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Abstract

In this paper, a fully automatic method for detection of Helicobacter pylori (H. pylori) infection is presented with the aim of
constructing a computer-aided diagnosis (CAD) system. In order to realize a CAD system with good performance for detection of
H. pylori infection, we focus on the following characteristic of stomach X-ray examination. The accuracy of X-ray examination
differs depending on the symptom of H. pylori infection that is focused on and the position from which X-ray images are taken.
Therefore, doctors have to comprehensively assess the symptoms and positions. In order to introduce the idea of doctors’ assessment
into the CAD system, we newly propose a method for detection of H. pylori infection based on the combined use of feature fusion
and decision fusion. As a feature fusion scheme, we adopt Multiple Kernel Learning (MKL). Since MKL can combine several
features with determination of their weights, it can represent the differences in symptoms. By constructing an MKL classifier for
each position, we can obtain several detection results. Furthermore, we introduce confidence-based decision fusion, which can
consider the relationship between the classifier’s performance and the detection results. Consequently, accurate detection of H.
pylori infection becomes possible by the proposed method. Experimental results obtained by applying the proposed method to real
X-ray images show that our method has good performance, close to the results of detection by specialists, and indicate that the
realization of a CAD system for determining the risk of H. pylori infection is possible.

Keywords:
H. pylori infection detection, gastric X-ray images, feature fusion, decision fusion.

1. Introduction

The results of many studies have shown that Helicobacter
pylori (H. pylori) infection causes the development of gastric
cancer [1, 2, 3]. H. pylori infection triggers a series of inflam-
matory reactions [4, 5], and among these reactions, chronic
atrophic gastritis is considered to be the first step of a sequence
of mucosal changes in the stomach leading to cancer [2]. Early
detection of H. pylori infection will enable subsequent elimina-
tion of H. pylori and a reduction in gastric cancer risk [6, 7].
Since H. pylori infection is an important factor in alteration of
acid secretion, development of ulcers and carcinogenic poten-
tial [8], eradication of H. pylori has become an important issue
for curing gastroduodenal diseases [9].

A gastric cancer risk classification scheme (ABCD classifi-
cation [10]) based on H. pylori infection and degree of atrophic
gastritis has been introduced in each municipality and in hospi-
tals in Japan. The ABCD classification is a blood examination
based on the combination serum H. pylori antibody level (Hp
antibody level) and serum pepsinogen (PG) levels. Hp anti-
body level is used for estimating H. pylori infection, and PG
levels are the serum markers of atrophic gastritis, which is a
precancerous change in the stomach [11]. In the ABCD clas-
sification, screened patients are classified into four categories,

Table 1: ABCD classification for gastric cancer risk. Note that the Hp antibody
of category D is (-), but this category is regarded as H. pylori infection. Thus,
category A represents the absence of H. pylori infection, and categories B, C
and D represent the presence of H. pylori infection.

(-) (+)

(-) A B

(+) D C
PG levels

Hp antibody level

i.e., categories A, B, C and D, based on results of examinations
of blood samples as shown in Table 1. Category A is regarded
as the lowest category of gastric cancer risk, and category D
is regarded as the highest category of gastric cancer risk even
if Hp antibody level is low, i.e., no detectable H. pylori pres-
ence. Patients identified as category D have severe mucosal
atrophy associated with intestinal metaplasia [12]. There is the
potential for the reduction of anti-Hp antibody production due
to severe atrophy since H. pylori hardly survives in the intesti-
nal metaplasia mucosa [13]. Therefore, the gastric cancer risk
is high despite shedding of H. pylori. For efficient diagnosis,
the low-risk category, i.e., category A, can be excluded from
further detailed examination. Although the ABCD classifica-
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tion is useful for screening patients, the results generally tend
to include some false negative results [10, 14]. The false nega-
tive results are results for patients who have been incorrectly re-
garded as not having gastric cancer risk even though they have
the risk. Hp antibody level may decrease due to severe atro-
phy as described above. Furthermore, PG levels after H. pylori
eradication are changed to normal levels even though gastric
acid secretion may not have ceased [15], i.e., remaining gastric
cancer risk. The ABCD classification tends to categorize pa-
tients after eradication treatment into category A, thus giving
rise to false negative results.

Therefore, doctors must directly monitor the stomachs of pa-
tients to avoid the above problem. Diagnosis is generally made
by endoscopy or photofluorography. For endoscopic images, a
classification method of H. pylori-related gastric histology has
been reported [16]. Although endoscopic examination is better
than X-ray examination for detecting early gastric cancer [17],
the usefulness of endoscopic examination for mass screening
is limited [18]. Since many patients need to be diagnosed ev-
ery year, diagnosis by endoscopy for all candidates with a risk
of H. pylori infection is impossible. Therefore, stomach X-ray
examination has become more significant. After screening pa-
tients by stomach photofluorography, performing endoscopy as
an additional examination enables more accurate and efficient
gastric cancer examination. Thus, stomach X-ray examination
is effective for identifying patients with a risk of gastric cancer.

