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Abstract

Deformable surface mesh registration is a useful technique for various medical applications, such 

as intra-operative treatment guidance and intra- or inter-patient study. In this paper, we propose an 

automatic deformable mesh registration technique. The proposed method iteratively deforms a 

source mesh to a target mesh without manual feature extraction. Each iteration of the registration 

consists of two steps, automatic correspondence finding using robust point-matching (RPM) and 

local deformation using a radial basis function (RBF). The proposed RBF-based RPM algorithm 

solves the interlocking problems of correspondence and deformation using a deterministic 

annealing framework with fuzzy correspondence and RBF interpolation. Simulation tests showed 

promising results, with the average deviations decreasing by factors of 21.2 and 11.9, respectively. 

In the human model test, the average deviation decreased from 1.72 ± 1.88 mm to 0.57 ± 0.66 mm. 

We demonstrate the effectiveness of the proposed method by presenting some medical 

applications.
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1. Introduction

1.1 Background

Image registration has been an essential technique in medical applications including multi-

modality image registration for diagnosis or planning, statistical analysis for population 

study, in-room surgery/treatment guidance, and intra- or inter-patient study [1, 2]. With the 

extensive use of multi-modal imaging and new treatment techniques, the requirement for a 

robust registration algorithm for comparing or fusing images representing the same 

structures obtained under different conditions or modalities is ever increasing. Medical 

image registration has long been classified as rigid or affine; however, deformable 

transformation is now available as an alternative method for improving registration accuracy. 

Deformable (or non-rigid) registration is comparatively more complicated and involves 

modeling the local distortion in addition to translation, rotation, and scaling. According to 

the type of data, deformable registration is categorized into volumetric or surface. 

Volumetric registration uses the voxel information of volume images. Many approaches have 

been actively investigated, including mutual information (MI) [3], free-form deformation 

(FFD) based on B-spline [4, 5], and Demon deformable registration [6, 7]. Deformable 

surface registration (DSR) registers two surface meshes consisting of point and triangular 

elements. Non-rigid point registration is a well-known method in this category for 

registering two point sets [8, 9]. Many DSR approaches have been proposed robust high-

speed automatic DSR has been difficult to achieve. Typically, the user must define the 

corresponding point sets manually; this is a tedious and time-consuming task, because it 

requires exploring and defining the fiducial points in 3D repeatedly. Automatic methods 

have been unstable or slow, with runtimes of tens of minutes for thousands of input points.

To overcome these difficulties, we propose a robust and fast technique for automatic DSR. 

The proposed method automatically determines the corresponding points and local 

transformations in a deterministic annealing framework. Every registration iteration consists 

of two steps, automatic correspondence finding and local deformation. Unlike previous 

methods, we use radial basis function (RBF) interpolation [10] for local deformation, which 

yields fast and stable solutions. We evaluate the accuracy and performance of the proposed 

method using synthetic simulation tests. The sample applications presented in this paper 

demonstrate the robustness and versatility of the proposed method, which enable its use in 

other medical fields such as patient setup for surgery or radiotherapy (RT) using 3D optical 

scanning, modification of radiotherapy planning, and patient-specific modeling.

1.2 Related Work

Various algorithms exist for non-rigid point set registration. In this section, we present an 

overview of the non-rigid registration methods and identify our motivation. Li et al. 

presented a template-based deformable registration by large-scale and fine-scale process 

[11]; however, their method requires a template model focusing only on single-view 

systems. Bonarrigo et al. proposed a non-rigid registration of partially overlapping surfaces 

from a deforming model by nonlinear physics-inspired deformation, with a computation 

time of 10 min for 9,600 points [12]. Recently, Myronenko and Song proposed a 

probabilistic method, Coherent Point Drift (CPD), for both rigid and non-rigid point set 
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registration [13]. They demonstrated promising results. However, naive CPD is rather slow, 

and it is not obvious that their fast implementation of non-rigid CPD outperforms the other 

methods. CPD originated from a registration method using Gaussian mixture models [14].

