives a set of contours , approximating ℛheart. Fig. 8 gives 

an example of heart definition.

2) Extraneous Region Removal—Final refinement entails removing the 

aforementioned extraneous regions. To begin, few, if any, clinically relevant ROIs occur in 

the mediastinal region situated between the lungs and above the aorta and sternum; i.e, 

image sections Iz, z < zmed, where

(14)

Constraint (14) effectively defines the superior border of the mediastinum and is easily 

incorporated into a modified version of ℛthorax via:

(15)

where (15) also removes the heart and bony structures. In addition, because the trachea 

contains no relevant ROIs, (15) uses a version of ℛtree that has the trachea deleted above z = 

zmed. (This portion of the trachea is easily found by identifying the largest 2D component in 

 for each section z in the affected range.) Note that (14) accommodates the 

requirements of station-1 superior mediastinal nodes of the IASLC lymph-node map. 

Related to this point, over the 37 CT scans considered in Section III (Table I), we found that 

on average the distance from the top of the aortic arch  to the top of the sternum 

 was 1.57 cm ± 1.58 cm (range: [−2.1 cm, 4.7 cm]) [29].
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The next operation refines the bottom surface of the thoracic cavity. The lungs and heart 

largely determine the vast bulk of this surface, while the remaining residual, if any, is 

determined by the liver/diaphragm combination. While CT-based diaphragmatic surface 

definition has been considered [12], [16], given the heterogeneous nature of the types of CT 

scans we consider (Fig. 1), liver/diaphragm definition can be problematic and is, in fact, 

unnecessary [17]. Instead, we define the bottom-surface function

Finally, we use the bottom-surface function to modify each 2D section of ℛthorax via

(16)

over the range z = zmin, …, zmax, to give the final definition of the thoracic cavity. Fig. 9 

illustrates the final output after Volume Refinement.

D. Implementation Comments

All software was coded in C++ and developed using Visual Studio 2012. Tests were run on 

a Dell Precision T5500 64-bit workstation, running Windows 7, equipped with 24 GB of 

RAM, dual Intel Xeon six-core 2.79 GHz processors, and an nVidia Quadro 4000 video card 

(2 GB video memory). Since each core can run two threads in parallel, the workstation can 

run up to 24 threads in parallel. To exploit this capability, we used OpenMP, a 

multiprocessing application program interface for cross-platform scalable parallel 

processing, to parallelize many of the operations employed by our method [37].

In Organ Segmentation, all 2D transverse-plane computations such as thresholding, 2D 

morphological operations, and 2D connected-components analysis, were performed in 

parallel; this includes all operations except those employing 3D connected-components 

analysis (e.g., (2)). During Sequential Section Analysis, both series of 2D sections above 

and below reference section  were processed in parallel.

The greatest benefit gained from parallel processing occurred through our implementation of 

Algorithm 1. Separate threads running Algorithm 1 were invoked for every seed in S, with 

one thread deriving a segment connecting (s1, s2), another for a segment connecting (s2, s3), 

and so forth, with the final thread deriving a segment connecting (sn, s1).

III. Results

The tests presented herein draw upon a database of 37 CT scans derived from 20 lung-

cancer patients, as summarized in Table I. All studies were collected under IRB approval 

and informed consent. Each patient went through a standard imaging protocol involving two 

studies:

1. A PET/CT study consisting of:
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a. Whole-body co-registered PET and CT scans, collected as the patient 

breathed freely (Fig. 1a). The CT scan, which consisted of 512×512 sections 

spaced Δz = 3.0 mm apart, provides anatomical information. The PET scan, 

consisting of 144×144 sections also spaced 3.0 mm apart and axial-plane 

resolution Δx = Δy = 4.0, gives diagnostic cancer biomarker data in the form 

of standard uptake values (SUVs) [38].

b. A breath-hold chest CT scan, consisting of 1024×1024 sections spaced Δz = 

3.0 mm apart. Because it consists of thick sections, we will refer to this scan 

as a low-resolution (LR) chest CT scan.

2. A dedicated chest CT study consisting of a breath-hold chest CT scan made up of 

512×512 sections spaced Δz = 0.5 mm apart (Fig. 1b). We will refer to this scan as 

a high-resolution (HR) chest CT scan.