It has also been reported that H. pylori infection can be vi-
sually detected from gastric X-ray images and that highly re-
liable diagnosis by specialists is possible [19, 20]. However, in
X-ray diagnosis, the workload for doctors increases due to the
necessity of a high degree of experience and specialist knowl-
edge. Computer-aided detection (CAD) systems that automat-
ically analyze images have been attracting attention since they
can decrease the workload on doctors [21]. The objective for
the use of a CAD system is first screening for selecting patients
who require follow-up examination, i.e., X-ray examination and
endoscopy, by doctors for diagnosis. Therefore, if a CAD sys-
tem has good performance for detection of H. pylori infection,
it can reduce the workload on doctors. A CAD system can also
be used to support a diagnosis by an inexperienced doctor as a
second opinion.

Recently, in the field of medical imaging, many
methods have been developed for detecting medical
abnormalities [22, 21, 23]. The idea of a combination scheme,
i.e., decision fusion, for detecting an abnormality has been
introduced in reports [21, 23]. These methods combine the
results obtained from exiting detection methods. However,
as far as we know, there have been only a few recent studies
on detection of gastric abnormalities by initially using X-ray
images. Abe et al. [24] proposed new features that can be used
to discriminate gastric cancer in X-ray images. Since gastric
X-ray images are usually taken from several positions, the
combined use of images may yield better performance.

In fields other than medical imaging, many methods based
on combination schemes [25], i.e., feature fusion and decision
fusion, have been proposed. For feature fusion, multiple ker-
nel learning (MKL) has been successfully applied to a number

of tasks in computer vision [26]. Furthermore, recent studies
have shown promising performance of MKL for object recog-
nition [27]. There have also been many studies on decision
fusion. Much interest has been shown in confidence-based de-
cision fusion schemes [28, 29]. Alam et al. [28] developed a
fusion framework for audio-visual biometric identification. The
framework works well when input samples presented are con-
taminated by noise, e.g., detector noise, bit error and additive
noise. Topcu et al. [29] classified each block that is obtained
by dividing face images into rectangular regions and applied a
linear combination to each block’s classification results. Then
the coefficients of linear combinations are obtained from some
schemes, e.g., accuracy-based weighting and Fisher discrimi-
nant analysis-based weighting. These fusion schemes can be
used to determine whether patients are infected with H. pylori
nor not.

A method for detection of H. pylori infection that is based
on feature fusion and decision fusion is presented in this paper.
For accurate detection of H. pylori infection, we focus on two
unique characteristics of gastric X-ray examination. First, the
accuracy of stomach X-ray examination differs depending on
the symptoms of H. pylori infection that are focused on [30],
e.g., mucosal surface, fold distribution and fold shape. Sec-
ondly, gastric X-ray images are usually taken from several po-
sitions, and the accuracy of stomach X-ray examination differs
depending on the position. Due to these characteristics, fea-
ture fusion and decision fusion must both be used. Feature
fusion can integrate each visual feature by considering its im-
portance, and decision fusion can integrate multiple detection
results by considering which position from which X-ray im-
age was taken will lead to good detection results from the re-
lationship between the classifier’s performance and the classi-
fier’s confidence. Therefore, we first introduce MKL as feature
fusion since MKL can combine visual features with consider-
ation of the importance of each visual feature by linear com-
binations of visual features. For realizing effective feature fu-
sion based on MKL, the proposed method refines each visual
feature based on the minimal-Redundancy-Maximal-Relevance
(mRMR) algorithm [31] and Kernel Local Fisher Discriminant
Analysis (KLFDA) [32]. Note that the mRMR algorithm and
KLFDA are a feature selection method and a dimensionality
reduction method, respectively. By applying these methods to
original visual features, we can obtain visual features that have
more discriminative power. We also use confidence-based de-
cision fusion developed in [33], which can integrate multiple
detection results by considering not only the classifier’s per-
formance but also the relationship between feature vectors and
detection results unlike simple decision fusion. This enables
identification of classifiers that output better results for target
features to determine the final optimal detection results. We
can also consider how confidently each classifier obtains detec-
tion results by using confidence scores obtained in MKL-based
classification as the feature vector. By considering the char-
acteristics of a doctor’s inspection based on the combined use
of feature fusion and decision fusion, accurate detection of H.
pylori infection is achieved by the proposed method.

The contribution of this paper is the combined use of feature
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Table 2: Overview of the symptoms of Helicobacter pylori infection in gastric X-ray images.

Corresponding

blood test

Smooth type Hp-negative

Coarse type Hp-positive

1)

2)

3)

4)

Normal Hp-negative

Abnormal

Absent

Fold Shape

Slim, straight, smooth, small (height not large), slow (rise and fall not rapid), and soft

Hp-positive

Mucosal

Surface

Fold

Distribution

Hp-negative

Hp-positive

A uniform, fine mucosal pattern

A rough mucosal pattern with fine bumps

Folds can be seen in all areas of the gastric body.

Folds can be seen in all areas of the gastric body other than the lower side of the lesser

Folds can be seen only in the side of the greater curvature.

