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ABSTRACT  

Positron emission tomography (PET) in medicine exploits the properties of positron-emitting 

unstable nuclei. The pairs of  - rays emitted after annihilation are revealed by coincidence 

detectors and stored as projections in a sinogram. It is well known that radioactive decay follows a 

Poisson distribution; however, deviation from Poisson statistics occurs on PET projection data prior 

to reconstruction due to physical effects, measurement errors, correction of deadtime, scatter, and 

random coincidences. A model that describes the statistical behaviour of measured and corrected 

PET data can aid in understanding the statistical nature of the data: it is a prerequisite to develop 

efficient reconstruction and processing methods and to reduce noise. 

The deviation from Poisson statistics in PET data could be described by the Comway-Maxwell-

Poisson (CMP) distribution model, which is characterized by the centring parameter  and the 

dispersion parameter  , the latter quantifying the deviation from a Poisson distribution model. In 

particular, the parameter   allows quantifying over-dispersion ( <1) or under-dispersion ( >1) of 

data. A simple and efficient method for   and   parameters estimation is introduced and assessed 

using Monte Carlo simulation for a wide range of activity values.  

The application of the method to simulated and experimental PET phantom data demonstrated 

that the CMP distribution parameters could detect deviation from the Poisson distribution both in 

raw and corrected PET data. It may be usefully implemented in image reconstruction algorithms 

and quantitative PET data analysis, especially in low counting emission data, as in dynamic PET 

data, where the method demonstrated the best accuracy. 

 

 

KEYWORD: positron emission tomography (PET), Conway-Maxwell-Poisson (CMP)  

distribution, maximum likelihood (ML) estimation, sinograms, Poisson statistic deviation. 
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Nomenclature 

CMP Comway-Maxwell-Poisson 

ML maximum likelihood 

ML-EM maximum likelihood expectation maximization 

NB negative binomial 

PET positron emission tomography 

WLS weighted least square 

Se standard error 

%bias bias index in percent 

E[X] mean of the CMP process 

Var[X] variance of the CMP process 

D  dispersion index 

n sample size 

N number of repetitions of the same experiment 

Nv 

number of vectors, i.e. central line of the 

sinograms, used in the analysis of experimental 

phantom data 

Nl 
number of sequenced vectors, used in the 

analysis of experimental phantom data 

  
centring parameter in the CMP distribution; it is 

related to the observations mean 

ν  

shape parameter in the CMP distribution; it is 

related to data over-dispersion and under-

dispersion 

̂  
estimated centring parameter over the sample 

size n 

  mean of the ̂  value, over N repetitions 

̂  
estimated dispersion (shape) parameter over the 

sample size n 

  mean of the ̂ value, over N repetitions 

  dummy variable, stands for   and   

i
̂  estimated value of   at each repetition 
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1. Introduction 

Today numerical and computational methods are becoming increasingly frequent in biology and 

medicine to gain new insights into the emerging research trends [1-4]. Among those benefiting from 

the numerical and computational methods, medical imaging plays an integral role, especially in the 

image formation process. In particular, in PET imaging such methods are crucial to grasp both the 

biological and the technological aspects of image acquisition and reconstruction processes. 

Actually, in positron emission tomography (PET) a tracer containing a radioactive isotope is 

introduced into the body, and it emits positrons while being involved in metabolic processes. Due to 

annihilation between a positron and an electron, a pair of rays is emitted in opposite directions 

along a line of response (LOR) at each spatial coordinate; the -ray pair is revealed by a coincidence 

detectors pair placed in an array of detector units surrounding the body. Emission of rays follows 

a Poisson law [5]. In this paper, numerical and computational methods are used to investigate 

deviation from Poisson statistics occurring in PET projection data before (or during) reconstruction. 

A known source of deviation from Poisson model is related to errors introduced in correcting 

some unwanted physical and acquisition effects, such as scattering errors, accidental errors, positron 

range, deadtime, detectors non-collinearity, variation in detection-pair sensitivity, and others. [6-9]. 

Scattered coincidences are due to one or multiple Compton scatterings of the detected photons; as a 

result, wrong LORs are obtained, which cause a reduced contrast and an overestimation of the 

tracer activity [10]. Random (or false) coincidences occur when photons detected within the same 

time window are not generated from the same annihilation event. Random events cause a reduction 

of image contrast and a bias in the measured activity due to an increased level of background 

activity [11]. Both scattering and random coincidences are not wanted events, which need a 

correction for obtaining exact emission data; however, such corrections cause deviation from 

Poisson statistics [12]. A further source of deviation from Poisson law is the deadtime, i.e. the 

instrumental insensitivity to detectable events due to electronic or mechanical reset time. Especially 

in high counting rate, some events can be missed, and the detected rate is lower than the true one 

[13]. Reduction in the mean value is a potential cause of the deviation from the Poisson model. The 

detectors non-collinearity and the variation in detection-pair sensitivity are two scanner-related 

factors that cause an incorrect emission evaluation, and need correction [11]. The sensitivity of the 

LOR about the mean is affected both by the geometry of the detectors and the LOR position; hence, 
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a geometric correction is needed to get a correct detection. Besides such geometric effects, the 

block detectors themselves vary in efficiency, as the photomultipliers tubes gains are not uniform 

(and may change in time), and the crystals are not all identical; then a normalization operation is 

required. In commercial PET scanners, in addition to the stochastic nature of the photon-counting, 

the intrinsic thermal and electronic noise should be accounted for. Such sources of artefacts are 

usually described by a Poisson model corrupted with additive Gaussian noise [14]. When deviation 

from Poisson model is notable, Poisson assumption cannot be applied anymore. Such trade-off 

could be suitably steered by the knowledge of the true statistical model of sinogram data. 

Unfortunately, the degree of deviation from Poisson model remains unknown for the lack of a 

reliable method that can quantify such deviations. 

Using a fully 3D maximum likelihood expectation maximization (ML-EM) reconstruction 

algorithm, two correction methods are currently used. In one method measured data are pre-

corrected before applying the reconstruction algorithm. We know that pre-correction for random 

and scatter coincidences may result in deviation from Poisson assumption, depending on the entity 

of correction. It compromises the estimation of the emission density based on ML reconstruction 

[15]. The second correction method incorporates correction models into the iterative algorithm, thus 

preserving the Poisson nature of the data [16]. Such solution is not immune to errors due to lack of 

knowledge about the true statistics of sinogram data. Moreover, such approach produces bias and 

higher variability in applications where images are reconstructed from a relatively small number of 

counts [17-20]. This issue is an important aspect to take into account, especially for cold regions 

and/or dynamic PET data reconstruction; actually, bias and variability of reconstructed data can 

lead to an incorrect activity evaluation and inexact kinetic parameters estimate. Without any doubts, 

an accurate evaluation of the deviation of the measured PET data from Poisson statistics could lead 

to a more appropriate correction, reducing bias and variability. 

In the literature, a few classes of discrete probability models were proposed and studied as 

alternatives to Poisson model in measured data. Sometimes, the measured data describe an over-

dispersion or an under-dispersion as a deviation from the Poisson model [21]. In PET data analysis, 

the Negative Binomial (NB) distribution model has been proposed in monitoring the over-

dispersion on both uncorrected or corrected (random and scatter coincidence correction) sinograms. 

[22,23]. In such papers, the authors highlighted the importance of an accurate modelling of PET 

data to develop efficient reconstruction algorithms. To account for over and under-dispersion 
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simultaneously, the Comway-Maxwell-Poisson (CMP) distribution model can be suggested. It is 

worth to note that the CMP distribution model has been studied extensively [24-28]. Applications of 

the CMP distribution model range from Biology [29] to Transportation [30], Marketing, and 

eCommerce [31,32]. However, to our knowledge, the use of CMP distribution model to describe 

PET data statistics remains unexplored. So, the application of the CMP model to the analysis of 

PET sinogram data is novel. The relevant benefits are twofold. Firstly, the CMP model allows to 

fully characterize the statistical behavior of PET sinogram data, by accounting for both uncorrected 

and corrected data, thus making possible the inclusion in the correction model of random, deadtime, 

normalization, geometric, and scatter coincidence effects. Secondly, the proposed approach may 

prelude to the application of the CMP model in the wide field of high energy medical imaging, in 

the situation where deviations from the conventionally used Poisson distribution model may 

happen. 