Robust point-matching (RPM) accepts two point sets as input and iteratively calculates the 

correspondence between the sets and transformation that registers them. Rather than 

assigning a one-to-one mapping for every pair of points, the correspondence is obtained in 

RPM using soft assignment in fuzzy logic [15]. Chui and Rangarajan developed thin-plate 

spline-based RPM (TPS-RPM) for non-rigid mapping, which yielded better results than 

rigid deformation did [16]. Xia et al. investigated an automatic non-rigid registration for 

whole body CT mice images [8]. Their method used skeletons for correspondence through 

RPM, and an intensity-based algorithm refined the transformation with spatial adaptation of 

the transformation’s stiffness and RBF interpolation. However, the method involves 

volumetric registration, and they reported an average running time of 171 min for mice 

skeleton studies. Wang and Fei [9] proposed non-rigid B-spline-based point-matching 

(BPM), which combines B-spline-based local deformation with an RPM framework. They 

argued that compared to TPS-RPM, BPM could decrease the degrees-of-freedom from 

thousands of parameters to a small number of B-spline coefficients. However, despite 

demonstrating acceptable results, BPM remains computationally slow, with a reported 

average computing time of 45 min for input surfaces with 4,500 points. Other approaches to 

B-spline-based free-form deformation for volumetric registration include using Xie and 

Farin’s hierarchical B-Splines [17], and more can be found in [4]. For robust and efficient 

surface deformation, RBF interpolation [10] can also be used. Its scale-independent 

characterization is well suited for reconstructing surfaces from non-uniformly sampled data. 

This analogy is perfectly applicable to our problem of local deformation from corresponding 

points of two input surfaces. We thus propose an RBF-based RPM to utilize these 

advantages to their fullest for yielding an efficient automatic DSR algorithm.

2. METHODS

2.1 Deformable registration framework

Given two point sets of a source surface S:{si, i = 1, 2, …, ns} and a target surface T:{tj, j = 

1, 2, …, nt}, the deformable registration problem is to determine an optimal spatial 

transformation f that deforms S to fit T. In general, si and tj represent the spatial coordinates 

of the surface points in 3D, and f(si) is the coordinates of S that result from the deformable 

registration while preserving the topology. First, rigid transformation for global 

transformation fglobal is calculated to provide suitable initial conditions for the local 

transformation flocal. To obtain fglobal, we use point-to-plane iterative closest points (ICP) 

[18, 19], a widely used rigid transformation method. If the initial postures of S and T are 

considerably different, three pairs of corresponding points are required by the user input 

before applying ICP. ICP solves the optimization problem that minimizes the following error 

function.

(1)
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where si, si', R, q, and ni are the source points, si’s projected points onto T with the direction 

of ni, rotation matrix, translation vector, and si’s normal vector, respectively.

After fglobal roughly aligns S to T, a local transformation flocal is computed to change the 

local shape to minimize the deviations between fglobal(S) and T. For robust and fast 

computation of flocal, we propose an RBF-based RPM, with each iteration consisting of two 

steps: automatic correspondence finding and RBF deformation. The framework solves the 

interlocking optimization problems of the correspondence and the local transformation 

under the deterministic annealing scheme. Fig. 1 shows the deformable registration 

framework algorithm. In the deterministic annealing procedure, the algorithm searches for 

correspondences with a wide range in the beginning stages, while covering only the local 

range at the end. The parameter κ specifies the deterministic annealing temperature, which 

we determined to be reduced linearly by κn+1 = 0.90κn. The temperature parameter κ 
weights the fuzziness regarding the distance in the cost function. We set the initial value of κ 
as κ0 = 0.5 , as suggested by Chui and Rangarajan [16], although κ0 values did not 

significantly affect the results in the experiments. When the deformation results converge at 

a specified level (if the deviation change is below a threshold between successive iterations), 

we terminate the annealing procedure.

2.2 Automatic correspondence finding

Automatic correspondence finding has been a popular topic in character recognition and 

pattern matching [15]. A key RPM characteristic is that the correspondence is obtained by 

soft-assignment, rather than one-to-one mapping [8, 9, 15]. A point si of S relates to the 

points of T with a fuzzy ratio mij,

(2)

for i = 1, 2, …, ns, and j = 1, 2,…, nt. The correspondence of S and T is obtained using a 

fuzzy matrix M={mij}. M is more fuzzy at the beginning with larger κ , and the fuzziness 

decreases with smaller κ at the end of the deterministic annealing process. To reject the 

outliners, we define a point as a outlier if the point’s distance to any point in the other 

surface is larger than  in the extra row and column (i=ns+1, j=nt+1) of M [9, 15]. The 

target point  on T corresponding to a source point si on S is computed as follows.