We employed a Philip Gemini TrueFlight integrated PET/CT scanner for all PET/CT studies 

and either a Siemens Sensation-40 or Siemens SOMATOM Definition scanner for dedicated 

chest CT studies. Both the LR and HR chest CT scans give information essentially free of 

breathing-motion artifact. The HR chest CT, however, by virtue of its thin sections, provides 

far better airway trees — essential for follow-on procedure planning — than the PET/CT 

study’s LR chest CT [13]. Our selection of scans was random, but we did strive to cover the 

variety of situations arising in the clinical protocols. Regarding the distribution of the 37 

scans over 20 patients, 12 patient studies contributed a whole-body CT (1 contrast) and an 

HR chest CT (5 contrast), 5 patient studies contributed a whole-body CT and an LR chest 

CT, and 3 patient studies provided a single CT scan (2 contrast), where the contrast agent 

helped better distinguish vascular structures from surrounding soft tissues.

The performance results presented in Section III-A employ the following standard metrics 

[39], [40]:

(17)

where |·| signifies the volume of its argument and G and S represent the volumes of a 

ground-truth region and corresponding segmented region, respectively. The Dice and more 

stringent Jaccard metrics measure similarity between the ground-truth and segmented 

regions, coverage measures the amount of the ground-truth region covered by a segmented 

region, and leakage denotes the erroneous portion of the segmented region situated outside 

the ground truth. The Dice, Jaccard, and coverage metrics are bounded to the range [0, 1], 

with 1 signifying a perfect correspondence. The ground-truth regions were defined by two 

imaging experts and a pulmonary physician in two passes. First, a combination of the 

general semi-automatic live-wire method of Lu [35] and an early variant of automatic 2D 

contour-definition method of Algorithm 1 were applied to generate an initial ground-truth 

segmentation on each 2D scan section. Next, region defects were corrected section by 

section using either interactive region filling, region erasing, or section tracing.
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Section III-A presents tests measuring the performance of the proposed thoracic-cavity 

definition method. Section III-B then considers application to 3D thoracic PET/CT image 

analysis and visualization.

A. Segmentation Performance

The first series of tests benchmark parameter sensitivity and computation time for the 

proposed method. Three CT scans, one of each type, were used in these tests, as summarized 

in Table II.

By and large, the method parameters specifying structuring element dimensions or air/bone 

HU thresholds in Organ Segmentation either have minimal consequence or are well 

accepted from extensive chest CT imaging experience, while Volume Refinement has no 

variable parameters. Two parameters used in Contour Approximation, however, warrant 

careful consideration: 1) the number of seeds n contained in seed set S per (10) during 2D 

contour definition; and 2) the thickness of the search region ℳ in (13) as determined by 

structuring element B4 during sequential section analysis. Tables III–IV detail sensitivity 

tests for these two parameters. Performance metrics are presented as mean±SD in percentage 

(%) averaged over the three test scans. For both parameters, the best segmentation results 

were achieved with the Section II default values of n = 16 and radius = 7.5 mm. Increasing 

or decreasing their values beyond the defaults did decrease method performance, but these 

decreases were modest.

Table V benchmarks the method’s computation time for the three test CT scans, using the 

Dell Precision T5500 workstation mentioned previously. Contour Approximation required 

the majority of computation, ranging from 52% to 73%. Notably, despite the many separate 

operations performed during Organ Segmentation, this step required only between 11% and 

34% of the total computation time. Note that while the LR chest CT contains roughly the 

same number of sections as the whole-body CT, the computation time for this scan was 

much greater. This is expected, however, as the 2D sections contain 4 times the number of 

pixels as the other scans. Overall, the method produces complete segmentations of ℛthorax in 

< 20 sec for a typical whole-body CT scan and < 3 min for a large HR chest CT scan.

Tables VI–VII next present segmentation performance results for the complete CT-scan 

database using the default parameter values of Section II, while Figs. 9 and 10 present 

sample segmentations for three cases. Performance metrics are presented as mean±SD in % 

over scans of a specified type.