Folds can be seen only in parts of the side of the greater curvature or are completely

Large, non-straight, with a rough surface (surface appearing bumpy upon magnification),

with a large height and rapid rise and fall

Folds are missing.

fusion and decision fusion for considering the characteristics
of a stomach X-ray examination. Although we have published
some previous papers [34, 35, 36], their contribution is differ-
ent from this paper’s one. In a previous report [34], we intro-
duced decision fusion without the use of feature fusion, i.e., not
considering the importance of each symptom. We have also in-
troduced the idea of double reading, which is examination of
gastric X-ray images, i.e., photofluorography, by two readers in
a method based on two kinds of classifiers [35]. Although we
used MKL as a kind of classifier, the theoretical methodology of
the previous method was insufficient since the previous method
was used in a pre-study for demonstrating the idea of double
reading in machine learning. Particularly, MKL in the previous
method were not methodologically introduced the characteristic
that the accuracy of X-ray examination differed depending on
the symptom of H. pylori infection focused on. For additional
improvement in performance using the framework in our previ-
ous paper, we have to improve the performance of MKL based
on the refinement of visual features. In the previous method,
all of the visual features were aggregated into three kinds of
feature types, texture feature, shape feature and gradient-based
feature, and only the mRMR algorithm was applied for feature
selection to each type of feature. After having been selected
by the mRMR algorithm, the three types of features were com-
bined on the basis of MKL. However, we have revealed that the
symptoms of H. pylori infection focused on by each kind of vi-
sual feature are different. Furthermore, we considered that the
accurate description of the symptom that doctors were focused
on enabled by increasing the discriminative power of the visual
features. Therefore, the proposed method enables accurate de-
tection of H. pylori by improving the discriminative power of
each visual feature based on KLFDA and combining all of these
features based on MKL. For the reason mentioned above, we
consider the method presented in this paper is a refined method
considering both medical knowledge and knowledge of infor-
mation science. On the other hand, we have calculated effective
visual features related to measured values in a blood examina-
tion [36]. Although X-ray images and measured values in blood
examination, i.e., Hp antibody level and PG levels, were used
in the previous method [36], only X-ray images are used in the

method presented here. Therefore, the motivation of investiga-
tion for the present method and that for the previous method are
different [36].

This paper is organized as follows. First, the extraction and
selection of features from gastric X-ray images are explained
in Section 2. The feature fusion-based method for detection
of H. pylori infection is presented in Section 3. Confidence-
based decision fusion is explained in Section 4. In Section 5,
experimental results obtained by applying our method to actual
X-ray images are presented, and the effectiveness of the pro-
posed method is shown. Finally, conclusions are presented in
Section 6.

2. Feature Extraction and Selection

In this section, the extraction and selection of visual features
used in our method are explained.

2.1. Feature Extraction

A summary of the symptoms of H. pylori infection in gastric
X-ray images is shown in Table 2. Figure 1 shows an example
of gastric X-ray images used in this study. Figure 1 (a) shows an
image with H. pylori infection (hereafter, positive image), and
Fig. 1 (b) shows an image with no H. pylori infection (here-
after, negative image). These images can be examined visually
by looking for characteristics such as overall shape of the stom-
ach and irregularities and folds in the gastric mucosal surface.
It has been reported that high values for both sensitivity and
specificity can be obtained when specialists manually perform
diagnosis of H. pylori infection according to the above symp-
toms [20]. As shown in Table 2, H. pylori infection has the
following main symptoms.

(i) Gastric mucosal surface in cases of H. pylori infection usu-
ally has a coarse mucosal surface pattern.

(ii) Gastric folds in cases of H. pylori infection usually exist
only on the side of the greater curvature or do not exist.

(iii) Folds in cases of H. pylori infection are usually defined as
wide, non-straight, rough and large.
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Table 3: Features extracted in the proposed method.
Feature type Detail of features Dimension

Texture features

Intensity histogram-related features 4 × 8 × 8
Co-occurrence matrix-related features [37] 9 × 8 × 8

Gabor Wavelet-based features 56 × 8 × 8
ALBP[38] 22 × 8 × 8

Shape features Hu-moment invariant [39] 7 × 8 × 8
Hough transform[40]-based features 2 × 8 × 8

Gradient-based Features HOG features [41] 1296
Sobel filter[42]-based edge features 1 × 8 × 8

Total dimension 7760

(a) (b)

Figure 1: Examples of gastric X-ray images used in this study: (a) an image
with H. pylori infection and (b) an image with no H. pylori infection. These
two images show typical features of images with/without H. pylori infection.

In order to represent the above symptoms, the proposed
method extracts texture features, shape features and gradient-
based features from each image as shown in Table 3. Note that
each image (X × Y pixels) is a gray-scale image, not including
color information. The details of the features used in the pro-
posed method are shown below.

Texture Features

• Intensity histogram-related features (4 dimensions)
An intensity histogram is calculated from the gastric X-ray
image. The histogram is normalized such that its sum is
equal to one. From the obtained histogram, the mean, vari-
ance, skewness and kurtosis are calculated.