(3)

Fig. 2 and Fig. 5 show the correspondence finding (S: red, T: blue), with the computed 

corresponding points  displayed in black points.

Kim et al. Page 4

Comput Biol Med. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.3 RBF transformation for local deformation

Once the correspondence is determined, local transformation flocal is calculated using RBF. 

RBF is a powerful interpolation technique in multidimensional space, and mesh deformation 

is one of the best applications of RBF [10, 20]. The basis function φ(r) is a real-valued 

function whose value depends on the distance from the feature points, hence the term radial. 

RBF constructs the interpolants as a linear combination of the basis functions as follows.

(4)

where p(x) is a linear polynomial of low degree, and the wi are the real number coefficients 

of basis functions. We tested popular choices for the basis function φ(r) , such as the thin 

plate spline, multiquadric, and Gaussian funhctions, and we selected the multiquadric 

function φ(r) = (r2 + d2)1/2 with a constant d. We empirically determined φ(r) and d by 

testing the candidate basis functions and variables with sample patient data shown in Figs. 3, 

5 and 8. In the specific case of the biharmonic spline in 3D, we can assume p(x) = c1 + c2x + 

c3y + c4z, with Eq.(4) written in matrix form as

(5)

where Aij = φ(r) for i,j=1,…,ns,

w = (w1, w2, …, wns)T , and c = (c1, c2, c3, c4)T.

We obtain the coefficients of the basis functions wi using the condition that si equals  for 

registration.

(6)

We can solve Eq.(6), because we have ns pairs of si and ti. We use singular value 

decomposition (SVD) to compute w and c.

(7)
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where H is a matrix that consists of RBF values.

With the calculated w and c from Eq.(7), we apply the RBF transformation for all the points 

of S using Eq.(4), and finally obtain the morphed source surface S'. For robust RBF 

transformation with dense points, we sample the corresponding points, instead of using the 

entire si point set, because SVD becomes unstable for matrix sizes larger than several 

thousand in our cases [10]. At each iteration, we down-sampled the source points si and 

computed the representative  by mesh decimation with randomized ratios, using  for 

correspondence finding and RBF deformation. This enables numerically stable computations 

for large ns and nt. We used SVD implemented by Numerical Recipes [21]. Fig. 3 illustrates 

an example of RBF-based RPM, which shows that S in red is deforming to register to T in 

blue through iteration.

2.4 Evaluation of RBF-based RPM

We performed simulation tests with synthetic data to estimate the accuracy of the proposed 

RBF-based RPM in an ideal situation. To evaluate the proposed method, we performed 

simulation experiments using a spherical model and a human head. First, we created a 

synthetic target surface by intentionally deforming a 10.0 mm diameter sphere with 772 

points. To obtain the synthetic target surface for T, the spherical model was scaled by 20%, 

−10%, 15% in the x, y, z directions, respectively, and distorted using free-form deformation 

(FFD) with 4 * 4 * 4 nodes by moving the nodes in arbitrary directions. The original sphere 

for S was then registered to T using the proposed method, and the deviation was checked. 

Because the threshold to terminate the iteration can vary in different applications, we fixed 

the iteration number as 10 in the simulation tests. We used Rapidform to create the synthetic 

target surface and check the deviations [22]. As the second simulation test, we used a human 

head model. We extracted the skin surface from a patient computed tomography (CT) image 

and intentionally deformed it using scaling and FFD to create a target surface. The distorted 

head model was obtained by moving the nodes of FFD in arbitrary directions resulting in 

deviations of 5.57 ± 3.99 mm (average ± SD) and maximum deviation of 19.96 mm. In the 

synthetic head model test, the number of points was 6,986 and 6,967 for S and T, 

respectively. After automatic DSR using RBF-based RPM, we analyzed the deviation 

between the target T and the registered surface S'. The deviation is computed using the 

shortest distance between each source point si and T. In the tests with real patient data of 

example applications, we checked not only the visual appearance but also the deviation 

between T and S', as in the simulation experiments. This retrospective study was approved 

by the Stanford University School of Medicine Institutional Review Board (No. 16561), and 

patient information was anonymized.