This paper describes a method that uses the CMP model to assess the statistics of PET 

projections, collected into sinograms, in a wide range of emission rates. We focused on uncorrected 

and corrected (for random, deadtime, normalization, geometric, and scatter coincidence effects) 

sinograms, due to their importance in the quantitative analysis of PET data. A method that 

accurately defines the statistics of PET measured data, also in the conditions of deviations from 

Poisson statistics, could have important implications for the quantitative evaluation of PET data. 

 

2. Materials and Methods 

2.1 The Conway-Maxwell-Poisson (CMP) distribution model 

2.1.1 The CMP probability function and its moments 

The importance of CMP distribution model is due to its ability to model count data with different 

degrees of over- and under-dispersion. This distribution is a two-parameters extension of the 

Poisson distribution. Its probability density function is [24]: 
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where x denotes the amplitude data,  is a centring parameter related to the observations mean, 

is the shape parameter of the CMP distribution, and Z is a normalizing constant. 

The parameter outlines deviations from Poisson distribution:  > 1 corresponds to under-

dispersed data,  < 1 to over-dispersed data, and  = 1 to equi-dispersed (Poisson) data. As   = 1 

the mean value becomes equal to   (the Poisson parameter). 

Previous relationship (1) allows for the following representation as a non-linear decrease in ratio 

of successive probabilities [33]: 
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Such formulation enables us to use the weighted least squares (WLS) method to estimate the 

CMP parameters. The   and   parameters can be used to derive an approximation of the mean, 

E[X], and the variance, var[X], of the CMP process according to the following relationships [33]: 
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It follows that, for  =1, E[X] =  and var[X] =  ,which corresponds to a Poisson process. 

 

2.1.2 CMP parameters estimation method 

The  and  parameters can be estimated using the approach described in [33]. The approach is 

based on eq. (2), relating the ratio of successive CMP probabilities to a non-linear relationship with 
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the  and  parameters. The following regression equation is found, taking the logarithm of both 

sides of eq.(2) [26]: 

 

)log()log())(/)1(log( xxpxp       (5) 

 

where p(x) denotes P(X=x). In actual situations, the ratio of probabilities on the left side of eq.(5) 

can be substituted with the relative frequency of occurrence of (x-1) and x. The amplitude x is 

divided into a number of intervals, or classes, and for each class, the frequency of occurrence is 

evaluated. The number of classes is chosen in order to avoid zero counts in every class. 

The estimation process can be split into two steps: 1) the term on the left side is plotted against 

the log(x) for every value of x; 2) the best linear fitting is evaluated according to the WLS method 

to extract the CMP parameters. In the ideal CMP model, the data lie in a straight line, with angular 

coefficient   and intercept )log( . In the Poisson model ( 1 , 1 ) the intercept would be 

equal to zero and the angular coefficient would be equal to one. 

The percent-bias (%bias) and standard error (se) were used as performance indices of  and 

parameters estimator. For each parameter, the %bias is defined as the difference between the 

expected and the true value. When %bias is zero, the estimator is unbiased. The %bias index is 

defined as follows[34]: 

1001

ˆ1

% x
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where  is a dummy variable and it stands for   and  ; the mean computation is performed 

over N repetitions of the same experiment; 
i

̂  is estimated at each repetition over a sample of size n 

and   is the true value. 

The ‘se’ index is defined as the ratio between the standard deviation (std) of 
i

̂  (i=1,..N)  

estimates and the square root of the sample size[35]: se = std/√N. 

The dispersion index, or Fano factor, D is defined as follows [35,36]: 
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D = var[X | ̂ ,̂ ]/E[X | ̂ ,̂ ]     (7) 

with  E[X | ̂ ,̂ ] and var[X | ̂ ,̂ ] calculated according to eq. (3) and eq. (4). It is an index 

which gives information about the over- or under-dispersion of data. The Poisson process is 

characterized by D = 1. 

 

2.1.3 Data homoscedasticity 

The ordinary regression model herein used is based on the assumption of homoscedasticity of 

data amplitude distributed on the frequency of occurrence classes. Because, as demonstrated in [33], 

such assumption is violated in the CMP distributed data (the variance of the dependent variable is 

not constant), we expect implications on parameters estimation accuracy. Firstly, the CMP plot is 

constructed plotting the logarithm of the ratio of successive frequencies (log(p(x-1)/p(x)) vs log(x)) 

for various combinations of n,   and  . On such a plot we evaluated the regression parameters 

over the full amplitude range of log(x). After that, we progressively reduced such interval 

symmetrically with respect to the amplitude of the maximum frequency of occurrence (i.e. the 

highest P(X=x)). For each amplitude range, the std of the ̂  and ̂  estimates was evaluated. The 

amplitude interval of log(x) with an almost constant std, at each estimated parameters, was assumed 

as the best compromise for homoscedasticity, and it was used in the following simulations. With the 

constraint defined above, the parameters were estimated by fitting a linear regression to eq.(5).  

 

2.1.4 Characterization of the CMP parameters by simulation

To test the estimation accuracy of the CMP-WLS model, we simulated a dataset characterized by 

a CMP distribution with known regression parameters. Such parameters correspond to a range of 

mean and variance values typical of clinical PET data. We then estimated the %bias and the se of 

the estimates using Monte Carlo simulation. 

The Monte Carlo simulation was implemented according to the following steps: 

1. Generation of repeated CMP data, combining the following parameters: sample size, n, ranging 

from 500 to 5000; true centring parameter, , ranging from 1 to 20;  value, ranging from 0.75 

to 1.5. The excursion of the   parameter allows simulating data with over-, equi- and under-

dispersion encountered in PET sinogram data. In particular, the variance ranges from 0.1*  to 

10* .  
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The R software [37] with compGLM package was used for data generation. 

 

2. For each combination of n,   and , the following estimations were performed: 

- ̂ estimation over the sample size n for three values using eq. (5); each estimation was 

repeated N = 50 and 100 times; 

- ̂ estimation over the sample size n for three   values using eq. (5); each estimation was 

repeated N = 50 and 100 times; 

- evaluation of the mean   over the ̂ values previously estimated; 

- evaluation of the mean   over the ̂ values previously estimated; 

- evaluation of %bias and  se of ̂  and ̂ ; 

 

Parameters estimation and analysis were accomplished by using Matlab (The MathWorks, Inc., 

Natick, Massachusetts, United States) software. 

 

2.2 Phantom data acquisition and analysis 

A cylindrical phantom, with a radius of 12 cm and height of 15 cm, was filled with 18F-FDG 

and water solution (34MBq of total activity at the beginning of the experiment). The phantom was 

put inside a PET/CT (General Electric Discovery) tomograph, exactly in the middle of the bore, 

with its long axis parallel to the bore’s axis. 

The experiment involved the acquisition of 47 slices of 2D PET data projections covering the 

phantom, for six different times, with a time interval of about 15-20 minutes. Each volumetric data 

was acquired in a total time of 300 sec. Due to the emission decay, the total activity at the beginning 

of each volumetric acquisition was reduced consequently; so, the total emission at the beginning of 

each time acquisition ranged from 34MBq to 15MBq. 

For each time interval, the 2D sinograms consisted of 315x367 values for 47 slices; the 

following volumetric sinograms were stored:  

- raw-data, without any correction, and: 

o after correction for random counts 

o after correction for deadtime 
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o after normalization 

o after geometric correction  

o after correction for scattering 

 

The sequence of corrections was applied according to a protocol implemented in a commercial 

scanner.  

On each sinogram, its central line was selected and organized in a vector of 315 points. For a 

homogeneous circular object, the central line of the sinogram is relevant to the sum of the phantom 

contributions situated along its diameter, at each angle. A total of 47 vectors were available for the 

analysis. From these, 11 vectors were removed (they are relevant to 6 slices on one side and 5 slices 

on the other side of the phantom), leaving nv=36 vectors for the analysis. The Region-Of-Interest 

(ROI) for the regression analysis was realized by sequencing more vectors to increase the 

estimation accuracy: the ROI is constituted of n = 315*nl data points, where nl is the number of 

sequenced vectors. The optimal nl value was determined according to simulation results. 

