
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Manuscript version: Author’s Accepted Manuscript 
The version presented in WRAP is the author’s accepted manuscript and may differ from the 
published version or Version of Record. 
 
Persistent WRAP URL: 
http://wrap.warwick.ac.uk/129170                             
 
How to cite: 
Please refer to published version for the most recent bibliographic citation information.  
If a published version is known of, the repository item page linked to above, will contain 
details on accessing it. 
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions. 
 
© 2019 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/. 
 

 
 
Publisher’s statement: 
Please refer to the repository item page, publisher’s statement section, for further 
information. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk. 
 

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/129170
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:wrap@warwick.ac.uk


1 

CAFÉ-Map: Context Aware Feature Mapping 

for mining high dimensional biomedical data 

Fayyaz ul Amir Afsar Minhas1,*, Amina Asif2, Muhammad Arif 3,* 

1,2Biomedical Informatics Research Laboratory, Department of Computer & 

Information Sciences, Pakistan Institute of Engineering and Applied Sciences, 

Islamabad, Pakistan. 

3Department of Computer Science, Umm Al-Qura University, Makkah, Saudi 

Arabia. 

Email: 1afsar@pieas.edu.pk, 2a.asif.shah01@gmail.com, 3 mahamid@uqu.edu.sa  

(* Corresponding authors) 

Abstract 

Feature selection and ranking is of great importance in analysis of biomedical 

data. It allows us to extract meaningful biological and medical information from a 

machine learning model. Most existing approaches in this domain do not directly 

model the fact that the relative importance of features can be different in different 

regions of the feature space. In this work, we present a context aware feature 

ranking algorithm called CAFÉ-Map. CAFÉ-Map is a locally linear feature 

ranking framework that allows recognition of important features in any given 

region of the feature space or for any individual example. This allows for 

simultaneous classification and feature ranking in an interpretable manner. We 

have benchmarked CAFÉ-Map on a number of toy and real world biomedical data 

sets. Our comparative study with a number of published methods shows that 

CAFÉ-Map achieves better accuracies on a these data sets. The top ranking 

features obtained through CAFÉ-Map in a gene profiling study correlate very well 

with the importance of different genes reported in the literature. 

Availability: CAFÉ-Map Python code is available at:  

http://faculty.pieas.edu.pk/fayyaz/software.html#cafemap .  

The CAFÉ-Map package supports parallelization and sparse data and provides example scripts for 

classification. This code can be used to reconstruct the results given in this paper.  

Introduction 

Biomedical devices and experiments generate large amount of high dimensional 

data which needs proper analysis for mining relevant information. Examples 

include gene expression profiling [1]–[4], mass spectrometry [5]–[8], medical 

mailto:afsar@pieas.edu.pk
mailto:a.asif.shah01@gmail.com
mailto:mahamid@uqu.edu.sa
http://faculty.pieas.edu.pk/fayyaz/software.html#cafemap
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images from ultrasound, magnetic resonance or computerized Tomography [9], 

[10], etc. In this domain, the objective of data analysis is to identify diagnostically 

or biologically significant features such as genes, spectral components or regions 

of interest in images. This information can be obtained as part of a machine 

learning or data mining system through feature selection or ranking techniques in 

conjunction with supervised classification [11]. Classification allows 

computational prediction of medical disorders or identification of biologically 

interesting phenomenon based on the features identified during the feature 

selection or ranking process [12], [13].  

Before further discussion on feature selection techniques, it is important to point 

out the challenges and difficulties in applying feature selection and classification 

approaches in the analysis of biomedical data. Biomedical data is typically “tall 

and thin”, i.e., very high dimensional but with only a small number of samples 

[11], [14], [15]. For example, a single gene profiling experiment can easily have 

tens of thousands of genes whose expression is characterized for hundreds of 

subjects or cell types [16]–[21]. Typically, a large number of features or attributes 

of the data can be irrelevant for prediction. In this work we work on classification 

and feature ranking for such data sets. This issue of high dimensionality is 

exacerbated by the presence of only a small number of data samples. Obtaining 

medical or biological samples is typically labor intensive, time consuming and 

expensive. All these factors present significant challenges to any feature selection 

technique. In addition to feature selection, it is desirable in supervised 

classification of biomedical data that the classification scheme generates some 

information about the reasons due to which an example has been classified in a 

certain way. This information can be utilized to gain a deeper understanding of the 

mechanics of a disease or biological phenomenon. For most classification 

approaches such as Support Vector Machines (SVMs) [22], Neural Networks, 

ensemble systems, etc., it is not straightforward to extract this information due to 

their black or grey box nature and this problem has received significant attention 

in recent research [23]–[27]. This is particularly true in classification problems in 

which the classification boundary is not linear.  

Feature ranking or selection techniques can be used to identify features important 

for a classification problem. However, most feature selection techniques do not 

provide ranking or selection of features for individual instances. Existing feature 
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selection approaches identify features which are important at the global level. To 

the best knowledge of the authors, no existing feature selection or ranking 

technique has the ability to identify important features in individual training and 

test examples in a context aware or local manner. For references, the interested 

reader is referred to a number of excellent reviews of feature selection and ranking 

[11], [28]–[35].  An illustrative example of this phenomenon is shown in the 

Figure below.  