3. RESULTS

3.1 Performance of RBF-based RPM

Simulation test using a spherical model—Fig. 4 presents the accuracy test results 

using a synthetic spherical model. While Fig. 4(a) displays S and its deviation; Fig. 4(b) 

displays S', which matched T perfectly after ten RBF-based RPM iterations. The computing 

time was 11.6 s on a PC with an Intel i7 3.4 GHz CPU and 12.0 GB RAM. The average 
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deviation of points between S' and T decreased from 3.81 to 0.18 mm with a decrease ratio 

of 21.2. The maximum and standard deviations were reduced by ratios of 17.2 and 16.8, 

respectively, as indicated in Fig. 4(c).

Simulation test using a head model—The simulation test using a human head model 

and its synthetic target, as indicated in Fig. 5, also yielded promising results. Before local 

deformation, S and T had maximum deviations of 19.96 mm and average deviations of 5.57 

± 3.99 mm, as indicated in Fig. 5(g). The red circles in Fig. 5(c) indicate parts with 

significant deviations. The histograms in Figs. 5(e) and 5(f) clearly indicate that the 

proposed method could deform S to have the same shape as T. After local deformation, the 

resulting maximum and average deviations were 1.41 and 0.47 ± 0.34 mm, respectively. The 

maximum and average deviations were reduced by ratios of 14.2 and 11.9, respectively. The 

average deviation decreased from 5.57 ± 3.99 mm to 0.47 ± 0.34 mm after local 

deformation. The results presented in Fig. 5 were obtained using ten iterations of RBF-based 

RPM, and the computing time was 238 s (approximately 4 min) with approximately 7,000 

points (ns = 6,986 and nt = 6,967).

3.2 Medical applications using RBF-based RPM

In this section, we present three examples of medical applications using RBF-based RPM: 

patient setup using 3D optical imaging, modification of radiotherapy planning, and patient-

specific bone modeling. The detailed background and importance of these medical 

applications are discussed in Section 4.

Patient setup using 3D optical imaging—A sample application of RBF-based RPM 

for patient setup in head-and-neck radiotherapy (RT) is illustrated in Fig. 6. As the red 

circular marking in Fig. 6(a) shows, the target surface extracted from the planning CT is 

significantly different from the body shape at the treatment obtained from the cone beam CT 

(CBCT), even after rigid registration using ICP. As indicated in Figs. 6(b) and 6(d), after 

deformable registration, the source surface obtained at treatment was successfully deformed 

to match the target surface of the preplanning CT. Fig. 6(c) indicates the source S and its 

corresponding points ti. In the red circles of Figs. 6(c) and 6(d), the noticeable discrepancies 

between S and  disappeared. The deviation decreased from 1.72 ± 1.88 mm to 0.57 ± 0.66 

mm using RBF-based RPM. Then, surgical or RT planning is modified according to the 

obtained transformation f.

Modification of radiotherapy planning using bone data—Fig. 7 presents the idea of 

radiotherapy (RT) planning modification using the proposed method, which is based on bone 

models from the planning and replanning CT. Fig. 7(c) displays the bone models with the 

tumor volume from the planning CT. Because we already have the RBF transformation 

function flocal (Eqs. (4) and (7)), the interpolation function near the bones is known. We 

apply flocal to modify RT planning by assuming that the soft tissues near the bones will 

follow the posture change of the bones. Applying RBF interpolation costs only O(n) 

computation once we have flocal. Fig. 7(d) displays the deformed lattice using flocal. Fig. 7(e) 

demonstrates the planning modification for the tumor volume from applying the RBF 

transformation, which indicates a slightly different shape from the original tumor volume 
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from the planning CT. In addition to the tumor volume, we can provide an initial prediction 

for the soft-tissue organs and dose calculation results of RT planning, which can 

dramatically reduce the preparation time for RT replanning. The tumor volume change after 

replanning was computed as 0.6 ± 0.51 mm with a maximum deviation of 3.73 mm (Fig. 