• Co-occurrence matrix-related features [37] (9 dimensions)
The proposed method calculates a co-occurrence matrix that
represents inter-pixel relationships for each of the four direc-
tions θ = {0◦, 45◦, 90◦, 135◦} from the gastric X-ray image.
From each of the calculated co-occurrence matrices, the pro-
posed method calculates the following 9 features: contrast,
correlation, second angular moment, uniformity, variance,
inverse difference moment, entropy and correlation informa-
tion measure. Then the average for each feature is obtained.

• Gabor Wavelet-based features (56 dimensions)
The proposed method applies a Gabor Wavelet transform
to the gastric X-ray image in 8 individual directions (θ =

{0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦}). For each ob-
tained wavelet coefficient matrix, the proposed method cal-
culates the maximum value and minimum value as well as
the histogram mode, mean, variance, skewness and kurtosis.

• Adaptive Local Binary Pattern (ALBP) [38] (22 dimensions)
This feature is proposed for improving the Local Binary Pat-
tern (LBP) [43]. The ALBP has robustness of image rota-
tion, and it can represent the difference between a smooth
region and an unsmooth region.

The target X-ray images do not have any color information, and
it is important to monitor the brightness of each part. Therefore,
intensity histogram-related features are adopted. For each local
area, it is also important to monitor the direction of folds. Co-
occurrence matrix-related features and Gabor Wavelet-based
features are representative features for representing their char-
acteristics. Since the mucosal surfaces are smooth in patients
not infected with H. pylori and coarse in H. pylori-infected pa-
tients, the difference is extracted by using ALBP.

Shape Features

• Hu-moment invariants [39] (7 dimensions)
The proposed method first extracts edges from gastric X-
ray images by using the Canny filter [44]. Then the pro-
posed method calculates the scale- and rotation-invariant
Hu-moment features from the obtained binary image.

• Hough transform-based features (2 dimensions)
Similar to the Hu-moment invariants, the proposed method
first extracts edges using the Canny filter and obtains a bi-
nary image. The proposed method then applies the Hough
transform [40] to the binary image and obtains the peak val-
ues for ρ and θ in the ρ–θ space.

For monitoring the fold distributions in both the lesser curvature
and greater curvature, features representing the global direction
of folds within the stomach are necessary. Therefore, in the pro-
posed method, we introduce Hu-moment invariants and Hough
transform-based features for finding such global directions.

Gradient-based Features

• Histogram of Oriented Gradient (HOG) features [41] (1296
dimensions)
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The proposed method extracts HOG features that are ro-
bust to local geometric and brightness changes, as described
in [41]. The proposed method uses a block size of X

2 ×
Y
2 pix-

els and cell size of X
6 ×

Y
6 pixels, i.e., each block is composed

of 3 × 3 cells. The blocks are obtained at intervals of X
6 ×

Y
6

pixels (same as the cell size), and 16 blocks are totally ex-
tracted from the image. Furthermore, for each block, a 9-bin
gradient histogram is calculated from each cell. Therefore,
3×3×9 = 81 features are obtained from each block. Finally,
16 × 81 = 1296 HOG features can be obtained.

• Sobel filter [42]-based edge features (1 dimension)
The proposed method calculates the sum of the gradients
obtained by applying the Sobel filter to the gastric X-ray
image.

Since HOG features can detect an object’s shape by using a
gradient histogram, we expect that it can represent the gastric
fold shape. Furthermore, for monitoring the mucosal surface,
it is important to represent intensity differences between neigh-
boring pixels. Therefore, Sobel filter-based edge features are
useful.

The above features other than HOG features are calculated
for each block, the blocks having been obtained by dividing the
target image into 8 × 8 regions. This means that 101 × 8 × 8 =
6464 features are obtained. Totally, 6464 + 1296 (HOG fea-
tures) = 7760 features are obtained for each target gastric X-
ray image. Then we denote each feature calculated from the
X-ray images taken at the p-th (p = 1, 2, · · · , Pmax; Pmax be-
ing the number of positions) position as a feature vector vp, f

∈ RM f ( f = 1, 2, · · · , F; F being the number of visual features,
i.e., F = 8). Note that M f is the dimension of the f -th feature,
i.e.,
∑F

f=1 M f = 7760, and we use the X-ray images taken in
eight positions (Pmax = 8). As shown in Fig. 1, we cannot
obtain any image information from the surrounding black re-
gions or any effective features for detecting H. pylori infection
from outside the stomach region. Thus, we have to select fea-
tures that can represent the symptoms of H. pylori infection and
exclude features that do not have any image information.