The estimation of the ̂ and ̂ parameters was then performed on the selected ROI. In particular, 

for each volumetric data, the estimated parameters were averaged over N = nv/nl=36/nl 

independent ROIs, each one consisting of n data points covering the middle of the phantom; the 

averaging can be done thanks to the homogeneity of the phantom. Such procedure was repeated for 

each corrected and not-corrected sinogram, and for each emission dose. 

 

3. Results 

3.1 CMP parameters estimation on simulated data 

This section deals with the assessment of the performance of the proposed CMP parameters 

estimation method, using Monte Carlo simulation. Firstly, the amplitude interval of log(x) with a 

constant spread on the estimated parameters was identified. In Figure 1 four typical trends (plus the 

error bars (se)) of the logarithm of the ratios of successive frequencies (log(p(x-1)/p(x)) of eq. (5)) 

vs log(x), for four values ( = 5, 10, 15, 20), n=1000, and   =1, are shown. Such plots highlight 

the spread (i.e. the se) of the dependent variable as a function of log(x): at the extremes, the spread 
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is larger than in the middle of log(x). So, for each  value, an interval of log(x) data with almost 

constant se was identified to be used in the following estimates. Then, the accuracy on   and   

estimation was assessed. At first, the   parameter and %bias were estimated. Figure 2 shows the 

average  estimates as a function of the true  , evaluated for three different  values ( = 2, 10, 

18) with three different sample size n (n=500,1000,5000). The best linear fitting was evaluated 

using the WLS fitting to eq. (5); each estimation was repeated N = 50 and N = 100 times. On each 

plot the dotted line represents the true    regression line; it was used as a reference. The error 

bars represent the se. Figure 3 shows the %bias evaluated on the data of Figure 2. The accuracy of 

the  estimates was evaluated and the results are shown in Figures 4 and 5. Figure 4 shows the plot 

of the average  estimates as a function of the true  at three  values (  = 1.3,1.0,0.7); the error 

bars represent the se. The relevant %bias is shown in Figure 5. Figure 6 shows the results of two 

methods used to characterize the deviation from the Poisson distribution: 1) the dispersion index 

(D) as a function of ̂ and̂  at three lambda values ( = 2, 10, 18); 2) the̂  estimate as a function 

of the true . As expected, the intersection between D and ̂  curves is at about  =1 (Poisson 

process). It confirms that the method based on the moments almost agrees with the method based on 

eq. (5). Unfortunately, the first one does not supply any information on the statistical model 

supporting the data, that is one of the goals of this paper. 

 

3.2 Fitting the CMP distribution to phantom data 

In this section, we illustrate the applicability of the CMP-WLS distribution to fit PET sinogram 

data derived from the acquisition of an experimental phantom. PET data consist of six volumetric 

data; the first one includes raw-data (not-corrected), the remaining ones contain data corrected for 

physical and geometric artifacts. For each volumetric data the procedure described in section 2.2 

was applied, to realize the ROIs with an adequate sample size n, and to use them in the regression 

analysis. Each ROI is constituted by n = 315*nl= 945 data points, with nl= 3. Firstly, a CMP plot is 

built for each ROI using eq. (5), where x is the measured phantom activity. Then, a straight line is 

fitted to the data by using WLS method, after defining the amplitude range of log(p(x-1)/p(x)) vs. 

log(x) with an almost constant spread, according to the simulation procedure. The dispersion ̂  and 

the centring ̂ parameters were derived from the linear fitting under the assumption of CMP 
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distribution. Such procedure was applied to 12 (nv/nl=36/3) independent ROIs. For each volumetric 

data, the mean value  over the 12 ROIs was evaluated. This procedure was repeated on each 

volumetric data as a function of the phantom activity, from about 2.3 to 5 KBq/ml. Figure 7a shows 

the trend of ̂ estimates along with the activity. The centring parameter ̂ estimate versus the 

activity was analyzed and plotted in Figure 7b. The figure 7c shows the dispersion index D vs. the 

activity.  

4. Discussion 

In the current work, we discussed the use of the CMP distribution model to assess the statistics 

of PET data. Parameters estimation based on the CMP model is a well-recognized approach to 

quantitatively characterize deviation from Poisson distribution in many fields [24-33]. However, to 

our knowledge, the use of CMP distribution model for characterizing PET data statistics remains 

unexplored. A different approach aimed to characterize the statistical behavior of PET 

measurements, pre-corrected for attenuation and accidental coincidences, was proposed in [38]. 

Authors assumed the formation of over-dispersed data as due to corrections and modeled them 

using the Negative Binomial (NB) distribution. The weakness of the NB distribution is that it is not 

suitable to describe under-dispersed data, which instead can be handled with the CMP distribution. 

In [9] authors evaluated the statistical properties of the reconstructed PET data, according to row-

action maximum likelihood algorithm (RAMLA) and filtered back-projection (FBP) reconstruction 

techniques. They stated that PET data, after correction and reconstruction, are no longer Poisson 

distributed; moreover, they characterized the noise and the std/mean by using several statistical 

distributions including gamma, normal, and NB. 

The method herein discussed, that is based on the CMP-WLS as described in the sections 2.1.1 

to 2.1.3, appears simple and computationally efficient. Other methods have been proposed in the 

literature, based on maximum likelihood estimation or the estimation of the posterior probability of 

the parameters of the CMP distribution [33,39]. Undoubtedly such methods are more accurate and 

robust, but the relevant equations cannot be solved analytically, thus introducing a high and 

unacceptable level of complexity in the analysis of PET measurements. As far as the 

homoscedasticity assumption is verified, the proposed method allowed us to identify the interval 

where the spread of the dependent variable is almost constant. Such a simple approach appears 



14 
 

adequate to produce consistent estimates of the dispersion parameter ̂  at typical dose used in the 

measured PET data. 

We used Monte Carlo simulation of CMP distributed data to evaluate the goodness of the 

dispersion  and centring parameters estimation, according to the CMP-based method. The 

average estimate of the  parameter as function of the true  , shown in Figure 2, confirms a fairly 

linear relationship; as the sample size n increases, the linear relationship is getting closer to the 

reference line; the se reduces as n increases. The number of averaging N is less effective with 

respect to n. The %bias shown in Figure 3 decreases as n increases; the increase in N is less 

effective. By rejecting the lowest sample size (n=500) because too noisy, the points on the left tail 

experience a large %bias, which resolves in any case in almost a 10% error as  increases. So the 

bias is worse in over- with respect to under-dispersed data. In summary, the %bias decreases below 

a 10% error as  increases in the worst case ( = 18) and it further decrease with decreasing  . 

This last finding allows us to stress that at any n and N values, the  estimates are highly accurate 

in low emission counting, the most critical range in clinical PET measurements [17,18,19,20]. As 

far as the centring parameter  is concerned, as documented in Figure 4, the average  estimate 

maintains an almost linear relationship with respect to the true  , except for points on the right 

tail, which correspond to high  values estimates. Deviation from linear regression is more marked 

at low N (N=500) and n(n=50) values. As expected, the se reduces as n and N increase. The %bias, 

as it is shown in Figure 5, decreases as n and N increase; at any n and N, it drastically decreases 

with decreasing . In the worst case (high  ), to preserve a maximum 20% error, the sample size 

n must be, at least, equal to 1000. The estimation accuracy improves consequently increasing the 

sample size. Such evidence was used in choosing the minimum number of samples when estimating

  on measured PET data. Previous results point out a better estimate of the  parameter in low 

emission count at any  ; for higher emission, a better accuracy is a direct consequence of the 

sample size. Figure 6 summarizes the overall behavior of the   and  estimates regarding the 

moments of the CMP distribution. As expected, the intersection between under- and over-dispersion 

curves is around   =1 (Poisson process), where D is about one; it spreads as   deviates from 

Poisson. It highlights the sensitivity of the method based on eq. (5) to quantitatively describe the 

deviation from Poisson on simulated data. Such trend was observed at any estimated   value. In 
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summary, simulation results show that deviation from Poisson statistics in raw data and data after 

corrections are detectable with a CMP-based method. 