7(f)).

Patient-specific bone modeling—Fig. 8 illustrates patient-specific femur modeling by 

using the proposed method. The template model prepared in Fig. 8(a) is deformed to match 

the patient’s femur in Fig. 8(b). As indicated in Fig. 8(b), the patient’s femoral model is not 

refined; hence, it is crude and contains incorrect topology. A 3D patient-specific bone model 

was successfully created using the proposed method, as illustrated in Fig. 8(d). The 

deviations before and after the registration are displayed in Figs. 8(e) and 8(f), which are 

2.28 ± 1.85 mm and 0.63 ± 0.54 mm, respectively. The runtime for RBF-based RPM was 

232 s for surfaces with approximately 4,000 points (ns = 3,975, nt = 3,851).

4. Discussion

In Section 3.1, we evaluated the performance of the proposed methods under a simulated 

environment. Using the simulated models obtained from real patient data, we could measure 

the theoretical accuracy of the proposed method. Although comparing the exact 

performances is difficult because of different computing environments, the proposed RBF-

based RPM was more than ten times faster than BPM according to the literature of [9]. The 

average runtime of the BPM algorithm was reported to be 45 min with approximately 4,500 

points. Spline-based methods require solving complex surface equations with higher order 

terms [9, 15], which is inevitably slow. Compared to the spline-based methods, the proposed 

method is robust and efficient. The proposed method was shown to be robust, which 

produced stable computational results without any error case from all the tested models. Li 

et al. [8] also applied RBF for local deformation; however, their deformable registration does 

not use deformable surface directly; instead, it uses intensity-based volumetric data. In terms 

of the basis function in RBF, we empirically adopted a multiquadric basis function instead of 

thin plate spline (TSP). The contribution of the proposed study is a robust and efficient DSR 

method for medical applications using RBF-based RPM under an annealing fuzzy-based 

scheme. In our experiments, most of the computing time was consumed in solving the 

inverse matrix using SVD in the RBF deformation, which can be accelerated if parallel 

computing is implemented using a graphics processing unit (GPU).

Patient setup using 3D optical imaging

Many approaches to 3D optical imaging for patient setup have been proposed recently in 

surgery [23, 24] and RT [25-28]. 3D optical imaging for patient setup is advantageous 

because it is radiation free and can even monitor patient movement by capturing data in near 

real time [29]. Moreover, 3D scanning for patient setup provides greater patient comfort 

compared to conventional invasive methods such as stereotactic frames in brain surgery. 

Patient positioning is an important step in improving surgery and RT accuracy. To improve 

surgery or RT outcome, the preoperative or RT planning data must accurately match the 

intraoperative data. Thus, accurate registration is a key technology for patient setup using 3D 
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optical imaging and RBF-based RPM can improve the registration result. The proposed 

method can be utilized to overcome the problem of surface shape change and noise/defects 

from 3D optical imaging for accurate patient setup.

Modification of radiotherapy planning using bone data

Multi-fractional RT, which requires multiple treatments, is a common protocol in RT. RT 

replanning occurs during long-term tumor treatment for several reasons: tumor size or shape 

change, patient weight loss, and patient posture change. If the clinician decides to replan, RT 

planning is performed anew based on the replanning CT. Typically, RT planning requires 

substantial time and effort for segmentation and dose calculation. Al-Mayah et al. [30] 

investigated a biomechanical-based image registration for head-and-neck RT and found that 

aligning the vertebrae and mandible improves neighboring soft tissue targeting, including 

the tumor. Veiga et al. [31] suggested adaptive radiotherapy (ART) using deformable 

registration with B-spline FFD, a volumetric registration method. Similarly, we can use 

RBF-based RPM for RT planning modification. Although each bone is a rigid body, the set 

of head-and-neck bones, including mandible and cervical vertebrae, can be regarded as a 

deformable model. The results in Section 3.2 indicate that the application of RBF-based 

RPM is feasible in adaptive treatment for head-and-neck RT planning. Further study is 

required to measure the target registration error (TRE). Once deformable registration is 

performed, the target (such as tumor) location can be computed. For example, the predicted 

result of the deformed tumor by the RBF-based RPM can be compared to the real tumor 

location from the intraoperative CBCT. In this case, the predicted tumor is computed by 

RBF-RPM using preoperative CT (source) and intraoperative CBCT (target), and the result 

is compared with the model directly obtained from the real intraoperative CBCT.