 

[Figure 1 goes here] 

 

For this simple L-shaped synthetic data set comprising of two classes, any 

existing feature selection technique will rank both features as important. However, 

it is interesting to notice that the relative importance of the two features for correct 

classification is dependent upon the local context as well. For instance, along the 

vertical part of the classification boundary in this figure, feature 𝑥1 is more 

important in comparison to feature 𝑥2. Similarly, along the horizontal component 

of the classification boundary, feature 𝑥2 is responsible for discrimination.  

Though most existing feature selection techniques implicitly consider the fact that 

the role of a given feature in determining the classification boundary varies over 

different parts of the feature space, their output cannot be interpreted in such a 

manner. Context aware feature selection or ranking can lead to a more detailed 

analysis of the roles of different features in different parts of the feature space as 

well as in identifying what features are relatively more important in comparison to 

others for individual examples.  

In this work, we present a contextual feature ranking and classification algorithm 

called Context Aware FEature MAPping or CAFÉ-Map. The novelty of CAFÉ-

Map comes from its unique ability to quantify the relative importance of features 

in any region of the feature space. This is achieved by associating a local or 

context aware weight vector with each classification example. The mathematical 

and algorithmic formulation of CAFÉ-Map leads to the selection of a minimal set 

of local or context dependent features for every individual example while 

ensuring high classification accuracy, computational efficiency and 

interpretability. CAFÉ-Map is strongly grounded in the theory of Structural Risk 
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Minimization and is designed to handle the challenges of biomedical data 

discussed earlier [36].  

CAFÉ-Map can be of great use in the biomedical domains where data analysts are 

interested in understanding individual classification instances. For instance, in 

microarray based classification, examples of the same class can have different sets 

of differentially expressed genes. Unlike global feature ranking or selection 

techniques, CAFÉ-Map can reveal the set of genes that are important for 

classification of individual examples. Note that, due to its context aware nature, 

CAFÉ-Map can rank genes differently for individual examples. Similar to global 

feature ranking, CAFÉ-Map can also identify a single set of features that are 

important for classification. This can be accomplished by a simple average of 

absolute values of contextual weight vectors of individual examples. CAFÉ-Map 

can also be used to group examples with similar differential expression profiles by 

clustering over top ranked components of their local weight vectors. This 

information can then form the basis for identifying causative or correlative 

relationships in examples of the same group, e.g., gender, age, race, disease 

progression, cell type, etc.  

The rest of the paper is organized as follows: Section-II describes the formulation 

of CAFÉ-Map and how it can be used to achieve a context dependent ranking of 

features in a given classification domain. Section-III presents an empirical 

comparison of its classification performance with different existing feature 

selection techniques for a number of toy problems as well as widely used real 

world biomedical data sets. Section-IV presents the conclusions. 

Materials and Methods 

Mathematical Formulation 

As discussed in the Introduction section, CAFÉ-Map can identify important 

features in individual training and test examples in a context aware or local 

manner. This is in contrast to existing classification and feature selection 

techniques which can only produce a global ranking of features. The fundamental 

idea behind CAFÉ-Map is to use a manifold encoding based locally linear 

classification function whose L1-norm is regularized as part of a structural risk 

functional by an efficient iterative algorithm. In this section, we present the 
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detailed formulation of CAFÉ-Map based on this principle. For this purpose, we 

assume a classification data set of 𝑁 examples {(𝒙𝒊, 𝑦𝑖)|𝑖 = 1…𝑁} in which each 

example is represented by a 𝑑-dimensional feature vector 𝒙𝒊 ∈ 𝕽
𝑑 and 𝑦𝑖 ∈

{−1,+1} indicates the label of that example. These labels are available for 

training examples only. For classification, CAFÉ-Map uses a discriminant 

function 𝑓(𝒙) = 𝒘(𝒙)𝑇𝒙 with a context dependent or localized weight vector 

function 𝒘(𝒙):𝕽𝑑 → 𝕽𝒅. Note that we have omitted the bias term from the 

discriminant function for simplicity. The learning problem is to calculate 𝒘(𝒙) 

from training data to correctly predict the score of any test example 𝒙. Classical 

classification approaches like Linear Support Vector Machine (SVMs) use a 

context independent or global weight vector 𝒘(𝒙) = 𝒘 ∈ 𝕽𝑑 , ∀𝒙 in their 

discriminant function. The magnitude of different components of the global 

weight vector, |𝑤𝑗|, can be used to rank the importance of different features in the 

classification problem [22], [37]. However, these methods are limited to linearly 

separable classification problems and can only produce feature rankings at the 

global level. The use of non-linear kernels does allow non-linear classification 

boundaries but it makes feature ranking or interpretation very difficult. In 

contrast, the use of a local weight vector 𝒘(𝒙) leads to a locally linear classifier 

which can solve classification problems with non-linear boundaries without using 

kernel functions or feature transformations [22], [38]–[40]. We propose and 

demonstrate that the magnitude of the components of 𝒘(𝒙) can reveal context 

sensitive importance of different features. This is achieved in CAFÉ-Map by 

reducing the number of non-zero or large valued components of the local weight 

vector function through L1-norm regularization of its discriminant. Like the 

locally linear SVMs proposed by Ladicky and Torr, a locally linear representation 

of the CAFÉ-Map discriminant function is obtained through local encoding of 

data as discussed below [33]. 