We tested the method on experimental PET data confirming that the CMP model can assess the 

statistics of raw and corrected PET data, provided that data selection is performed according to 

simulation results. First of all, the data size n should be at least equal to 1000 to obtain reliable 

statistical parameters estimation; this is the reason we used nl=3 lines in the experimental phantom 

data analysis, obtaining data size n= 945. Data averaging is preferred to improve the estimates; for 

this reason, the phantom data was obtained as the mean of N=nv/nl=12 ROIs data. Accordingly, the 

raw and corrected phantom data were processed and the results are shown in Figure 7. The error 

bars (±se) shown in figure 7a confirm an almost homoscedasticity in the amplitude range selected 

for the analysis and a low spread in the estimates. The ̂  estimates do not seem to follow a Poisson 

model even in raw-data before correction; such evidence is still not sufficiently discussed in the 

literature, mainly focused on the assumption of the Poisson model. The direct consequence of 

corrections on sinogram data appears in the presence of over-( <1) and under-( >1) dispersed 

data. Such circumstances occur at any activity value; as the activity increases, the consequent 

decrease in ̂  estimates underlines a further deviation from Poisson statistics, which appears both in 

raw data and in data after random and deadtime corrections. The last evidence needs to be 

answered. Data after scatter correction appear closer to a Poisson distribution. To fully characterize 

PET data in terms of the CMP model, the ̂ estimate versus the activity was analyzed and plotted 

in Figure 7b. Unsurprisingly, the trend in ̂ estimates increases with the emission activity for any 

data (i.e. raw data and data after correction).The figure 7c, that is the consequence of the application 

of eq. (3) and eq. (4), offers an easier interpretation of data in terms of the moments of the CMP 

distribution, but it does not supply evidence on the statistical model. 

 

 

5. Conclusions 

The CMP distribution allows more flexibility in modelling PET data with respect to the Poisson 

distribution. Thanks to its flexibility in fitting over- and under-dispersed dataset, supported by the 

shape parameter ν, the CMP distribution appears a formidable tool in tracing the statistical behavior 
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of PET data during the several procedural corrections involved in PET reconstruction process. This 

paper documented the performance of CMP distribution for PET dataset using both simulation and 

measured data. The results of this study demonstrated that the CMP distribution could handle over-, 

equi-, and under-dispersed data with an adequate accuracy. The method herein discussed seems to 

have higher efficiency in low counting emission data, as it happens on dynamic PET data, or in 

‘cold spot’ images, or in low dose injection studies. Measured PET data confirm deviations from 

Poisson model both in raw and in corrected data, stressing the need for a flexible statistical model 

able to describe measured PET data. 

Although several research objectives have been achieved, further issues exploiting the CMP 

model to include image reconstruction and quantitative analysis need to be investigated in future. 

In conclusion, this research may open new insight in the interpretation of clinical data, provided 

that statistical models able to account for deviations from the Poisson model are taken into 

consideration. 
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Figure captions  

Figure 1. typical trends of log(p(x-1)/p(x) from eq. (5) vs log(x) for four different centring 

parameter ( =  5, 10, 15, 20) and dispersion parameter  = 1. 

 

Figure 2. estimated dispersion parameter  vs true value  (in log scale), for three different values 

of the centring parameter ( = 2, 10, 18); sample size n= 500 in the first line, n=1000 in the 

middle line, n=5000 in the last line; N = 50 in the left column, N= 100 in the right column. The 

dotted reference line is also shown, representing the true   =   regression line 

Figure 3. %bias on estimating the dispersion parameter values  vs true values   (in log scale), 

for three different values of the centring parameter ( = 2, 10, 18); sample size n= 500 in the 

first line, n=1000 in the middle line, n=5000 in the last line; N = 50 in the left column, N= 100 in 

the right column 

Figure 4. estimated centring parameter   vs true values at three values of the dispersion 

parameter   (  = 1.3, 1, 0.7); sample size n= 500 in the first line, n=1000 in the middle line, 

n=5000 in the last line; N = 50 in the left column, N= 100 in the right column. The dotted reference 

line is also shown, representing the true   =   regression line 

Figure 5. %bias on estimating the centring parameter values  estimates vs true values  at three 

values of the dispersion parameter  (  = 1.3, 1.0, 0.7); sample size n= 500 in the first line, 

n=1000 in the middle line, n=5000 in the last line; N = 50 in the left column, N= 100 in the right 

column 

Figure 6.  dispersion index D (continuous lines)  and dispersion parameter ̂  (dotted lines) at three 

values of the centring parameter   ( =2, 10, 18) as a function of the true values  . 

Figure 7. experimental results; a: dispersion parameter ̂ estimates vs activity; b: centring parameter

̂ estimates vs activity; c: dispersion index D vs activity. 
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Summary 

Positron emission tomography (PET) in medicine exploits the properties of positron-emitting 

unstable nuclei. The pairs of  - rays emitted after annihilation are revealed by coincidence detectors 

and stored as projections in a sinogram. It is well known that radioactive decay follows a Poisson 

distribution; however, deviation from Poisson statistics occurs on PET projection data before 

reconstruction due to physical effects, measurement errors, correction of deadtime, scatter and 

random coincidences.  

When deviation from Poisson model is notable, Poisson assumption cannot be applied anymore. 

Such trade-off could be suitably steered by the knowledge of the true statistical model of sinogram 

data. However, the degree of deviation from Poisson model remains unknown for the lack of a 

reliable method that is able to quantify such deviations. A model that describes the statistical 

behaviour of measured and corrected PET data can aid in understanding the statistical nature of the 

data; it could lead to a more appropriate correction, reducing bias and variability and it is a 

prerequisite to develop efficient reconstruction and processing methods and to reduce noise. 

In the present paper, the deviation from Poisson statistics in PET data is described by the Comway-

Maxwell-Poisson (CMP) distribution model, which is characterized by the centring parameter and 

the dispersion parameter, the latter quantifying the deviation from a Poisson distribution model. In 

fact, the parameter   allows to quantify over-dispersion ( <1), equi-dispersion ( =1), or under-

dispersion ( >1) of data.  

A simple and efficient method for parameters estimation has been introduced in the present work 

and assessed using Monte Carlo simulation in a wide range of activity values.  

The CMP distribution model herein proposed for PET data processing, has already been studied 

extensively in other disciplines such as Biology, Transportation, Marketing, eCommerce; to our 

knowledge, the use of CMP distribution model for characterizing PET data statistics remains 

unexplored. So the extension of the CMP model to analyze PET sinogram data is novel. 

The proposed method has been applied both on simulated and experimental PET phantom data. The 

results of this study demonstrated that the CMP distribution could handle over-, equi-, and under-

dispersed data with an adequate accuracy allowing to consider it a formidable tool in tracing the 

statistical behaviour of PET data during the several procedural corrections involved in PET 

reconstruction process. 



19 
 

 It may be usefully implemented in image reconstruction algorithms and quantitative PET data 

analysis, especially in low counting emission data, as in dynamic PET data, where the method 

demonstrated the best accuracy. 
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ABSTRACT  

Positron emission tomography (PET) in medicine exploits the properties of positron-emitting 

unstable nuclei. The pairs of  - rays emitted after annihilation are revealed by coincidence 

detectors and stored as projections in a sinogram. It is well known that radioactive decay follows a 

Poisson distribution; however, deviation from Poisson statistics occurs on PET projection data prior 

to reconstruction due to physical effects, measurement errors, correction of deadtime, scatter, and 

random coincidences. A model that describes the statistical behaviour of measured and corrected 

PET data can aid in understanding the statistical nature of the data: it is a prerequisite to develop 

efficient reconstruction and processing methods and to reduce noise. 

The deviation from Poisson statistics in PET data could be described by the Comway-Maxwell-

Poisson (CMP) distribution model, which is characterized by the centring parameter  and the 

dispersion parameter  , the latter quantifying the deviation from a Poisson distribution model. In 

particular, the parameter   allows quantifying over-dispersion ( <1) or under-dispersion ( >1) of 

data. A simple and efficient method for  and   parameters estimation is introduced and assessed 

using Monte Carlo simulation for a wide range of activity values.  