Note that the lungs constitute a high percentage of ℛthorax. For our database, ℛlungs 

occupied on average 80.4%±6.8% of ℛthorax (min, 60.8%; max, 91.1%) [29]. Therefore, 

because the lungs are relatively easy to segment, removing the lung field from consideration 

provides a more telling test of method performance that focuses on the mediastinum. Table 

VII gives results for this more stringent test. As the tables make evident, segmentation 

performance was very high, with the performance metrics for the complete ℛthorax 

averaging near 99% for the entire thoracic cavity and 97% with the lungs removed. Leakage 

errors over all cases ranged between 0.1% and 2.2% (entire thoracic cavity) and 0.4% and 

11.2% (no lungs).
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B. PET/CT Image Analysis and Visualization

We now consider how thoracic cavity segmentation facilitates PET/CT image analysis and 

visualization. Results are presented for two tasks arising during the assessment of a lung-

cancer patient’s imaging studies: 1) ROI localization and detection; and 2) multimodal 

image visualization.

1) ROI Localization and Detection—A chest radiologist, pulmonary physician, and two 

imaging scientists identified and defined all thoracic PET-avid ROIs in the PET scans of 10 

patients who had whole-body co-registered PET/CT scan pairs {IPET, ICT}. These studies 

correspond to 10 consecutive patients considered in Table I who presented ROIs satisfying 

the criteria given below. Only ROIs deemed significant to lung-cancer assessment were 

identified. Thus, PET-avid regions situated in the heart/vasculature or arising from false 

indications such as lung scarring were disregarded.

For a given ROI voxel (x, y, z), IPET(x, y, z) > 0.0 denotes the voxel’s SUV value. A 

significant suspicious ROI satisfied two criteria [38]: (1) SUVmean > 2.0 or SUVmax > 3.0; 

(2) short-axis length > 1 cm on at least one 2D section. 3D regions were defined using a 

combination of semi-automatic region growing, live-wire contour definition, and region 

filling/erasing [29], [41]. This resulted in 44 identified ground-truth ROIs for the 10 scans, 

with PET avidity ranging from mild to intense as judged by the physicians (Table VIII).

Using this database, we illustrate how CT-based thoracic-cavity segmentation improves PET 

ROI search and detection performance for a previously developed semi-automatic central-

chest lesion-detection method [41]. The method is summarized below, where co-registered 

PET/CT scan pair {IPET, ICT} serves as the input:

1. Mask out voxels in IPET not contained in a mask derived from ICT. This gives a 

masked image  with a reduced ROI search space.

2. Histogram the SUV values of voxels constituting . Based on the histogram, 

identify threshold T1 that maximizes the inter-class variance between the 

foreground (PET-avid) and background voxels.

3. Threshold  using T1 to give image .

4. Delete 3D connected components in  having volume < 100 mm3. All remaining 

3D connected components correspond to ROI detections.

5. Iterate steps 2)–4) on  to produce successively more stringent thresholds Ti > 

Ti−1 and associated thresholded images , i = 2, 3, …, until achieving the 

desired result.

The method, a 3D multimodal variant of Otsu’s thresholding technique [22], is discussed in 

full detail in [29], [41]. In past research, we had iterated this process until we observed a 

satisfactory result as gleaned by interactive visualization [41]. For our current study, we 

iterated the process until a threshold Ti caused the true-positive (TP) detection rate of IPET’s 
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ground-truth ROIs to drop below 100%; i.e., Ti−1 was the highest threshold giving a 100% 

TP rate. We then retained  as the final result.

Table IX gives study results for three CT-based masks applied in step 1:

1. No mask — Corresponds to a purely PET-based ROI detection.

2. Lung mask — Corresponds to the MBC of the CT-based segmented lungs ℛlungs.

3. Thoracic cavity — ℛthorax is used as the mask.

In Table IX, “ROI Search Space” signifies mean ROI search volume, presented as mean±SD 

cm3 over all PET scans, “SUV Threshold” specifies the mean final SUV threshold found by 

the semi-automatic method giving a 100% TP rate for the ground-truth lesions, “Detected 

Regions” denotes the total number of isolated regions, “True Positives” gives the total 

number of detected regions containing a ground-truth ROI (over 44 total ground-truth 

ROIs), “False Positives” (FPs) indicates the total number of detected regions not containing 

a ground-truth ROI, and “FP/case” gives the mean number of FPs per case.