Local Encoding of Data 

Local codings for manifold learning represent an example 𝒙 as a linear 

combination of K a priori chosen d-dimensional anchors represented by the d × K 

matrix 𝑽 = [𝒗1 𝒗2 ⋯ 𝒗𝐾]: 

𝒙 ≈ 𝑽𝜸(𝒙) (1) 
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In the above equation, 𝜸(𝒙) =  [𝛾1(𝒙) 𝛾2(𝒙) … 𝛾𝐾(𝒙)] 
𝑇 is the local 

coordinate representation of 𝒙. The anchors are simply sampling points in the 

feature space. The set of anchors can be obtained by randomly selecting a subset 

of K examples in the given dataset or applying K-means clustering on it and using 

the K cluster centers as anchors. Conceptually, 𝜸(𝒙) is a description of 𝒙 in terms 

of the feature representations of a small number of nearby anchors such that the 

re-projection error ‖𝒙 − 𝑽𝜸(𝒙)‖ is small. CAFÉ-Map uses Locality-constrained 

linear coding (LLC) to obtain 𝜸(𝒙) for all examples in the given data set [41]. For 

a description of other encoding techniques in the literature, the interested reader is 

referred to recent papers and reviews on the subject [15], [41]–[51]. LLC is 

algorithmically attractive due to its accuracy and the existence of an analytical 

solution to its underlying optimization problem. LLC produces an accurate and 

sparse mapping of a given example to its local coordinates 𝜸(𝒙) by minimizing 

re-projection error and enforcing locality and regularization on 𝜸(𝒙). With 

𝒅(𝒙𝑖) = [𝑑(𝒗1, 𝒙𝑖) … 𝑑(𝒗𝐾, 𝒙𝑖)]
𝑇 defined as a vector of distances values 

𝑑(∙, 𝒙𝑖) of a given example 𝒙𝑖 from all the anchors in 𝑽, the LLC constrained 

optimization problem aims to find 𝜸(𝒙𝑖) such that ∑ 𝛾𝑘(𝒙𝑖)
𝐾
𝑘=1 = 1 for 𝑖 = 1⋯𝑁 

as follows:  

min𝜸(𝒙)∑‖𝒙𝑖 − 𝑽𝜸(𝒙𝑖)‖
2

𝑁

𝑖=1

+ 𝛾‖𝒅(𝒙𝑖)⨀𝜸(𝒙𝑖)‖
2 

The first term of the LLC minimizes the re-projection error across all examples. 

The second term involves the norm of the element wise multiplication (⨀) of the 

distance and local coordinate vectors. This term, weighted by a control parameter 

𝛾, enforces locality and sparsity by reducing the values of the components of 

𝜸(𝒙𝑖) corresponding to faraway anchors.  

Local Encoding of Weight Function 

We now provide an approximation of the local weight function 𝒘(𝒙) in terms of 

𝜸(𝒙) and the anchors. This approximation paves the way for formulating the 

optimization problem for CAFÉ-Map. If we assume each component of our 

weight vector function 𝒘(𝒙) to be Lipschitz continuous, i.e., each of the d 

components of 𝒘(𝒙) is bounded in how fast it can change with a change in 𝒙, 

then, based on the properties of local codings, we can approximate 𝒘(𝒙) as [33]:  



7 

𝒘(𝒙) ≈ 𝑾𝜸(𝒙) (2) 

Here, 𝑾 = [𝒘(𝒗1) 𝒘(𝒗2) ⋯ 𝒘(𝒗𝐾)] is a 𝑑 × 𝐾 weight matrix. The 𝑘th 

column of this matrix is obtained by applying the weight vector function 𝒘(∙) to 

anchor 𝒗𝑘 in 𝑽. With this approximation, we can rewrite the discriminant function 

of our classifier as 𝑓(𝒙) = 𝒘(𝒙)𝑻𝒙 = (𝑾𝜸(𝒙))
𝑻
𝒙. With this approximation, the 

CAFÉ-Map learning problem can be reformulated as finding a matrix 𝑾 that 

produces correct scores for all training examples. A solution to this problem is 

obtained through Structural Risk Minimization. 

Structural Risk Minimization based Feature Selection 

Like Support Vector Machines (SVMs) and other large margin classifiers, CAFÉ-

Map is also based on the principle of structural risk minimization (SRM) [36]. 

SRM states that, in order to provide good generalization, a classifier should 

reduce the empirical error on its prediction through a loss function while 

minimizing its complexity by regularization. In contrast to existing locally linear 

variants of support vector machines, CAFÉ-Map uses a L1-norm unsquared 

regularizer ‖𝑾‖1 = ∑ ∑ |𝑾𝑖𝑗|
𝐾
𝑗=1

𝑑
𝑖=1  to obtain a sparse local weight function. 