The application of the method to simulated and experimental PET phantom data demonstrated 

that the CMP distribution parameters could detect deviation from the Poisson distribution both in 

raw and corrected PET data. It may be usefully implemented in image reconstruction algorithms 

and quantitative PET data analysis, especially in low counting emission data, as in dynamic PET 

data, where the method demonstrated the best accuracy. 

 

 

KEYWORD: positron emission tomography (PET), Conway-Maxwell-Poisson (CMP)  

distribution, maximum likelihood (ML) estimation, sinograms, Poisson statistic deviation. 
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Nomenclature 

CMP Comway-Maxwell-Poisson 

ML maximum likelihood 

ML-EM maximum likelihood expectation maximization 

NB negative binomial 

PET positron emission tomography 

WLS weighted least square 

Se standard error 

%bias bias index in percent 

E[X] mean of the CMP process 

Var[X] variance of the CMP process 

D  dispersion index 

n sample size 

N number of repetitions of the same experiment 

Nv 

number of vectors, i.e. central line of the 

sinograms, used in the analysis of experimental 

phantom data 

Nl 
number of sequenced vectors, used in the 

analysis of experimental phantom data 

  
centring parameter in the CMP distribution; it is 

related to the observations mean 

ν  

shape parameter in the CMP distribution; it is 

related to data over-dispersion and under-

dispersion 

̂  
estimated centring parameter over the sample 

size n 

  mean of the ̂  value, over N repetitions 

̂  
estimated dispersion (shape) parameter over the 

sample size n 

  mean of the ̂ value, over N repetitions 

  dummy variable, stands for   and   

i
̂  estimated value of   at each repetition 
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1. Introduction 

Today numerical and computational methods are becoming increasingly frequent in biology and 

medicine to gain new insights into the emerging research trends [1-4]. Among those benefiting from 

the numerical and computational methods, medical imaging plays an integral role, especially in the 

image formation process. In particular, in PET imaging such methods are crucial to grasp both the 

biological and the technological aspects of image acquisition and reconstruction processes. 

Actually, in positron emission tomography (PET) a tracer containing a radioactive isotope is 

introduced into the body, and it emits positrons while being involved in metabolic processes. Due to 

annihilation between a positron and an electron, a pair of rays is emitted in opposite directions 

along a line of response (LOR) at each spatial coordinate; the -ray pair is revealed by a coincidence 

detectors pair placed in an array of detector units surrounding the body. Emission of rays follows 

a Poisson law [5]. In this paper, numerical and computational methods are used to investigate 

deviation from Poisson statistics occurring in PET projection data before (or during) reconstruction. 

A known source of deviation from Poisson model is related to errors introduced in correcting 

some unwanted physical and acquisition effects, such as scattering errors, accidental errors, positron 

range, deadtime, detectors non-collinearity, variation in detection-pair sensitivity, and others. [6-9]. 

Scattered coincidences are due to one or multiple Compton scatterings of the detected photons; as a 

result, wrong LORs are obtained, which cause a reduced contrast and an overestimation of the 

tracer activity [10]. Random (or false) coincidences occur when photons detected within the same 

time window are not generated from the same annihilation event. Random events cause a reduction 

of image contrast and a bias in the measured activity due to an increased level of background 

activity [11]. Both scattering and random coincidences are not wanted events, which need a 

correction for obtaining exact emission data; however, such corrections cause deviation from 

Poisson statistics [12]. A further source of deviation from Poisson law is the deadtime, i.e. the 

instrumental insensitivity to detectable events due to electronic or mechanical reset time. Especially 

in high counting rate, some events can be missed, and the detected rate is lower than the true one 

[13]. Reduction in the mean value is a potential cause of the deviation from the Poisson model. The 

detectors non-collinearity and the variation in detection-pair sensitivity are two scanner-related 

factors that cause an incorrect emission evaluation, and need correction [11]. The sensitivity of the 

LOR about the mean is affected both by the geometry of the detectors and the LOR position; hence, 
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a geometric correction is needed to get a correct detection. Besides such geometric effects, the 

block detectors themselves vary in efficiency, as the photomultipliers tubes gains are not uniform 

(and may change in time), and the crystals are not all identical; then a normalization operation is 

required. In commercial PET scanners, in addition to the stochastic nature of the photon-counting, 

the intrinsic thermal and electronic noise should be accounted for. Such sources of artefacts are 

usually described by a Poisson model corrupted with additive Gaussian noise [14]. When deviation 

from Poisson model is notable, Poisson assumption cannot be applied anymore. Such trade-off 

could be suitably steered by the knowledge of the true statistical model of sinogram data. 

Unfortunately, the degree of deviation from Poisson model remains unknown for the lack of a 

reliable method that can quantify such deviations. 

Using a fully 3D maximum likelihood expectation maximization (ML-EM) reconstruction 

algorithm, two correction methods are currently used. In one method measured data are pre-

corrected before applying the reconstruction algorithm. We know that pre-correction for random 

and scatter coincidences may result in deviation from Poisson assumption, depending on the entity 

of correction. It compromises the estimation of the emission density based on ML reconstruction 

[15]. The second correction method incorporates correction models into the iterative algorithm, thus 

preserving the Poisson nature of the data [16]. Such solution is not immune to errors due to lack of 

knowledge about the true statistics of sinogram data. Moreover, such approach produces bias and 

higher variability in applications where images are reconstructed from a relatively small number of 

counts [17-20]. This issue is an important aspect to take into account, especially for cold regions 

and/or dynamic PET data reconstruction; actually, bias and variability of reconstructed data can 

lead to an incorrect activity evaluation and inexact kinetic parameters estimate. Without any doubts, 

an accurate evaluation of the deviation of the measured PET data from Poisson statistics could lead 

to a more appropriate correction, reducing bias and variability. 

In the literature, a few classes of discrete probability models were proposed and studied as 

alternatives to Poisson model in measured data. Sometimes, the measured data describe an over-

dispersion or an under-dispersion as a deviation from the Poisson model [21]. In PET data analysis, 

the Negative Binomial (NB) distribution model has been proposed in monitoring the over-

dispersion on both uncorrected or corrected (random and scatter coincidence correction) sinograms. 

[22,23]. In such papers, the authors highlighted the importance of an accurate modelling of PET 

data to develop efficient reconstruction algorithms. To account for over and under-dispersion 
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simultaneously, the Comway-Maxwell-Poisson (CMP) distribution model can be suggested. It is 

worth to note that the CMP distribution model has been studied extensively [24-28]. Applications of 

the CMP distribution model range from Biology [29] to Transportation [30], Marketing, and 

eCommerce [31,32]. However, to our knowledge, the use of CMP distribution model to describe 

PET data statistics remains unexplored. So, the application of the CMP model to the analysis of 

PET sinogram data is novel. The relevant benefits are twofold. Firstly, the CMP model allows to 

fully characterize the statistical behavior of PET sinogram data, by accounting for both uncorrected 

and corrected data, thus making possible the inclusion in the correction model of random, deadtime, 

normalization, geometric, and scatter coincidence effects. Secondly, the proposed approach may 

prelude to the application of the CMP model in the wide field of high energy medical imaging, in 

the situation where deviations from the conventionally used Poisson distribution model may 

happen. 

This paper describes a method that uses the CMP model to assess the statistics of PET 

projections, collected into sinograms, in a wide range of emission rates. We focused on uncorrected 

and corrected (for random, deadtime, normalization, geometric, and scatter coincidence effects) 

sinograms, due to their importance in the quantitative analysis of PET data. A method that 

accurately defines the statistics of PET measured data, also in the conditions of deviations from 

Poisson statistics, could have important implications for the quantitative evaluation of PET data. 

 

2. Materials and Methods 

2.1 The Conway-Maxwell-Poisson (CMP) distribution model 

2.1.1 The CMP probability function and its moments 

The importance of CMP distribution model is due to its ability to model count data with different 

degrees of over- and under-dispersion. This distribution is a two-parameters extension of the 

Poisson distribution. Its probability density function is [24]: 
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where x denotes the amplitude data,  is a centring parameter related to the observations mean, 

is the shape parameter of the CMP distribution, and Z is a normalizing constant. 