First note the size reduction of the ROI search space afforded by each CT-based mask 

relative to the complete scan. The lung mask reduced the search space by 93.7% over the 

whole volume, while the thoracic cavity reduced the search space by 97.7%, or an additional 

63.5% more than the lung mask. State differently, the thoracic cavity reduced the PET-only 

search space by a factor of 43 and the lung-mask’s search space by nearly a factor of 3. 

Nevertheless, 100% ROI detection was still feasible with this greatly reduced PET sub-

volume. Furthermore, ℛthorax gave a 100% coverage metric for 38/44 ground-truth ROIs, 

with > 82% coverage for 4 other ROIs. Overall, these observations imply that ℛthorax 

reliably encompasses the necessary data for comprehensive lung-cancer-based lesion 

detection. As a related observation, Table X shows that ℛthorax also greatly reduced the CT-

based ROI search space for all CT scan types, with nearly a factor of 3 reduction over the 

lung mask’s search space.

The mask type also had a major effect in reducing false positives. Without a CT-based mask 

(i.e., PET-only ROI detection), the lesion-detection method essentially fails, as 93.7% of 

detected ROIs were FPs with a mean 47.4 FP/case. While the lung mask reduced the number 

of FPs by 55.7%, this still yielded 21 FP/case. Notably, the thoracic cavity reduced the FP 

rate by an impressive 91.8%, resulting in only 3.9 FP/case. Thus, ℛthorax helped reduce the 

number of FPs by a factor of 12 when compared to a raw scan and 5 when compared to the 

lung mask. Finally, the refined search space afforded by ℛthorax enabled more more 

stringent SUV thresholds, and, hence, produced more detected regions containing only one 

ground-truth ROI. In particular, 38/41 (93%) TP regions encompassed only one ground-truth 

ROI, with 8/10 cases exhibiting no detections that merged ground-truth ROIs. The other 

masks, on the other hand, merged many more ground-truth ROIs into the same detected 

regions, reflecting how the poor search-space reduction of these masks adversely affected 

the lesion detection method.

2) Multimodal Visualization—In this section, we demonstrate how visualization of 

PET/CT study data is greatly enhanced by use of the CT-based thoracic cavity.
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A standard means for viewing whole-body 3D PET data is through interactive maximum-

intensity projection (MIP) [2], [42]. Such a view, which integrate all available 3D PET scan 

data into a single rendering, is useful, because it gives the physician a global picture of 

potential PET-avid “hot spots.” Unfortunately, the large data volume constituting a typical 

PET scan often obscures mild-to-moderate PET-avid ROIs. Fig. 11 illustrates how CT-based 

data masking greatly improves 3D PET MIP visualization. While the lung mask does 

remove considerable data from consideration in the MIP view, the spine, heart, and 

remaining parts of the diaphragm/liver still obscure clear viewing of the thorax, especially in 

the inferior region. These obscurations are especially confounding for case 21405.98, while 

for case 21405.107 the presence of the heart and its propensity for exhibiting FDG activity 

confuses the distinction of the true PET-avid lesion. Use of the thoracic mask, on the other 

hand, gives a much clearer and less ambiguous view of the desired PET-avid ROIs.

Multimodal volume rendering of a fused whole-body 3D PET/CT volume also greatly 

improves through data masking. Fig. 12 dramatically demonstrates the superiority of 

thoracic-cavity masking for unobscured visualization of relevant PET-avid regions — notice 

how the distracting PET-avid liver region in the lung-masked rendering greatly deteriorates 

the clarity of the rendering versus the result achieved using the thoracic cavity. As another 

example, Fig. 13a clearly shows how the location of a PET-avid chest lesion relates to 

nearby anatomical structures. By using the mask, major obscurations from the rib cage, 

sternum, heart, and superfluous soft tissue are deleted. In addition, the distracting bladder, 

which typically appears PET-avid because of the intravenous administration of a F-18 FDG 

tracer prior PET scanning, is deleted. Given this improved rendering capability, the 

simultaneous visualization of various multiplanar reformatted 2D sections — both unimodal 

and fused PET/CT — synchronized to a 3D ROI location selected in the multimodal volume 

rendering becomes easily achieved and feasible, as shown in Fig. 13 [2].