With an empirical loss term 𝐿(𝑋, 𝑌; 𝑓) and a regularization parameter 𝜆 the 

complete learning problem of CAFÉ-Map can be written as: 

𝑚𝑖𝑛 𝑾𝑃(𝑾) = 𝜆‖𝑾‖1 + 𝐿(𝑋, 𝑌; 𝑓) (3) 

The empirical loss term 𝐿(𝑋, 𝑌; 𝑓) = ∑ 𝑙(𝑓(𝒙𝒊), 𝑦𝑖)
𝑁
𝑖=1  measures the error between 

the prediction from the classifier 𝑓(𝒙) and the desired target label 𝑦 for all 

examples. CAFÉ-Map uses the logistic loss function 𝑙(𝑓(𝒙), 𝑦) = 𝑙𝑜𝑔 (1 +

𝑒𝑥𝑝(−𝑦𝑓(𝒙))) due to its continuous nature which aids in the optimization 

procedure discussed in the next section. A change of the loss function to a square 

loss or an ε-insensitive loss function can lead to the solution of a regression 

problem. Other extensions, such as ranking or multiple instance learning, are also 

possible by simply changing the loss function.  

Optimization Algorithm for CAFÉ-Map 

The CAFÉ-Map optimization problem with L1-norm regularization is solved by 

an efficient stochastic coordinate descent algorithm proposed by Shalev-Shwartz 
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and Tewari [52]. Reasons for choosing this optimization algorithm in CAFÉ-Map 

include its good convergence and run time characteristics, ease of implementation 

and parameter free nature.  

This stochastic coordinate descent algorithm initializes W to a zero matrix. At 

each iteration of the algorithm, a coordinate (j, k) is picked uniformly at random 

from the weight matrix such that j ∈ [1, d] and k ∈ [1, K]. Then the weight 

component wjk = W(j, k) is updated in a direction opposite to the partial 

derivative of the CAFÉ-Map objective function with respect to wjk with a step 

size of 
1

β
. Specifically, the update can be written as: wjk ← wjk −

1

β
(
∂L(X,Y;W)

∂wjk
+

λ
∂‖W‖1

∂wjk
).  

The partial derivative of the empirical loss term L(X, Y; f) = ∑ l(f(xi), yi)
N
i=1  with 

respect to wjk is given by gjk =
1

N
∑

∂l(zi,yi)

∂wjk

N
i=1 . The gradient of the discriminant 

function score zi = f(xi) = (Wγ(xi))
T
xi with respect to wjk is 

∂zi

∂wjk
= xijγk(xi). 

Here, xij is the value of the feature j for example xi and γk(xi) is its local 

coordinate corresponding to anchor k. Therefore, the gradient of the logistic loss 

function with respect to wjk can be written as: 
∂l(zi,yi)

∂wjk
=

∂log(1+exp(−yizi))

∂wjk
=

−
yixijγk(xi)

1+exp(yizi)
. Thus, gjk = −

1

N
∑

yixijγk(xi)

1+exp(yizi)
N
i=1 .  

The partial derivative of the L1-regularization term λ‖W‖1 with respect to wjk is 

given by 

∂λ‖W‖1

∂wjk
=

∂λ|wjk|

∂wjk
= {

λ if wjk > 0

−λ if wjk < 0

0 otherwise

. 

As a consequence, the step update wjk ← wjk −
1

β
(
∂L(X,Y;W)

∂wjk
+
∂λ‖W‖1

∂wjk
) can be 

written as: 

wjk ←

{
 
 

 
 wjk −

1

β
(gjk + λ) if wjk −

1

β
(gjk + λ) > 0

wjk −
1

β
(gjk − λ) if wjk −

1

β
(gjk − λ) < 0

0 otherwise

 

Thus, 𝑤𝑗𝑘 ← 0 if (𝑤𝑗𝑘 −
𝑔𝑗𝑘

𝛽
) ∈ [−

𝜆

𝛽
,
𝜆

𝛽
]. It is easy to notice that a large 𝜆 would 

forces a large number of components of the weight matrix to zero.  
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The parameter 𝛽 in the coordinate descent algorithm is taken to be the upper 

bound on the second derivative of the logistic loss function. For normalized data 

in which all examples have unit norm, this parameter is set to 
1

4
. 

The complete CAFÉ-Map training algorithm with all the optimization steps is 

given below. This algorithm reduces the run time by requiring weight-update 

based changes to the function scores of examples instead of re-evaluating them 

every time.  

The algorithm is run for a pre-specified number of epochs or iterations T over the 

training data. Customization of this algorithm for use in CAFÉ-Map lead to a run 

time with an expectation upper bound of 
NKdβ‖W∗‖2

2

ε
 to reach an ε-accurate 

solution, where W∗ = argminWP(W) is the optimal solution. This run time can 

be significantly reduced in case of sparse input data and sparse coding. The 

algorithm also provides a theoretical guarantee on the upper bound of the error 

between the weight matrix obtained after T iterations W(T) and W∗ that decreases 

hyperbolically with T. For proofs, the interested reader is referred to the paper by 

Shalev-Shwartz and Tewari [52]. 