The parameter outlines deviations from Poisson distribution:  > 1 corresponds to under-

dispersed data,  < 1 to over-dispersed data, and  = 1 to equi-dispersed (Poisson) data. As   = 1 

the mean value becomes equal to   (the Poisson parameter). 

Previous relationship (1) allows for the following representation as a non-linear decrease in ratio 

of successive probabilities [33]: 


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Such formulation enables us to use the weighted least squares (WLS) method to estimate the 

CMP parameters. The   and   parameters can be used to derive an approximation of the mean, 

E[X], and the variance, var[X], of the CMP process according to the following relationships [33]: 

 

 
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  

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It follows that, for  =1, E[X] =  and var[X] =  ,which corresponds to a Poisson process. 

 

2.1.2 CMP parameters estimation method 

The  and  parameters can be estimated using the approach described in [33]. The approach is 

based on eq. (2), relating the ratio of successive CMP probabilities to a non-linear relationship with 
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the  and  parameters. The following regression equation is found, taking the logarithm of both 

sides of eq.(2) [26]: 

 

)log()log())(/)1(log( xxpxp       (5) 

 

where p(x) denotes P(X=x). In actual situations, the ratio of probabilities on the left side of eq.(5) 

can be substituted with the relative frequency of occurrence of (x-1) and x. The amplitude x is 

divided into a number of intervals, or classes, and for each class, the frequency of occurrence is 

evaluated. The number of classes is chosen in order to avoid zero counts in every class. 

The estimation process can be split into two steps: 1) the term on the left side is plotted against 

the log(x) for every value of x; 2) the best linear fitting is evaluated according to the WLS method 

to extract the CMP parameters. In the ideal CMP model, the data lie in a straight line, with angular 

coefficient   and intercept )log( . In the Poisson model ( 1 , 1 ) the intercept would be 

equal to zero and the angular coefficient would be equal to one. 

The percent-bias (%bias) and standard error (se) were used as performance indices of  and 

parameters estimator. For each parameter, the %bias is defined as the difference between the 

expected and the true value. When %bias is zero, the estimator is unbiased. The %bias index is 

defined as follows[34]: 

1001

ˆ1

% x

N

i
iN

bias

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

       (6) 

 

where  is a dummy variable and it stands for   and  ; the mean computation is performed 

over N repetitions of the same experiment; 
i

̂  is estimated at each repetition over a sample of size n 

and   is the true value. 

The ‘se’ index is defined as the ratio between the standard deviation (std) of 
i

̂  (i=1,..N)  

estimates and the square root of the sample size[35]: se = std/√N. 

The dispersion index, or Fano factor, D is defined as follows [35,36]: 
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D = var[X | ̂ ,̂ ]/E[X | ̂ ,̂ ]     (7) 

with  E[X | ̂ ,̂ ] and var[X | ̂ ,̂ ] calculated according to eq. (3) and eq. (4). It is an index 

which gives information about the over- or under-dispersion of data. The Poisson process is 

characterized by D = 1. 

 

2.1.3 Data homoscedasticity 

The ordinary regression model herein used is based on the assumption of homoscedasticity of 

data amplitude distributed on the frequency of occurrence classes. Because, as demonstrated in [33], 

such assumption is violated in the CMP distributed data (the variance of the dependent variable is 

not constant), we expect implications on parameters estimation accuracy. Firstly, the CMP plot is 

constructed plotting the logarithm of the ratio of successive frequencies (log(p(x-1)/p(x)) vs log(x)) 

for various combinations of n,   and  . On such a plot we evaluated the regression parameters 

over the full amplitude range of log(x). After that, we progressively reduced such interval 

symmetrically with respect to the amplitude of the maximum frequency of occurrence (i.e. the 

highest P(X=x)). For each amplitude range, the std of the ̂  and ̂  estimates was evaluated. The 

amplitude interval of log(x) with an almost constant std, at each estimated parameters, was assumed 

as the best compromise for homoscedasticity, and it was used in the following simulations. With the 

constraint defined above, the parameters were estimated by fitting a linear regression to eq.(5).  

 

2.1.4 Characterization of the CMP parameters by simulation

To test the estimation accuracy of the CMP-WLS model, we simulated a dataset characterized by 

a CMP distribution with known regression parameters. Such parameters correspond to a range of 

mean and variance values typical of clinical PET data. We then estimated the %bias and the se of 

the estimates using Monte Carlo simulation. 

The Monte Carlo simulation was implemented according to the following steps: 

1. Generation of repeated CMP data, combining the following parameters: sample size, n, ranging 

from 500 to 5000; true centring parameter, , ranging from 1 to 20;  value, ranging from 0.75 

to 1.5. The excursion of the   parameter allows simulating data with over-, equi- and under-

dispersion encountered in PET sinogram data. In particular, the variance ranges from 0.1*  to 

10* .  
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The R software [37] with compGLM package was used for data generation. 

 

2. For each combination of n,   and , the following estimations were performed: 

- ̂ estimation over the sample size n for three values using eq. (5); each estimation was 

repeated N = 50 and 100 times; 

- ̂ estimation over the sample size n for three   values using eq. (5); each estimation was 

repeated N = 50 and 100 times; 

- evaluation of the mean   over the ̂ values previously estimated; 

- evaluation of the mean   over the ̂ values previously estimated; 

- evaluation of %bias and  se of ̂  and ̂ ; 

 

Parameters estimation and analysis were accomplished by using Matlab (The MathWorks, Inc., 

Natick, Massachusetts, United States) software. 

 

2.2 Phantom data acquisition and analysis 

A cylindrical phantom, with a radius of 12 cm and height of 15 cm, was filled with 18F-FDG 

and water solution (34MBq of total activity at the beginning of the experiment). The phantom was 

put inside a PET/CT (General Electric Discovery) tomograph, exactly in the middle of the bore, 

with its long axis parallel to the bore’s axis. 

The experiment involved the acquisition of 47 slices of 2D PET data projections covering the 

phantom, for six different times, with a time interval of about 15-20 minutes. Each volumetric data 

was acquired in a total time of 300 sec. Due to the emission decay, the total activity at the beginning 

of each volumetric acquisition was reduced consequently; so, the total emission at the beginning of 

each time acquisition ranged from 34MBq to 15MBq. 

For each time interval, the 2D sinograms consisted of 315x367 values for 47 slices; the 

following volumetric sinograms were stored:  

- raw-data, without any correction, and: 

o after correction for random counts 

o after correction for deadtime 
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o after normalization 

o after geometric correction  

o after correction for scattering 

 

The sequence of corrections was applied according to a protocol implemented in a commercial 

scanner.  

On each sinogram, its central line was selected and organized in a vector of 315 points. For a 

homogeneous circular object, the central line of the sinogram is relevant to the sum of the phantom 

contributions situated along its diameter, at each angle. A total of 47 vectors were available for the 

analysis. From these, 11 vectors were removed (they are relevant to 6 slices on one side and 5 slices 

on the other side of the phantom), leaving nv=36 vectors for the analysis. The Region-Of-Interest 

(ROI) for the regression analysis was realized by sequencing more vectors to increase the 

estimation accuracy: the ROI is constituted of n = 315*nl data points, where nl is the number of 

sequenced vectors. The optimal nl value was determined according to simulation results. 

The estimation of the ̂ and ̂ parameters was then performed on the selected ROI. In particular, 

for each volumetric data, the estimated parameters were averaged over N = nv/nl=36/nl 

independent ROIs, each one consisting of n data points covering the middle of the phantom; the 

averaging can be done thanks to the homogeneity of the phantom. Such procedure was repeated for 

each corrected and not-corrected sinogram, and for each emission dose. 