As a final example, Fig. 14 illustrates how detailed synergistic multimodal lung-cancer 

image assessment and procedure planning become feasible. In particular, the figure 

illustrates the fusion of a whole-body free-breathing PET/CT study with the corresponding 

breath-hold HR chest CT scan. As described more fully in the references, to produce these 

results, we first performed a deformable registration between the PET/CT scans and the HR 

chest CT scan [29], [43], [44]. We then mapped the masked PET data into the 3D space of 

the HR chest scan and generated the displayed views. The fused renderings offers a 

multimodal view of fused 3D functional-imaging data, only available from the PET scan, 

and the detailed high-resolution airway-tree structure captured only by the HR chest CT scan 

(Fig. 14a–c). In addition, associated virtual bronchoscopy (VB) views enable virtual 

navigation through the airway tree and depict an optimal navigation route terminating near a 

RUL nodule (Fig. 14de) [45]. Note that the navigation route, which is invaluable for follow-

on guidance of bronchoscopic lung-cancer staging biopsy, could only be produced with the 

HR chest CT scan [32].

IV. Discussion

We proposed a method for segmenting the thoracic cavity in 3D CT scans of lung-cancer 

patients. We also showed how the method greatly helps analyze and visualize pertinent 
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diagnostic structures in multimodal PET/CT imaging studies. The method is fully automatic 

and proved to be robust to parameter variations and differences in patient-scanning protocol.

Using a large database, the segmentation method showed very high agreement to ground-

truth regions, with a mean coverage = 99.2% and leakage = 0.52%. This compares favorably 

to other methods: one method, which considered COPD analysis, reported a mean coverage 

= 98.2% and leakage = 0.49% [17], while a second method, directed toward cardiovascular 

disease, reported a mean coverage = 99.1% (leakage performance not reported) [15]. 

Notably, each of these studies only considered scans using one fixed scanning protocol on 

one scanner. Our results, on the other hand, considered both whole-body and chest-focused 

scans, a variety of scanning protocols (free-breathing and breath-hold; contrast and no-

contrast), and scanners from multiple vendors. In addition, our method’s inherent 

parallelization enabled extremely fast computation: 20 sec for a typical whole-body scan and 

3 min for a typical high-resolution chest scan. While other methods did not report 

computation time, the approach of Bae et al. sub-sampled the data to facilitate faster 

computation, while Chittajalu et al.’s 3D directed-graph formulation appears to be intense 

computationally [15], [17].

We point out that leakage errors near the ribs sometimes existed, as seen in Fig. 15 and as 

also noted by Bae et al. [17]. We further observed that the enhanced vessels in a contrast-

enhanced CT scan occasionally contributed fragments to adjacent bones. Yet, both of these 

sources tended to be small modest and located around ℛthorax’s periphery, a location of little 

consequence for ROI selection. Another potential error source arose in defining the 

mediastinum’s superior boundary, even though our method employs well-known landmarks 

to delimit the region. Both Zhang et al. and Bae et al. acknowledged the inherent vagueness 

in determining “where to draw the line” for this region [14], [17]. In addition, El-Sherief et 

al. further noted ambiguity in this region with respect to the IASLC lymph-node map [46]. 

This ambiguity particularly manifests itself for station 1 (supraclavicular zone), a station that 

arguably is shortchanged by our definition of the superior mediastinal boundary.

The largest observed errors occurred in the inferior portion of the thoracic cavity. Breathing 

motion and the accompanying reconstruction/blurring artifacts gives rise to some 

undersegmentation of ℛthorax’s inferior surface, while heart motion makes accurate heart 

definition difficult. Fig. 15 depicts motion errors in the inferior portion of ℛthorax. Such 

errors could cause ℛthorax to shortchange IASLC station 9 near the pulmonary ligament. 

Note, however, that such lymph nodes are not accessible via bronchoscopy. In addition, Bae 

et al. acknowledged the difficulty of heart and diaphragm segmentation, despite resorting to 

manual landmark selection to help delineate the heart [17]. While clinically treatable ROIs 

— i.e., ROIs that can be safely biopsied or surgically removed without compromising 

patient safety — are not adjacent to the heart, more accurate heart definition would be 

useful. One promising idea is the define an oblique plane constraining the heart’s superior 

surface.