Input:  

Data Set: N training examples with associated labels {(𝒙𝒊, 𝑦𝑖)|𝑖 = 1…𝑁} 

Parameter values: 𝐾, 𝛾, 𝜆    

Output:  

An optimal weight matrix  𝑾 that can be used to obtain the local weight vector 𝒘(𝒙) and 

discriminant score 𝑓(𝒙) for any  𝒙 

Algorithm Description 

Select K Anchor points from the given data set 

Obtain local coding  𝜸(𝒙) for every example  𝒙 through LLC with parameter  𝛾 

//optimize Equation (3) using the optimization algorithm as follows: 

Let 𝑾 = 𝟎 ∈ 𝕽𝑑×𝐾 , 𝒛 = 𝟎 ∈ 𝕽𝑁  

For t = 1, 2… until convergence  

Sample 𝑗 ∈ [1, 𝑑] and 𝑘 ∈ [1, 𝐾] uniformly at random 

Compute the derivate 𝑔𝑗𝑘 = −
1

𝑁
∑

𝑦𝑖𝑥𝑖𝑗𝛾𝑘(𝒙𝒊)

1+𝑒𝑥𝑝(𝑦𝑖𝑧𝑖)
𝑁
𝑖=1  

If wjk −
1

β
(gjk + λ) > 0 then 

wjk ← wjk −
1

β
(gjk + λ) 

else if wjk −
1

β
(gjk − λ) < 0 then 
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Local Feature Ranking and Interpretation of CAFÉ-Map 

Once the weight matrix 𝑾 has been obtained using the optimization algorithm 

described in the last section, we can then calculate the local weight vector 𝒘(𝒙) =

𝑾𝜸(𝒙) and the discriminant function score 𝑓(𝒙) = 𝒘(𝒙)𝑻𝒙 for any example 𝒙. 

L1-norm regularization of 𝑾 in CAFÉ-Map forces most components of 𝒘(𝒙) to 

zero. As a consequence, the local weight vectors across examples can be used in 

different ways for feature ranking. Specifically, we can rank the importance of 

different features for an individual example 𝒙 by using the absolute values of 

different components of the context dependent weight vector given by 

|𝒘𝑗(𝒙)|, 𝑗 = 1⋯𝑑. A global feature ranking can also be obtained by simply 

averaging the absolute values of local weights across examples, i.e., |𝒘𝑗| =

1

𝑁
∑ |𝒘𝑗(𝒙𝒊)|
𝑁
𝑖=1 , 𝑗 = 1⋯𝑑. If the data is normalized, then the norm of the local 

weight vector ‖𝒘(𝒙)‖ can also be used to rank the importance of different 

training examples for classification.  

A deeper look at the scoring function of CAFÉ-Map 𝑓(𝒙) = 𝒘(𝒙)𝑻𝒙 reveals that 

the score of an example is, in essence, the projection or correlation of the feature 

vector of that example with its local weight vector. For correct classification, we 

require 𝑦𝑓(𝒙) > 0. As a consequence, the learning problem of CAFÉ-Map can be 

interpreted as follows: CAFÉ-Map find local a minimum L1-norm local weight 

vector 𝒘(𝒙𝒊) such that the projection or correlation of 𝒙𝒊 with the vector  𝑦𝑖𝒘(𝒙𝒊) 

is positive. Therefore, 𝑦𝑖𝒘(𝒙𝒊) can be visualized as a sparse or reduced variant of 

𝒙𝒊 containing only those components that are important for the given classification 

problem. For the special case in which 𝜸(𝒙) = 𝒙, the CAFÉ-Map formulation 

results in large margin locally linear discriminant analysis with its scoring 

function given by 𝑓(𝒙) = 𝒙𝑻𝑾𝑻𝒙  [53].  

wjk ← wjk −
1

β
(gjk − λ)  

else 

𝑤𝑗𝑘 ← 0 

End if 

Let the change in 𝑤𝑗𝑘  be denoted by ∆𝑤𝑗𝑘  

If ∆𝑤𝑗𝑘 ≠ 0, then For all examples 𝑖 = 1…𝑁 for which 𝑥𝑖𝑗 ≠ 0 and 𝜸𝒌(𝒙𝒊) ≠ 0 

Update 𝑧𝑖 = 𝑧𝑖 + ∆𝑤𝑗𝑘𝑥𝑖𝑗𝜸𝒌(𝒙𝒊) 
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 Handling Class Imbalance, Bias and Sparsity 

The basic formulation presented earlier can be improved to handle imbalanced 

data classification problems. This can be achieved by introducing an example-

specific weighting factor to the loss function that assigns greater importance to 

correct classification of the under-represented class. Specifically, we modify the 

loss term 𝐿(𝑋, 𝑌; 𝑓) to ∑ 𝑐𝑖𝑙(𝑓(𝒙𝒊), 𝑦𝑖)
𝑵
𝒊=𝟏  by introducing user-specified factors 

𝑐𝑖 > 0 for all examples 𝑖 = 1⋯𝑁 such that ∑ 𝑐𝑖
𝑁
𝑖=1 = 1. Class imbalance is 

adjusted by setting 𝑐𝑖 =
1

2𝑁+
 for all 𝑁+ positive examples and 𝑐𝑖 =

1

2𝑁−
 for the 𝑁− 

negative examples in the training set of 𝑁 = 𝑁+ + 𝑁− total examples. The 

gradient term is modified accordingly. These factors can also be used to 

introduced prior or domain knowledge in the classifier.  

The formulation of CAFÉ-Map omits the bias term in the discriminant function 

for simplicity. The addition of the bias term simply requires an additional feature 

for all examples with a value of 1.0. The objective function and the associated 

gradient evaluations are accordingly updated.  