2.2. Feature Selection and Discriminative Feature Extraction

In the previous subsection, we showed how to obtain feature
vectors vp, f that have M f dimensions from each X-ray image.
In the training stage, we assume the label y ∈ {1,−1} that repre-
sents the presence or absence of H. pylori infection is given for
each patient. Then, from the M f features, the proposed method
performs feature selection based on the mRMR algorithm [31]
to select mp, f (< M f ) features. This feature selection algorithm
considers the redundancy of the features and relevance of the
features to the label to select mp, f features. It should be noted
that the optimal dimension of each visual feature shown in Ta-
ble 3 is different depending on the position. The redundancy
and the relevance are calculated on the basis of mutual informa-
tion, and the mRMR algorithm selects the feature for which the
value obtained by subtracting the redundancy from relevance is
high. Thus, the proposed method eliminates redundant features

that cause performance degradation of the following classifica-
tion procedures in H. pylori detection and enables the use of
features that are strongly connected to H. pylori infection.

Unlike the classification method using endoscopy images, a
region of interest (ROI) is generally not provided in X-ray im-
ages. In addition, the important region is generally different
for each feature since symptoms of H. pylori infection can be
found in several parts of the stomach. From this point, we must
not only calculate suitable features but also find which parts
should be used for the classification. Therefore, in the proposed
method, we calculate the features that have location informa-
tion, i.e. blocks, and perform optimal feature selection based
on the mRMR algorithm to obtain optimal feature values in the
optimal locations.

We also use KLFDA [32] for the selected features to ob-
tain the features that have more discriminative power for H.
pylori infection. KLFDA introduces the idea of Locality-
Preserving Projection (LPP) [45] to Kernel Discriminant Anal-
ysis (KDA) [46]. KDA and LPP both calculate embedding
transformation such that the between-class variance is maxi-
mized, and nearby data pairs in the original space are close in
the embedding space. Therefore, we can obtain more discrim-
inative features based on KLFDA. After performing KLFDA,
we define a new feature vector xp, f ∈ Rtp, f that contains tp, f

projected features. Then, by using this non-conventional ap-
proach, we can solve the classification problem of X-ray im-
ages that does not include an ROI, and it is more difficult than
the classification of endoscopy images [16].

3. Feature Fusion-based Detection of H. pylori Infection
for Each Position

In this section, the classification method for X-ray images
taken from each position is presented. In the proposed method,
two-class classification of gastric X-ray images, i.e., infected
or uninfected, is performed on the basis of feature fusion. As
described in Section 2, symptoms of H. pylori infection in X-
ray images appear in various parts of the stomach. On the other
hand, the accuracy of X-ray examination differs depending on
the symptom focused on [30]. Therefore, we expect that feature
fusion can combine the visual features with consideration of the
above differences in accuracy.

In this paper, we combine each visual feature vector based
on MKL, which linearly combines kernel functions calculated
from the feature vectors xp, f . Given a training dataset consisting
of N vectors xi

p, f ∈ Rtp, f (i = 1, 2, · · · ,N) and their correspond-
ing labels yi ∈ {1,−1}, the feature vectors xi

p, f are mapped into
a non-linear feature space by ϕp, f (xi

p, f ) ∈ Rdp, f (dp, f ≫ tp, f ).
Then separation of the two classes becomes feasible through an
optimal hyperplane defined by a weight factor wp, f ∈ Rdp, f and
a bias bp ∈ R. Specifically, when we denote Xp as a set of input
vectors xp, f ( f = 1, 2, · · · , F) whose class label is unknown, the
optimal hyperplane for the p−th position is defined as

f mkl
p (Xp) =

F∑
f=1

βp, f w⊤p, fϕp, f (xp, f ) + bp, (1)
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where βp, f corresponds to the coefficient of the kernel linear
combination. MKL obtains the optimal values of wp, f , bp, and
βp, f by solving the following primal problem:

min
wp, f , bp, βp, f , ξp,i

1
2

F∑
f=1

β2
p, f ∥wp, f ∥2 +Cp

N∑
i=1

ξp,i, (2)

s.t. ∀i : yi

 F∑
f=1

βp, f w⊤p, fϕp, f (xi
p, f ) + bp

 ≥ 1 − ξp,i,

ξi ≥ 0, βp, f ≥ 0,
F∑

f=1

βp, f = 1,

where Cp is a constant that represents a trade-off between the
number of misclassified samples in the training data and sepa-
ration of the remaining samples with a maximum margin. Fur-
thermore, ξp,i is the p−th position’s slack variable for sample
i. The slack variable represents the magnitude of error, i.e., the
distance between the vector of misclassified samples and a hy-
perplane.

The aim of MKL is to find the optimal hyperplane that min-
imizes the cost function in Eq. (2) consisting of two criteria:
margin maximization and error minimization. We obtain a dual
problem of the primal problem in Eq. (2) by applying the La-
grange multiplier method as follows:

max
αi

p, βp, f , λp

N∑
i=1

αi
p − λp, (3)

s.t.
N∑

i=1

αi
pyi = 0,

0 ≤ αi
p ≤ Cp, (i = 1, 2, · · · ,N),

1
2

N∑
i, j=1

αi
pα

j
pyiy j

F∑
f=1

βp, f κp, f (xi
p, f , x

j
p, f ) ≤ λp, ∀ f ,

where αi
p is the Lagrange multipliers of the constraint related

to the usual Support Vector Machine (SVM) [47] problem,
whereas λp is associated with the constraint on βp, f . Fur-
thermore, κp, f (·, ·) is a kernel function representing the in-
ner product of ϕp, f (xi

p, f ) and ϕp, f (x j
p, f ), i.e., κp, f (xi

p, f , x
j
p, f ) =

⟨ϕp, f (xi
p, f ), ϕp, f (x j

p, f )⟩. Using the Lagrangian formulation, Eq.
(1) is rewritten as follows:

f mkl
p (Xp) =

N∑
i=1

αi
pyi

F∑
f=1

βp, f κp, f (xi
p, f , xp, f ) + bp. (4)