The segmentation method proved especially useful for reducing the ROI search space for 

PET/CT lesion analysis. For a whole-body scan, the average search-space reduction was 

97.7%, which was nearly 3 times greater than that achieved by a simple lung mask. Despite 
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this reduction, we achieved 100% true-positive detection, while also reducing the false-

positive detection rate 91.8% over using the whole scan volume. Stated differently, this 

implied a 3.9 FP/scan rate, or >5 times fewer FPs than that achieved with a lung mask.

In addition, the method greatly improved PET/CT visualization by eliminating false PET-

avid obscurations arising from the heart, bones, and liver. The resulting PET MIP views and 

fused PET/CT renderings enabled unprecedented clarity of the central-chest lesions and 

neighboring anatomical structures truly relevant to lung-cancer assessment and follow-on 

procedure planning. On a related front, we also demonstrated how whole-body free-

breathing PET/CT data could be registered, deformed, and fused with high-resolution chest 

CT to enable detailed procedure planning; this effort in turn facilitates ongoing research 

focused on devising a computer-based system for multimodal imaging-based lung-cancer 

planning and guidance [29], [43], [44].
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SUMMARY

X-ray computed tomography (CT) and positron emission tomography (PET) serve as the 

standard imaging modalities for lung-cancer management. CT gives anatomical detail on 

diagnostic regions of interest (ROIs), while PET gives highly specific functional 

information. During the lung-cancer management process, a patient receives a co-

registered whole-body PET/CT scan pair, collected as the patient breathes freely, and a 

dedicated high-resolution chest CT scan, collected during a breath hold. With this scan 

combination, multimodal PET/CT ROI information can be gleaned from the co-

registered PET/CT scan pair, while the dedicated chest CT scan enables precise planning 

of follow-on chest procedures such as bronchoscopy and radiation therapy. For all of 

these tasks, effective image segmentation of the thoracic cavity is important to help focus 

attention on the central-chest region. We present an automatic method for thoracic cavity 

extraction from 3D CT scans. We then demonstrate how the method facilitates 3D ROI 

localization and visualization in the PET/CT studies of lung-cancer patients.

Our method for segmenting the thoracic cavity involves three major steps: organ 

segmentation, contour approximation, and volume refinement. The various method steps 

draw upon 3D digital topological and morphological operations, active-contour analysis, 

and key anatomical landmarks derived from the segmented organs. Using a large patient 

database, the segmentation method showed very high agreement to ground-truth regions, 

with a mean coverage = 99.2% and leakage = 0.52%. Also, unlike previously proposed 

methods, our method was shown to be effective for a wide range of patient-scanning 

protocols and image resolutions. In addition, our method enabled extremely fast 

computation: 20 sec for a typical whole-body scan and 3 min for a typical high-resolution 

chest scan.

The segmentation method proved especially useful for reducing the ROI search space for 

PET/CT lesion analysis. For a whole-body scan, the average search-space reduction was 

97.7%, which was nearly 3 times greater than that achieved by a simple lung mask. 

Despite this reduction, we achieved 100% true-positive ROI detection, while also 

reducing the false-positive (FP) detection rate 91.8% over considering the whole scan 

volume. Stated differently, this implied a 3.9 FP/scan rate, or >5 times fewer FPs than 

that achieved with a lung mask.

Finally, the method greatly improved PET/CT visualization by eliminating false PET-

avid obscurations arising from the heart, bones, and liver. The resulting PET MIP views 

and fused PET/CT renderings enabled unprecedented clarity of the central-chest lesions 

and neighboring anatomical structures truly relevant to lung-cancer assessment. Overall, 

we believe these efforts will facilitate further development of computer-based systems 

for multimodal lung-cancer procedure planning, guidance, and treatment delivery.
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Fig. 1. 
Examples of two types of scans involved for a typical human study. Data from case 

21405.106. (a) whole-body free-breathing co-registered PET/CT study; Philips Gemini True 

Flight PET/CT scanner used; PET scan details: Nz = 271 sections, section dimensions = 144 

× 144, scan resolution (Δx, Δy, Δz) = (4.0 mm, 4.0 mm, 3.0 mm); CT scan details: Nz = 271 

sections, section dimensions = 512 × 512, scan resolution (Δx, Δy, Δz) = (1.0 mm, 1.0 mm, 