The Python implementation of CAFÉ-Map is optimized for handling sparse data. 

It prevents unnecessary computation for sparse data by preventing gradient 

calculation and score updates if either 𝑥𝑖𝑗 or 𝜸𝒌(𝒙𝒊) is zero.  

Experimental Evaluation 

Datasets 

We have used two groups of data sets for demonstration and analysis of the 

performance of CAFÉ-Map: Toy datasets and real world biomedical datasets. 

Here, we provide a brief description of these data sets.  

Toy Data Sets 

We have used four different toy datasets to demonstrate the behavior of CAFÉ-

Map. These data sets are separable with binary labels and allow us to understand 

the feature selection process in CAFÉ-Map. These data sets include: L-shaped, 

2 × 2 Checkerboard pattern, Linear Interpolation set and a circular pattern. The 

number of positive and negative examples in these datasets is equal. The circular, 

L-shaped and 2 × 2 checkerboard patterns are two-dimensional whereas the linear 

interpolation data set is 50 dimensional. Each data set has 100 positive and 100 

negative examples. The coordinates of each point are used as features. For each 
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data set, we trained on the whole data set and show the plot of the data along with 

the prediction scores and the classification boundary obtained from CAFÉ-Map. 

We also plot the absolute values of the local weight vector at different points in 

the feature space. This visualization allows us to find the local importance of 

different features in the feature spaces of these datasets. 

Real World Data Sets 

For the performance assessment and analysis of CAFÉ-Map, we have used four 

high dimensional real world datasets: the mass-spectrometry Arcene data set [54] 

and three different microarray datasets for Diffuse large B-cell Lymphoma [16], 

Prostate [17] and Breast [18]–[21] cancers. Arcene’s task is to distinguish 

cancerous vs. normal patterns. The arcene dataset contains 100 training and 100 

validation examples. Each example is represented by its 10,000 mass 

spectrometry spectrum features. All the datasets microarray cancer data sets were 

obtained from Glaab et al. [55]. Each of these data sets consists of expression 

measurements for a number of genetic probes for different types of tumors or 

control samples. Glaab et al. have used fold change filtering and thresholding for 

preprocessing as explained in the supplementary material of their paper. Each 

example has been normalized to unit norm. The number of features and examples 

used in evaluating the performance of CAFÉ-Map for each of these data sets is 

given in Table-1. The prostate cancer data set has 52 tumor and 50 control 

samples with 2,135 genes. The Lymphoma data set has 7,129 genes with 58 

Diffuse large B-cell lymphoma samples and 19 follicular lymphoma samples. The 

breast cancer set consists of 84 Luminal and 44 Non-Luminal samples with 47, 

293 genes. We report the prediction performance of CAFÉ-Map for these datasets 

as well as the interpretation of different features. 

Cross-validation Protocol and Performance Metrics 

We have used 10-fold stratified cross-validation for computing accuracy metrics 

such as the mean accuracy and Area under the Receiver Operating Characteristics 

curves (AUC-ROC) across different folds. We also report the standard deviation 

of the accuracy metric so that our results can be directly compared with those in 

the work by Glaab et al.  

To aid the reader in interpreting the results of feature selection in CAFÉ-Map, we 

also report the number of non-zero components of the local weight vector 
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averaged across training examples. We refer to this term as the number of active 

features defined mathematically as 𝐹 =
1

𝑁
∑ ∑ 𝐼[𝒘𝑗(𝒙𝑖)]

𝑑
𝑗=1

𝑁
𝑖=1  with the indicator 

function 𝐼[∙] = 1 if its argument is non-zero and 0 otherwise. 

Model Selection 

CAFÉ-Map requires a value of the regularization parameter 𝜆 as well as the 

parameters associated with the local coding. The LLC algorithm involves 

selecting its own locality enforcing parameter 𝛾 as well as the number of anchors 

K. These parameters were coarsely optimized for each data set using a stratified 

cross-validation protocol over the training examples in each of the 10 folds used 

in performance evaluation. It was observed that the most important parameter in 

the local encoding was the number of anchors (data not shown). This is due to the 

fact that for good performance, the feature space needs to be appropriately 

sampled. The anchors were obtained by randomly selecting K examples in the 

given data set to act as anchors. The number of randomly selected anchors from 

each class is proportional to its number of examples in the training set.  An 

alternative approach is to apply K-means clustering on the data and use the cluster 

centers as anchors. However, we noticed that the exact method used for selecting 

the anchors, random selection or clustering, did not seem to affect classification 

performance (results not shown).  

Results and Discussion 

Results on Toy Datasets 

In this section, we discuss the results of training CAFÉ-Map on four different toy 

datasets. The L-shaped data set is designed in a way that the decision boundary of 

the ideal classifier is shaped like an “L” with its two features being important in 

different regions of the feature space. Figure 2 shows the results of applying 

CAFÉ-Map on this data set. It is evident that CAFÉ-Map is able to find a highly 

accurate classification boundary (Figure 2(a)). The analysis of the absolute values 

of the local weights 𝒘(𝒙) = 𝑾𝜸(𝒙) in different regions of the feature space 

shows their relative importance in Figure 2 (b) and (c). It is clear that different 

features are important in different regions of the feature space with |𝒘𝟏(𝒙)| being 

higher than |𝒘𝟐(𝒙)| along the vertical decision boundary and vice versa. This 
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allows us to analyze the importance of each feature for any given example. The 

discriminant boundaries and local weights for the 2x2 checkerboard patterns are 

shown in Figures 3. These plots also illustrate the effectiveness of CAFÉ-Map in 

uncovering the local importance of different features in different parts of the 

feature space.  