 

3. Results 

3.1 CMP parameters estimation on simulated data 

This section deals with the assessment of the performance of the proposed CMP parameters 

estimation method, using Monte Carlo simulation. Firstly, the amplitude interval of log(x) with a 

constant spread on the estimated parameters was identified. In Figure 1 four typical trends (plus the 

error bars (se)) of the logarithm of the ratios of successive frequencies (log(p(x-1)/p(x)) of eq. (5)) 

vs log(x), for four values ( = 5, 10, 15, 20), n=1000, and   =1, are shown. Such plots 

highlight the spread (i.e. the se) of the dependent variable as a function of log(x): at the extremes, 
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the spread is larger than in the middle of log(x). So, for each  value, an interval of log(x) data 

with almost constant se was identified to be used in the following estimates. Then, the accuracy on 

  and   estimation was assessed. At first, the   parameter and %bias were estimated. Figure 2 

shows the average  estimates as a function of the true  , evaluated for three different  values (

 = 2, 10, 18) with three different sample size n (n=500,1000,5000). The best linear fitting was 

evaluated using the WLS fitting to eq. (5); each estimation was repeated N = 50 and N = 100 times. 

On each plot the dotted line represents the true    regression line; it was used as a reference. 

The error bars represent the se. Figure 3 shows the %bias evaluated on the data of Figure 2. The 

accuracy of the  estimates was evaluated and the results are shown in Figures 4 and 5. Figure 4 

shows the plot of the average  estimates as a function of the true  at three  values (  = 

1.3,1.0,0.7); the error bars represent the se. The relevant %bias is shown in Figure 5. Figure 6 

shows the results of two methods used to characterize the deviation from the Poisson distribution: 

1) the dispersion index (D) as a function of ̂ and̂  at three lambda values ( = 2, 10, 18); 2) the

̂  estimate as a function of the true . As expected, the intersection between D and ̂  curves is at 

about  =1 (Poisson process). It confirms that the method based on the moments almost agrees with 

the method based on eq. (5). Unfortunately, the first one does not supply any information on the 

statistical model supporting the data, that is one of the goals of this paper. 

 

3.2 Fitting the CMP distribution to phantom data 

In this section, we illustrate the applicability of the CMP-WLS distribution to fit PET sinogram 

data derived from the acquisition of an experimental phantom. PET data consist of six volumetric 

data; the first one includes raw-data (not-corrected), the remaining ones contain data corrected for 

physical and geometric artifacts. For each volumetric data the procedure described in section 2.2 

was applied, to realize the ROIs with an adequate sample size n, and to use them in the regression 

analysis. Each ROI is constituted by n = 315*nl= 945 data points, with nl= 3. Firstly, a CMP plot is 

built for each ROI using eq. (5), where x is the measured phantom activity. Then, a straight line is 

fitted to the data by using WLS method, after defining the amplitude range of log(p(x-1)/p(x)) vs. 

log(x) with an almost constant spread, according to the simulation procedure. The dispersion ̂  and 
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the centring ̂ parameters were derived from the linear fitting under the assumption of CMP 

distribution. Such procedure was applied to 12 (nv/nl=36/3) independent ROIs. For each volumetric 

data, the mean value  over the 12 ROIs was evaluated. This procedure was repeated on each 

volumetric data as a function of the phantom activity, from about 2.3 to 5 KBq/ml. Figure 7a shows 

the trend of ̂ estimates along with the activity. The centring parameter ̂ estimate versus the 

activity was analyzed and plotted in Figure 7b. The figure 7c shows the dispersion index D vs. the 

activity.  

4. Discussion 

In the current work, we discussed the use of the CMP distribution model to assess the statistics 

of PET data. Parameters estimation based on the CMP model is a well-recognized approach to 

quantitatively characterize deviation from Poisson distribution in many fields [24-33]. However, to 

our knowledge, the use of CMP distribution model for characterizing PET data statistics remains 

unexplored. A different approach aimed to characterize the statistical behavior of PET 

measurements, pre-corrected for attenuation and accidental coincidences, was proposed in [38]. 

Authors assumed the formation of over-dispersed data as due to corrections and modeled them 

using the Negative Binomial (NB) distribution. The weakness of the NB distribution is that it is not 

suitable to describe under-dispersed data, which instead can be handled with the CMP distribution. 

In [9] authors evaluated the statistical properties of the reconstructed PET data, according to row-

action maximum likelihood algorithm (RAMLA) and filtered back-projection (FBP) reconstruction 

techniques. They stated that PET data, after correction and reconstruction, are no longer Poisson 

distributed; moreover, they characterized the noise and the std/mean by using several statistical 

distributions including gamma, normal, and NB. 

The method herein discussed, that is based on the CMP-WLS as described in the sections 2.1.1 

to 2.1.3, appears simple and computationally efficient. Other methods have been proposed in the 

literature, based on maximum likelihood estimation or the estimation of the posterior probability of 

the parameters of the CMP distribution [33,39]. Undoubtedly such methods are more accurate and 

robust, but the relevant equations cannot be solved analytically, thus introducing a high and 

unacceptable level of complexity in the analysis of PET measurements. As far as the 

homoscedasticity assumption is verified, the proposed method allowed us to identify the interval 
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where the spread of the dependent variable is almost constant. Such a simple approach appears 

adequate to produce consistent estimates of the dispersion parameter ̂  at typical dose used in the 

measured PET data. 

We used Monte Carlo simulation of CMP distributed data to evaluate the goodness of the 

dispersion  and centring parameters estimation, according to the CMP-based method. The 

average estimate of the  parameter as function of the true  , shown in Figure 2, confirms a fairly 

linear relationship; as the sample size n increases, the linear relationship is getting closer to the 

reference line; the se reduces as n increases. The number of averaging N is less effective with 

respect to n. The %bias shown in Figure 3 decreases as n increases; the increase in N is less 

effective. By rejecting the lowest sample size (n=500) because too noisy, the points on the left tail 

experience a large %bias, which resolves in any case in almost a 10% error as  increases. So the 

bias is worse in over- with respect to under-dispersed data. In summary, the %bias decreases below 

a 10% error as  increases in the worst case ( = 18) and it further decrease with decreasing  . 

This last finding allows us to stress that at any n and N values, the  estimates are highly accurate 

in low emission counting, the most critical range in clinical PET measurements [17,18,19,20]. As 

far as the centring parameter  is concerned, as documented in Figure 4, the average  estimate 

maintains an almost linear relationship with respect to the true  , except for points on the right 

tail, which correspond to high  values estimates. Deviation from linear regression is more marked 

at low N (N=500) and n(n=50) values. As expected, the se reduces as n and N increase. The %bias, 

as it is shown in Figure 5, decreases as n and N increase; at any n and N, it drastically decreases 

with decreasing . In the worst case (high  ), to preserve a maximum 20% error, the sample size 

n must be, at least, equal to 1000. The estimation accuracy improves consequently increasing the 

sample size. Such evidence was used in choosing the minimum number of samples when estimating

  on measured PET data. Previous results point out a better estimate of the  parameter in low 

emission count at any  ; for higher emission, a better accuracy is a direct consequence of the 

sample size. Figure 6 summarizes the overall behavior of the   and  estimates regarding the 

moments of the CMP distribution. As expected, the intersection between under- and over-dispersion 

curves is around   =1 (Poisson process), where D is about one; it spreads as   deviates from 

Poisson. It highlights the sensitivity of the method based on eq. (5) to quantitatively describe the 
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deviation from Poisson on simulated data. Such trend was observed at any estimated   value. In 

summary, simulation results show that deviation from Poisson statistics in raw data and data after 

corrections are detectable with a CMP-based method. 

We tested the method on experimental PET data confirming that the CMP model can assess the 

statistics of raw and corrected PET data, provided that data selection is performed according to 

simulation results. First of all, the data size n should be at least equal to 1000 to obtain reliable 

statistical parameters estimation; this is the reason we used nl=3 lines in the experimental phantom 

data analysis, obtaining data size n= 945. Data averaging is preferred to improve the estimates; for 

this reason, the phantom data was obtained as the mean of N=nv/nl=12 ROIs data. Accordingly, the 

raw and corrected phantom data were processed and the results are shown in Figure 7. The error 

bars (±se) shown in figure 7a confirm an almost homoscedasticity in the amplitude range selected 

for the analysis and a low spread in the estimates. The ̂  estimates do not seem to follow a Poisson 

model even in raw-data before correction; such evidence is still not sufficiently discussed in the 

literature, mainly focused on the assumption of the Poisson model. The direct consequence of 

corrections on sinogram data appears in the presence of over-( <1) and under-( >1) dispersed data. 