Finally, the class label yp of Xp is determined according to yp =

sign[ f mkl
p (Xp)]. If yp is positive, Xp belongs to the positive class

whose label is 1. Otherwise, it belongs to the negative class of
−1.

In the above procedures, we can detect H. pylori infection
from gastric X-ray images taken from each position. MKL
can detect H. pylori infection accurately since it considers the
importance of each symptom of H. pylori infection. Specif-
ically, as the values of βp, f in Eq. (1) become larger, the

importance of the corresponding visual features also becomes
greater, and the difference in the importance is thus represented
by the difference in the values of βp, f . It should be noted that
multiple gastric X-ray images are generally taken from several
(=Pmax) positions when performing diagnosis of gastric X-ray
images. Therefore, we can obtain Pmax results by the classifiers
f mkl
p (Xp) (p = 1, 2, · · · , Pmax) shown in Eq. (4).

4. Confidence-based Decision Fusion

In this section, we show the procedures for integration of the
multiple detection results obtained from the classifiers shown in
the previous subsection. In gastric X-ray examination, doctors
usually focus on a specific position in which symptoms of H.
pylori tend to appear. In other words, the performance of gas-
tric X-ray examination is different depending on the positions of
X-ray images. However, doctors cannot always perform exam-
ination from X-ray images taken from specific positions due to
the barium reservoir and duodenum overlapping. In such cases,
doctors examine X-ray images taken from other positions, and
these images are evaluated comprehensively.

In order to realize evaluation as performed by doctors, we
have to introduce confidence-based decision fusion, which can
consider how confidently each classifier obtains detection re-
sults. Therefore, we newly introduce the decision fusion
in [33], which can combine detection results using the relation-
ship between the classifier’s performance and the confidence
score.

First, the classifier’s performance Pse
p (sensitivity) and Psp

p
(specificity) of the p-th classifier are defined as follows:

Pse
p = P[yp = 1|y = 1], (5)

Psp
p = P[yp = 0|y = 0], (6)

where the classification result yp ∈ {1, 0} is obtained by rewrit-
ing the class label {1, -1} in the previous section, and y ∈ {1, 0}
is the true class label. Secondly, a classification model, i.e., a
linear discriminating function fw, is defined as follows:

fw(z) = w⊤z, (7)

where z ∈ RPmax+1 represents the integrating Pmax

confidence scores f mkl
p (Xp) and a bias, i.e., z =

[1, f mkl
1 (X1), f mkl

2 (X2), · · · , f mkl
Pmax

(XPmax )]
⊤, and w ∈ RPmax+1

is a weight vector that is calculated from the training dataset.
Furthermore, we define the posterior probability for a positive
class using fw(z) as follows:

P[y = 1|z,w] = σ ( fw(z))

=
1

1 + exp (−w⊤z)
. (8)

Next, we define a training dataset as D =

{zi, yi
1, y

i
2, · · · , yi

Pmax
}Ni=1 consisting of N samples’ feature

vectors zi and Pmax classification results (yi
1, y

i
2, · · · , yi

Pmax
),

where zi ∈ RPmax+1 corresponds to z. Note that the feature
vector zi, the detection results of training data yi

p ∈ {1, 0}, and
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the performance, i.e., Pse
p and Psp

p , are obtained by 10-fold
cross-validation of training data. The aim of this decision
fusion is calculation of the optimal weight vector ŵ in Eq. (7),
and it is found by maximizing the following log-likelihood
using the training datasetD, Pse

p and Psp
p .

ŵ = arg max
w
{ln P[D|w]}, (9)

where

P[D|w] =

N∏
i=1

[
Aiσ(w⊤zi) + Bi

{
1 − σ(w⊤zi)

}]
, (10)

Ai =

Pmax∏
p=1

(Pse
p )yi

p (1 − Pse
p )(1−yi

p), (11)

Bi =

Pmax∏
p=1

(1 − Psp
p )yi

p (Psp
p )(1−yi

p). (12)

In [33], the log-likelihood is maximized by an unsupervised
learning approach. On the other hand, since the ground truth
is available in the proposed method, we perform reformulation
of the target problem. Given the true labels of the training data
y = [y1, y2, . . . , yN]⊤, the complete data log-likelihood can be
written as follows:

ln P[D, y|w] =
N∑

i=1

[
yiln{σ(w⊤zi)Ai} + (1 − yi)ln{(1 − σ(w⊤zi))Bi}

]
.