Patient-specific bone modeling

3D patient-specific modeling is gaining increasing popularity in many medical fields such as 

tissue engineering using 3D printing [32], finite element method (FEM) analysis [33], and 

diagnosis/treatment planning and surgical simulation [34]. Effective patient-specific 

modeling can be achieved using the proposed method with a template model. Once we have 

a prepared template with perfect topology and geometry for representative cases, RBF-based 

RPM can create a patient-specific model by deforming the template model. From the coarse 

data of an individual’s CT or other types of radiographic images, the template model as S is 

deformed to the coarse patient data as T. A similar approach in segmentation of patient 

specific 3D organ modeling can be found in [35].

5. Conclusion

We proposed a robust and efficient RBF-based RPM method for DSR suitable for various 

medical applications. The proposed method can eliminate the deviation of two input surfaces 

and is significantly faster than the previous method of B-spline-based RPM. We 

demonstrated the effectiveness of RBF-based RPM by suggesting typical applications: 

patient setup using 3D optical imaging, modification of radiotherapy planning using bone 

data, and patient-specific modeling. We plan to accelerate RBF deformation by 

implementing GPU-based computing along with further investigation on the clinical study of 
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the sample applications presented in this paper, including an analysis on target registration 

error and clinical feasibility.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Pseudocode of RBF-based robust point-matching algorithm.
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Figure 2. 
Automatic correspondence finding. (a) The sphere-shaped source surface in red and the 

distorted target surface in blue, (b) the target surface and the corresponding points (note that 

the black corresponding points are located differently from the vertices of target surface), (c) 

the source surface and the corresponding points.
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Figure 3. 
Deformable registration results according to the number of iterations. The average deviation 

decreases through iteration as indicated underneath each figure. The source surface S is red, 

and deviations were visualized by color-map in target surface T (Unit: mm).
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Figure 4. 
Accuracy test results using a spherical model and its synthetic target. The deviation between 

the source (color-mapped) and target (wire-framed) (a) before and (b) after RBF-based 

RPM. (c) Maximum, average, and standard deviations between before and after 

deformations. (Unit: mm)
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Figure 5. 
Accuracy test results using a human head model and its synthetic target. The left ((a), (c), 

(e)) and right ((b), (d), (f)) columns show results before and after registration, respectively. 

The models in (a) and (b) are in shade mode; those in (c) and (d) are in the wire-frame 

mode. In (a)-(d), S and T are in red and blue, respectively. The red-circles in (c) indicate the 

parts with significant deviations. (e) and (f) display the deviation with a color-mapped 

model. (g) Maximum, average, and standard deviations are compared between before and 

after deformations. (Unit: mm)
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Figure 6. 
Example of patient setup using 3D optical scanning. (a) and (c): before deformable 

registration after rigid registration using ICP; (b) and (d): after deformable registration using 

RBF-based RPM (blue surface: body surface extracted from planning CT, red surface: body 

surface extracted from CBCT, assuming the 3D optical scanning data). (a) and (b) display 

the source and target surfaces; (c) and (d) display the source (intraoperative data) and its 

corresponding points (planning CT).
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Figure 7. 
Radiotherapy planning modification example. (a) Bone models from the planning CT (blue) 

and replanning CT (red), (b) after registration, (c) bone model with planning CT tumor 

volume (green), (d) lattice deformation using RBF deformation, (e) modified tumor volume 

using RBF-based RPM, and (f) deviation of tumor volume between before and after 

planning modification (Unit: mm).
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Figure 8. 
Patient-specific femur modeling example. (a) template femoral model (3,975 points and 

7,908 triangles), (b) specific patient’s bone model (3,851 points and 7,682 triangles), (c) 

after rigid registration by ICP, (d) after deformable registration using RBF-based RPM, (e) 

deviation before deformable registration, and (f) deviation after registration.
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