Such circumstances occur at any activity value; as the activity increases, the consequent decrease in 

̂  estimates underlines a further deviation from Poisson statistics, which appears both in raw data 

and in data after random and deadtime corrections. The last evidence needs to be answered. Data 

after scatter correction appear closer to a Poisson distribution. To fully characterize PET data in 

terms of the CMP model, the ̂ estimate versus the activity was analyzed and plotted in Figure 7b. 

Unsurprisingly, the trend in ̂ estimates increases with the emission activity for any data (i.e. raw 

data and data after correction).The figure 7c, that is the consequence of the application of eq. (3) 

and eq. (4), offers an easier interpretation of data in terms of the moments of the CMP distribution, 

but it does not supply evidence on the statistical model. 

 

 

5. Conclusions 

The CMP distribution allows more flexibility in modelling PET data with respect to the Poisson 

distribution. Thanks to its flexibility in fitting over- and under-dispersed dataset, supported by the 



16 
 

shape parameter ν, the CMP distribution appears a formidable tool in tracing the statistical behavior 

of PET data during the several procedural corrections involved in PET reconstruction process. This 

paper documented the performance of CMP distribution for PET dataset using both simulation and 

measured data. The results of this study demonstrated that the CMP distribution could handle over-, 

equi-, and under-dispersed data with an adequate accuracy. The method herein discussed seems to 

have higher efficiency in low counting emission data, as it happens on dynamic PET data, or in 

‘cold spot’ images, or in low dose injection studies. Measured PET data confirm deviations from 

Poisson model both in raw and in corrected data, stressing the need for a flexible statistical model 

able to describe measured PET data. 

Although several research objectives have been achieved, further issues exploiting the CMP 

model to include image reconstruction and quantitative analysis need to be investigated in future. 

In conclusion, this research may open new insight in the interpretation of clinical data, provided 

that statistical models able to account for deviations from the Poisson model are taken into 

consideration. 
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Figure captions  

Figure 1. typical trends of log(p(x-1)/p(x) from eq. (5) vs log(x) for four different centring 

parameter ( =  5, 10, 15, 20) and dispersion parameter  = 1. 

 

Figure 2. estimated dispersion parameter  vs true value  (in log scale), for three different values 

of the centring parameter ( = 2, 10, 18); sample size n= 500 in the first line, n=1000 in the 

middle line, n=5000 in the last line; N = 50 in the left column, N= 100 in the right column. The 

dotted reference line is also shown, representing the true   =   regression line 

Figure 3. %bias on estimating the dispersion parameter values  vs true values   (in log scale), 

for three different values of the centring parameter ( = 2, 10, 18); sample size n= 500 in the 

first line, n=1000 in the middle line, n=5000 in the last line; N = 50 in the left column, N= 100 in 

the right column 

Figure 4. estimated centring parameter   vs true values at three values of the dispersion 

parameter   (  = 1.3, 1, 0.7); sample size n= 500 in the first line, n=1000 in the middle line, 

n=5000 in the last line; N = 50 in the left column, N= 100 in the right column. The dotted reference 

line is also shown, representing the true   =   regression line 

Figure 5. %bias on estimating the centring parameter values  estimates vs true values  at three 

values of the dispersion parameter  (  = 1.3, 1.0, 0.7); sample size n= 500 in the first line, 

n=1000 in the middle line, n=5000 in the last line; N = 50 in the left column, N= 100 in the right 

column 

Figure 6.  dispersion index D (continuous lines)  and dispersion parameter ̂  (dotted lines) at three 

values of the centring parameter   ( =2, 10, 18) as a function of the true values  . 

Figure 7. experimental results; a: dispersion parameter ̂ estimates vs activity; b: centring parameter

̂ estimates vs activity; c: dispersion index D vs activity. 
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Summary 

Positron emission tomography (PET) in medicine exploits the properties of positron-emitting 

unstable nuclei. The pairs of  - rays emitted after annihilation are revealed by coincidence detectors 

and stored as projections in a sinogram. It is well known that radioactive decay follows a Poisson 

distribution; however, deviation from Poisson statistics occurs on PET projection data before 

reconstruction due to physical effects, measurement errors, correction of deadtime, scatter and 

random coincidences.  

When deviation from Poisson model is notable, Poisson assumption cannot be applied anymore. 

Such trade-off could be suitably steered by the knowledge of the true statistical model of sinogram 

data. However, the degree of deviation from Poisson model remains unknown for the lack of a 

reliable method that is able to quantify such deviations. A model that describes the statistical 

behaviour of measured and corrected PET data can aid in understanding the statistical nature of the 

data; it could lead to a more appropriate correction, reducing bias and variability and it is a 

prerequisite to develop efficient reconstruction and processing methods and to reduce noise. 

In the present paper, the deviation from Poisson statistics in PET data is described by the Comway-

Maxwell-Poisson (CMP) distribution model, which is characterized by the centring parameter and 

the dispersion parameter, the latter quantifying the deviation from a Poisson distribution model. In 

fact, the parameter   allows to quantify over-dispersion ( <1), equi-dispersion ( =1), or under-

dispersion ( >1) of data.  

A simple and efficient method for parameters estimation has been introduced in the present work 

and assessed using Monte Carlo simulation in a wide range of activity values.  

The CMP distribution model herein proposed for PET data processing, has already been studied 

extensively in other disciplines such as Biology, Transportation, Marketing, eCommerce; to our 

knowledge, the use of CMP distribution model for characterizing PET data statistics remains 

unexplored. So the extension of the CMP model to analyze PET sinogram data is novel. 

The proposed method has been applied both on simulated and experimental PET phantom data. The 

results of this study demonstrated that the CMP distribution could handle over-, equi-, and under-

dispersed data with an adequate accuracy allowing to consider it a formidable tool in tracing the 

statistical behaviour of PET data during the several procedural corrections involved in PET 

reconstruction process. 
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 It may be usefully implemented in image reconstruction algorithms and quantitative PET data 

analysis, especially in low counting emission data, as in dynamic PET data, where the method 

demonstrated the best accuracy. 
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Figure 1. Typical trends of log(p(x-1)/p(x) from eq. (5) vs log(x) for four different centring parameter  

( =  5, 10, 15, 20) and dispersion parameter  = 1. 
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Figure 2. estimated dispersion parameter   vs true value  (in log scale), for three different values of the 

centring parameter  ( = 2, 10, 18); sample size n= 500 in the first line, n=1000 in the middle line, 

n=5000 in the last line; N = 50 in the left column, N= 100 in the right column. The dotted reference line is 

also shown, representing the true   =   regression line 

 

 



 

 

 

Figure 3. %bias on estimating the dispersion parameter values   vs true values   (in log scale), for 

three different values of the centring parameter  ( = 2, 10, 18); sample size n= 500 in the first line, 

n=1000 in the middle line, n=5000 in the last line; N = 50 in the left column, N= 100 in the right column 



  

 

 

 

Figure 4. estimated centring parameter   vs true values at three values of the dispersion parameter   

(  = 1.3, 1, 0.7); sample size n= 500 in the first line, n=1000 in the middle line, n=5000 in the last line; 

N = 50 in the left column, N= 100 in the right column. The dotted reference line is also shown, 

representing the true    =   regression line 

 



  

 

 

 

 

Figure 5. %bias on estimating the centring parameter values  estimates vs true values  at three 

values of the dispersion parameter   (  = 1.3, 1.0, 0.7); sample size n= 500 in the first line, n=1000 in 

the middle line, n=5000 in the last line; N = 50 in the left column, N= 100 in the right column 



 

 

 

Figure 6.  dispersion index D  (continuous lines)  and dispersion parameter ̂  (dotted lines) at three 

values of the centring parameter   ( =2, 10, 18) as function of the true values  . 

  



 

 
 

 
 

 
 

Figure 7. experimental results; a: dispersion parameter ̂  estimates vs activity; b: centring parameter

̂ estimates vs activity; c: dispersion index D vs activity. 
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