 

[Figure-2 goes here] 

[Figure-3goes here] 

 

We also demonstrate the results of CAFÉ-Map on a circular data set in Figure 4. It 

is interesting to note that the locally linear classification boundary obtained by 

CAFÉ-Map with just 4 anchors is very smooth. The variation of local weight and 

bias values in different regions of the feature space clearly indicate the context 

aware nature of CAFÉ-Map for this data set.   

 

[Figure-4 goes here] 

 

To illustrate the working of CAFÉ-Map on higher dimensional and more complex 

data, we use the 50-dimensional linear interpolation data set in Figure 5. This 

artificial data set has been created by setting the value of the 𝑗th feature of each 

positive example from -1.0 for 𝑗 = 1 to +1.0 for 𝑗 = 50 through linear 

interpolation. Uniform random noise is then added for each example so that the 

noise to signal ratio is 100%. For the negative examples, the feature values are 

assigned in a completely opposite manner as shown in Figure 5. For this data set, 

the first and last features are more important in comparison to the others. Ideally, 

a single feature can perform perfect classification for this data set. However, this 

is typically not possible due to the added noise. Figure 5(b) and 5(d) show that the 

only a few components of the local vector are non-zero. It is interesting to note 

that the local weight values of all examples are almost similar. This is a 

consequence of the fact that the underlying classification problem is linearly 

separable. Figure 5(c) plots the product of the local weight vector of each training 

example 𝒘(𝒙𝒊) = 𝑾𝜸(𝒙𝒊) with its label 𝑦𝑖. It is easy to visually notice the high 

positive correlation of 𝑦𝑖𝒘(𝒙𝒊) with 𝒙𝒊. As discussed in the previous section, this 

high positive correlation is indicative of correct classification.  
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[Figure-5 goes here] 

Results on Real World Datasets 

We have tested CAFÉ-Map extensively on real world data sets. The results are 

shown in the table below. In this section we discuss these results and their 

comparison with other methods. We provide the references used in the 

comparison.  

For the 10K Dimensional Arcene data set we have obtained AUC-ROC score of 

94 and accuracy of 86% which is comparable to that obtained by other state of the 

art methods [54],[56]–[61]. Please note that, for this data set, the evaluation is 

performed on the validation data set after CAFÉ-Map is trained on the given 

training set. This follows the same protocol as used in the cited references. It is 

interesting to notice that, the number of active features is only 55 (0.55%) and 

even a smaller number (27) of local components are larger than 
𝜆

𝛽
. This clearly 

illustrates the effectiveness of CAFÉ-Map in feature selection. Figure 6 shows the 

convergence characteristics of CAFÉ-Map for this data set in terms of the 

structural risk P(W) defined in equation (3) and the number of active features. 

[Figure-6 goes here] 

For the three microarray data sets, the cross-validation performance of CAFÉ-

Map is better than existing approaches as shown in Table-1. For comparison, we 

present the best results among a number of different classifiers given in the work 

by Glaab et al. (see table 4 and table 5 in their work [62]).   It is interesting to note 

that the proposed scheme performs better than earlier approaches over all these 

data sets with exactly the same evaluation protocol. The number of active features 

obtained is very small for all these data sets relative to the number of original 

features. The number of features with absolute values greater than 
𝜆

𝛽
 is even 

smaller: 5, 41 and 2 for the Prostate, Lymphoma and Breast cancer data sets, 

respectively.  

Table-1 also gives the average run times across multiple cross-validation runs for 

different data sets on a Dell Core-i5 laptop with 4GB RAM. It can clearly be seen 

that CAFÉ-Map offers very high speed of convergence over these data sets. 
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Comparison with Locally Linear SVM 

The formulation of CAFÉ-Map is similar to that of the locally linear SVM 

(LLSVM) proposed by Ladicky and Torr. Both CAFÉ-Map and LLSVM are 

locally linear classification methods that use a context aware weight function.  

However, the major difference between these techniques is the choice of the 

regularization function in CAFÉ-Map. CAFÉ-Map uses an L1 regularization 

function over the weight matrix which enforces sparsity. LLSVM, on the other 

hand, uses L2 regularization and a stochastic gradient descent based optimization 

algorithm. As a consequence, CAFÉ-Map can be expected to produce a smaller 

number of active features in comparison to LLSVM. We tested this hypothesis 

over the prostate cancer data set by applying LLSVM. The best cross-validation 

AUC score for the LLSVM is 94.3 with 480 active features. In comparison, 

CAFÉ-Map gives an AUC score of 98.0 and only 38 active features. This clearly 

shows the effectiveness of using CAFÉ-Map in comparison to LLSVM and 

similar approaches.  

 

Table 1 Results of CAFE-Map for Different Real World Data Sets. The average number of non-zero 

local weights and the percentage of selected features (in parenthesis) obtained after CAFÉ-Map 

training is shown for each data set. Also shown is the associated AUC-ROC and Balance Accuracy 

value with the standard deviation given in parenthesis. The average run time for multiple cross-

validation runs in seconds is also given for different data sets. For comparison, we also provide best 

value of accuracy obtained by existing techniques cited as references.  