(13)

In order to find the optimal weight vector ŵ, we maximize
this likelihood by using the Newton-Raphson method [48]. Let
g(w) and H(w) be the gradient vector and the Hessian matrix,
respectively. The weight vector w is calculated by iterating the
following equations until convergence:

w ← w − ηH−1(w)g(w), (14)

g(w) =

N∑
i=1

{yi − σ(w⊤zi)}zi, (15)

H(w) = −
N∑

i=1

σ(w⊤zi){1 − σ(w⊤zi)}zi(zi)⊤, (16)

where η is a step length.
Consequently, we can obtain the optimal weight vector ŵ.

Then the final detection label ŷ of test data is obtained by the
following equations:

ŷ =

{
1 if µ > T
0 otherwise, (17)

where

µ =
Aσ(ŵ⊤z)

Aσ(ŵ⊤z) + B{1 − σ(ŵ⊤z)} , (18)

A =

Pmax∏
p=1

(Pse
p )yp (1 − Pse

p )(1−yp), (19)

B =

Pmax∏
p=1

(1 − Psp
p )yp (Psp

p )(1−yp), (20)

where T is a predefined threshold.
As shown in the above procedures, we can perform decision

fusion based on the collaborative use of multiple detection re-
sults. Decision fusion can consider not only the classifiers’ per-
formance but also the relationship between confidence scores
and detection results. Specifically, A in Eq. (19) and B in
Eq. (20) represent the classifiers’ performance. Furthermore,
since the weight vector w in Eq. (7) is calculated by using the
confidence vector zi and the performance Ai and Bi, we can
consider how confidently each classifier obtains the detection
results. Consequently, the proposed method can accurately de-
tect H. pylori infection even if the classification results of some
images are not correct.

5. Experimental Results

The effectiveness of the proposed method was evaluated by
performing experiments using gastric X-ray images taken from
individuals infected with H. pylori and uninfected individuals.
An outline of the experiment is given in Section 5.1, and the
obtained results are presented and discussed in Section 5.2.

5.1. Experimental Conditions

In the experiment, we used 2100 samples from composed
of 1056 male samples and 1044 female samples. Each sample
consisted of the ABCD classification result and gastric X-ray
images taken in eight positions (Pmax = 8). Therefore, we used
2100×8 gastric X-ray images in the experiment. The numbers
of samples in age brackets were as follows: twenties, 3; thir-
ties, 329; forties, 631; fifties, 733; sixties, 374; and seventies,
30. The ground truth for this experiment was obtained from the
ABCD classification results, which strongly correlate to gas-
tric cancer risk as shown in Table 1. Consequently, a sample
was considered to be uninfected, i.e., category A, if all of the
following three conditions were satisfied: Hp antibody level <
10 U/ml, PGI > 70 ng/ml, and PGI/II ratio ≥ 3. Otherwise, the
target sample was considered to be infected, i.e., category B, C
or D.

In this experiment, we regarded 1129 samples in category
A as uninfected samples (negative samples) and 971 samples
in categories B, C and D as infected samples (positive sam-
ples). To avoid the degradation of the detection performance
due to misclassification of ABCD classification, we prepared
the samples by removing samples suspected as being false neg-
ative in the ABCD classification. We regarded samples in cat-
egory A with PGI levels≤ 30 ng/ml, PGII levels≥ 15 ng/ml or
PGI/PGII< 4 as suspected false negative samples. In order to
confirm the effectiveness of feature extraction based on KLFDA
by the mRMR algorithm, MKL-based feature fusion, and deci-
sion fusion, the following comparative methods were also eval-
uated. We denoted the experiments for confirming their effec-
tiveness as experiments 1, 2 and 3.

• Experiment 1 (feature selection and dimensionality re-
duction)
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Table 4: Overview of the comparative methods and the proposed method. The tick marks indicate the approaches introduced in each method.

(1) Comparative method 1 does not use the mRMR al-
gorithm and KLFDA, i.e., this method uses all of the
features.

(2) Comparative method 2 uses mRMR-based feature
selection only.

(3) Comparative method 3 uses only Kernel Principal
Component Analysis (KPCA) [49], which is a com-
mon dimensionality reduction method that does not
use class information, i.e., an unsupervised method.

(4) Comparative method 4 uses only KLFDA.
(5) Comparative method 5 uses KPCA after exclusion of

unnecessary or undesirable visual information by the
mRMR algorithm.

• Experiment 2 (classifier)

(6) Comparative method 6 trains the SVM classifier us-
ing feature vectors obtained by performing mRMR
and KLFDA. Note that the feature vectors us-
ing in this method are obtained by concatenating
vp,1, vp,2, · · · , vp,F . Furthermore, the feature vector z
is composed of SVM’s discriminant function, which
is similar to f mkl

p (·).
(7) Comparative method 7 uses the Soft Confidence-

Weighted (SCW) learning scheme [50], which is an
extension of Confidence-Weighted learning [51] for
soft margin learning. In this method, feature vectors
are obtained in the same manner as that for compar-
ison method 6. Furthermore, the feature vector z is
composed of SCW’s discriminant function.