3.0 mm). (b) breath-hold chest CT scan; Siemens Sensation 40 scanner used; scan details: Nz 

= 658 sections, section dimensions = 512 × 512, scan resolution (Δx, Δy, Δz) = (0.6 mm, 0.6 

mm, 0.5 mm).
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Fig. 2. 
Block diagram of proposed 3D thoracic-cavity definition method.
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Fig. 3. 
Example organ segmentations: (a) airway tree; (b) aorta (rotated 90° about z-axis for 

clarity); (c) lungs; (d) rendering combining all segmented regions. CT scan of Fig. 1b used.
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Fig. 4. 
Left-to-right and anterior-to-posterior limits for spine and sternum definition. CT scan of 

Fig. 3 considered. Axial-plane spine and sternum MBC rectangles depicted for 2D section 

I113; x limits set per (4), while the spine’s y limits are given by (6); green structure = 

projected tracheal cross-section per (5).
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Fig. 5. 
Examples of segmented bony structures for CT scan of Fig. 4. Renderings for Rbones and 

combined regions rotated 30° about z-axis for clarity.
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Fig. 6. 
Example of reference contour definition for CT scan of Figs. 3–5. (a) Reference section: 

[left] Original CT section Izref for zref = 226, plus 236 detected candidate seeds — 

intersection of the red axes denotes the transformation center (cx, cy); [right] Transformed 

version  (dimensions, 360×248) — the segmented lung and bone regions are in navy 

blue and cyan, respectively, while the red dots represent detected candidate seeds. (b) Final 

seed set S consisted of 13 seeds. (c) Final reference contour ref.
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Fig. 7. 
2D section result for Sequential Section Analysis. Same CT scan as Fig. 6 used. (a) 

Beginning bottom-series CT section I227. (b) Section with working area ℳ per (13) in 

yellow (thickness slightly exaggerated for clarity). (c) Results after seed splitting at seed s1, 

with split working area ℳ̅ shown. (d) Final contour Cz=227 in green.
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Fig. 8. 
Example of heart definition for CT scan of Fig. 7. Seeds and computed contours are depicted 

in red, while the working area ℳ appears in yellow. For this example, the top-most section 

of the heart occurs at .
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Fig. 9. 
Final thoracic-cavity segmentation for CT scan of Fig. 8.
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Fig. 10. 
Example segmentations of ℛthorax for two CT scans.
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Fig. 11. 
Improvement in 3D whole-body PET/CT MIP visualization through multimodal data 

masking. Column (a): case 21405.98; column (b): case 21405.107. Top row shows raw 

whole-body PET MIP view for each case with [0.0, 5.0] SUV gray-scale; PET-avid regions 

have high (dark) SUV values. Bottom row shows the indicated PET MIP view produced 

after applying a specific CT-based mask.
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Fig. 12. 
Impact of data masking on the visualization of PET-avid ROIs in 3D multimodal volume 

renderings for case 21405.116. All renderings combine the masked whole-body PET scan, 

along with the segmented airway tree (brown) and lungs (light blue) derived from the 

corresponding whole-body CT scan. The PET data is rendered using a [0.0, 5.0] SUV scale 

mapped to the standard 8-bit “heat” color scale (see Fig. 14). Actual whole-body PET view 

truncated for brevity; actual view extends from the knees to the neck. Rendering in the 

Ground Truth column depict the ground-truth ROIs (green).
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Fig. 13. 
Synchronized multimodal visualization of a PET-avid RUL nodule for case 21405.107. All 

views derived from the whole-body PET/CT study pair {IPET, ICT}. (a) ℛthorax-masked PET 

volume fused with surface renderings of the segmented CT-based airway-tree (brown), 

lungs (light blue), and RUL nodule (black, indicating an intense PET-avid location); PET 

data rendered using indicated [0.0, 5.0] SUV scale. (b–d) present sample MPR views 

synchronized to the selected nodule location, as indicated by the red cross-hairs in all views. 