Dataset Details CAFÉ-Map Results Comparison 

Name Samples Features 
Active 

Features 
AUC-
ROC 

Mean  
Accuracy 

Average 
Time (s) 

Best 
reported 
Accuracy 

References 

Arcene 
88 (P) 

 112(N) 
10,000 55 (0.6%) 94 86 (1) 409 86 (3) [54], [56]–[61] 

Prostate 
52 (T) 
 50 (N) 

2,135 38 (1.8%) 98 96 (6) 354 96 (8) [62]–[67] 

Lymphoma 
58 (D) 
19 (F) 

7,129 
426 

(6.0%) 
94 98 (5) 451 95 (8) 

[16], [62], [65], 
[67]–[70] 

Breast 
84 (L) 
44 (N) 

47,293 
437 

(0.9%) 
88 92 (6) 497 89 (5) [62] 

Analysis of Prostate Cancer Features 

In order to see if the features selected by CAFÉ-Map are meaningful or not, we 

mined the literature for relevance of top scoring genes in the prostate data set to 

prostate cancer. For this purpose, we ranked genes by the average of the absolute 

value of local weights across all examples in the prostate data set after training 

through CAFÉ-Map. Figure 7 plots the weight values for top ranked genes. We 

found references in the literature for all genes with absolute weight values from 

CAFÉ-Map higher than 0.06. Table 2 lists all such microarray probes and their 
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gene identifiers together with associated literature references indicating their 

relevance to prostate cancer. For example, Hepsin (HPN), the top scoring gene 

selected by CAFÉ-Map, is known to be overexpressed consistently in prostate 

cancer cases [71].  

[Figure-7 goes here] 

 

Table 2 Identification of important genes for prostate cancer from CAFE-Map and their associated 

references 

Probe (Feature) Gene Name Absolute Weight References 

37639_at HPN 0.18 [71] 

40282_s_at CFD 0.11 [72] 

41706_at AMACR 0.09 [73] 

32598_at NELL2 0.09 [74] 

38406_f_at PTGDS 0.09 [75] 

38087_s_at S100A4 0.09 [76, p. 4] 

216_at PTGDS 0.08 [75] 

AFFX-M27830_5_at Control Probe 0.08 [62] 

38127_at SDC1 0.08 [77] 

41468_at TRGV9 0.08 [78] 

41504_s_at MAF 0.07 [79] 

33767_at NEFH 0.07 [80] 

38634_at RBP1 0.07 [81, p. 1] 

37394_at C7 0.07 [82] 

38827_at AGR2 0.07 [83, p. 2] 

35834_at AZGP1 0.07 [84] 

926_at MT1G 0.06 [85] 

38833_at HLA-DPA1 0.06 [86] 

38038_at LUM 0.06 [87] 

39054_at GSTM4 0.06 [88] 

32786_at JUN-B 0.06 [89] 

38751_i_at ATP5I 0.06 [90] 

914_g_at ERG 0.06 [91] 

 

A significance of CAFÉ-Map is its unique ability to analyze the impact of 

different features at the individual instance level which can be very useful in 

interpreting why an example is being classified in a certain way. In order to 

demonstrate this, we clustered the positive and negative examples in the data set 

based on the 40 top ranked components of their local weight vectors 𝒘(𝒙𝒊) =

𝑾𝜸(𝒙𝒊). The clustering was done using the K-means algorithm. The results of 

this clustering are shown in the figure below. The figure shows the local weight 

values of each example as well the original features. Please note that this 
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clustering is not based on the original features. The components of the local 

weight vector or features are indexed along the vertical axis of the heatmap based 

on their rank and the examples are indexed based on their cluster membership. 

This clustering reveals an interesting structure in the data. Examples within the 

same cluster have similar local weights which correspond to similar expression 

patterns. For instance, the local weight vectors for examples 1-8 of the positive 

class are very different from examples 38-52 even though both of them belong to 

the positive class. Unlike other positive class instances, examples 33-37 have 

large negative local weights for certain features. This reveals that there are large 

differences between the expression profiles of these examples. It must be noted 

that such strong clustering is not visible in the heatmap of the original features 

shown in Figure 8. A similar structure is visible in the local weight values of the 

negative class. This figure also shows that the relative importance of features 

varies across examples based on their local context. It can be postulated that such 

differences are be a consequence of differences in age, gender, disease 

progression, etc. Unfortunately, the prostate cancer data set does not provide 

sufficient information to investigate the source of these differences. However, it 

clearly illustrates the primary idea behind CAFÉ-Map and its usefulness in 

analyzing similar data sets.  

[Figure-8 goes here] 

 

Conclusions 

CAFÉ-Map is a locally linear classifier with built-in feature ranking capabilities. 

It allows the user to estimate the relative importance of different features for 

individual examples or in different regions of the feature space. Our comparative 

analysis reveals that CAFÉ-Map compares very well with state of the art feature 

analysis algorithms and is particularly well suited to biomedical data. CAFÉ-Map 

allows the identification of a number of genes relevant to prostate cancer.  
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