Fused PET/CT view truncated slightly for brevity, as in Fig. 12.
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Fig. 14. 
Composite multimodal visualization of three PET-avid ROIs for case 21405.116. (a) 

ℛthorax-masked PET volume fused with CT-based surface rendering of the segmented 

airway-tree (brown), airway centerlines (red), and lungs (light blue). The whole-body 

PET/CT scans were registered and deformed to the space of the patient’s HR chest CT scan, 

while the segmented structures were derived from the HR chest CT scan. The PET-avid 

ground-truth ROIs are highlighted by green circles. (b) Surface rendering of airway tree, 

centerlines (red), and ground-truth ROIs (red) derived from the HR chest CT scan. The 

highlighted blue path represents the optimal navigation route leading to the ground-truth 

RUL nodule, while station 4R and 3P lymph nodes also appear. (c) Axial section of HR 

chest CT scan fused with ℛthorax-masked version of corresponding registered/deformed 

whole-body PET section (red); red cross-hairs highlight the RUL nodule. (d) fused whole-

body PET/CT VB rendering near site of the PET-avid RUL nodule (bright yellow), along 

with blue navigation route. (e) HR-CT-based VB rendering of same location as (d), with the 

HR-CT version of the RUL nodule (green) also appearing. In (a) and (d), PET data is 

rendered using the indicated [0.0, 5.0] SUV scale. Compare to related visualizations for this 

case in Fig. 11, third row, and Fig. 12, second row.
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Fig. 15. 
Segmentation of ℛthorax with extra leakage for case 21405.126 (coverage = 99.94%, leakage 

= 0.98%, 5.00% (no lungs)). Respiratory motion caused incorrect “intermixing” of the 

thoracic and diaphragm regions. Ground truth = red regions, Segmentation = green regions, 

overlap between ground truth and segmentation = brown regions.
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TABLE I

Patient scan database. “Scan Type” indicates the type of CT scan, “No.” indicates the number of scans used 

for an indicated group, “Nz Range” denotes the [min, max] range for the number sections constituting a scan in 

a given group, “Contrast” indicates the number of scans of a given scan type involving a contrast-agent 

injection, and “Resolution” specifies the [min, max] range of the axial-plane resolution (Δx, Δy) in mm for a 

scan in a given group.

Scan Type No. Nz Range Contrast Resolution

whole body* 17 [251, 312] 1 [0.9, 1.2]

LR chest 6 [93, 373] 0 [0.3, 0.7]

HR chest* 14 [372, 752] 7 [0.5, 0.8]

entire database 37 [93, 752] 8 [0.3, 1.2]
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TABLE II

CT scans used in benchmark tests. “Resolution” signifies the axial-plane resolution in mm.

CT Scan Nz Resolution

whole-body (case 21405.111) 293 0.9

LR chest (case 21405.98) 100 0.3

HR chest (case 21405.111) 664 0.6
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TABLE III

Sensitivity of thoracic-cavity segmentation as function of the number of seeds n in seed set S per (10).

n
Performance Metric (mean ± SD in %)

Dice Jaccard Coverage

8 99.85 ± 0.07 99.71 ± 0.14 99.95 ± 0.01

12 99.84 ± 0.07 99.68 ± 0.14 99.95 ± 0.01

16 99.86 ± 0.07 99.72 ± 0.14 99.98 ± 0.01

24 99.79 ± 0.08 99.58 ± 0.15 99.96 ± 0.01

32 99.78 ± 0.07 99.57 ± 0.13 99.97 ± 0.01
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TABLE IV

Sensitivity of thoracic-cavity segmentation to the radius of B4 defining working area ℳ in (13).

Radius
Performance Metric (mean ± SD in %)

Dice Jaccard Coverage

2.5 99.35 ± 0.33 98.71 ± 0.66 99.91 ± 0.04

5.0 99.79 ± 0.09 99.58 ± 0.18 99.96 ± 0.02

7.5 99.86 ± 0.07 99.72 ± 0.14 99.98 ± 0.01

10.0 99.86 ± 0.06 99.72 ± 0.13 99.95 ± 0.02
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TABLE VIII

Ground-truth ROI characteristics. “Mean” and “Range” denote the mean value and range for a given 

characteristic over the set of 44 ground-truth ROIs.

Characteristic Mean Range

volume 5.9 cm3 [0.6 cm3, 90.3 cm3]

short-axis length 1.7 cm [1.0 cm, 6.4 cm]

SUVmean 3.62 [2.16, 6.76]

SUVmax 5.83 [2.29, 16.21]
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