• Experiment 3 (decision fusion)

(8) Comparative method 8 performs detection of H. py-
lori infection using an image obtained from only one
position, i.e., decision fusion is not used. Note that
we select the position for which the classifier has the
best performance.

(9) Comparative method 9 combines multiple detection
results by using majority voting. The final detection
result becomes H. pylori infection when more than
Tmv classifiers detect H. pylori infection, where Tmv
is a predefined threshold.

An overview of the above comparative methods and the pro-
posed method is shown in Table 4.

The dimensions of the features after mRMR, KPCA and
KLFDA, i.e., mp, f and tp, f , were set to values that output the
best results in our method and the comparative methods. The
Gaussian kernel was used for the kernel function in KPCA and
KLFDA, with the best kernel parameter. On the other hand, the
linear kernel was used for MKL since the feature vectors that
are obtained on the basis of KPCA and KLFDA have been cal-
culated in a non-linear feature space. Comparative methods 1
and 2 employed the Gaussian kernel for MKL since the features
of these methods are in a linear space before applying MKL.

We used 10-fold cross-validation for the model evaluation
method. Then we used sensitivity (Sen), specificity (Spe), har-
monic mean (HM) of sensitivity and specificity, and area un-
der the ROC curve (area under the curve, AUC) as evaluation
criteria. In the ROC curve, Sen and 1-Spe, i.e., false positive
rate, are plotted on the vertical axis and the horizontal axis, re-
spectively. The accuracy of the ROC curve is determined on
the basis of the AUC, and AUC= 1 represents the theoretical
maximum accuracy. Furthermore, we applied Welch’s t-test as
a significant difference test to HM obtained by 10-fold cross-
validation.

5.2. Results and Discussion

Figure 2 shows the ROC curves obtained by changing the
threshold T and Tmv. Table 5 shows the values of Sen, Spe,
HM, and AUC in experiments 1, 2, and 3. Note that Se, Spe,
and HM were obtained at the optimal threshold, which was set
to the value that outputs the nearest point to (0, 1) on the ROC
curve. The point is shown in Fig. 2 as +. Table 6 shows Se and
Spe of each position’s classifier.

First, we verify the results of experiment 1. As shown in
Fig. 2 (a), the proposed method outperforms the comparative
methods, and as shown in Table 5, sensitivity, harmonic mean,
and AUC of the proposed method are higher than those of com-
parative methods 1-5. A comparison of comparative method 1
and the other methods showed the effectiveness of feature se-
lection and dimensionally reduction. Furthermore, since the
proposed method and comparative method 5 both outperform
comparative methods 3 and 4, the elimination of unnecessary or
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Figure 2: ROC curves for detection of H. pylori infection by the proposed method and the comparative methods: (a), (b), and (c) were obtained by experiments 1, 2
and 3, respectively. The point shows the best result at the optimal threshold.

Table 5: Results of sensitivity, specificity, harmonic mean of sensitivity and
specificity, and AUC for the proposed method and the comparative methods.

Methods Sen Spe HM AUC

Proposed method 0.874 0.896 0.885 0.944

Comparative method 1 0.843 0.857 0.850 0.921

Comparative method 2 0.850 0.852 0.851 0.925

Comparative method 3 0.844 0.856 0.850 0.916

Comparative method 4 0.847 0.869 0.858 0.923

Comparative method 5 0.823 0.922 0.870 0.937

Comparative method 6 0.813 0.889 0.849 0.918

Comparative method 7 0.849 0.914 0.880 0.939

Comparative method 8 0.763 0.836 0.798 0.879

Comparative method 9 0.822 0.920 0.868 0.930

Experiment 1

Experiment 2

Experiment 3

undesirable visual features by the mRMR algorithm is effective
before calculating discriminative features. As evidence that the
proposed method can exclude such visual features, Fig. 3 shows
the locations selected with feature values by the mRMR algo-
rithm. Note that Fig. 3 only shows the results for one position
from which the X-ray images in Fig. 1 are taken. From Figs.
1 and 3, it is obvious that the features selected by the mRMR
algorithm are generally extracted from gastric regions. There-
fore, we can obtain effective features for detection of H. pylori
infection by the mRMR algorithm. As a similar consideration,
the use of not only feature selection but also discriminative fea-
ture extraction is desirable for accurate detection of H. pylori
infection since the proposed method and comparative method 5
outperform comparative method 2. Furthermore, the proposed
method outperforms comparative method 5, and these methods
respectively use KLFDA and KPCA. KLFDA can obtain more
discriminative features since KLFDA considers class informa-
tion, i.e., yi. For a similar reason, the results of comparative
method 4 are better than those of comparative method 3. From
the aforementioned results, the effectiveness of the mRMR al-
gorithm and KLFDA is verified.

Next, we verify the results of experiment 2. From the results
shown in Fig. 2 (b) and Table 5, the proposed method outper-
forms comparative methods 6 and 7. When we focus on the
harmonic mean of each position’s classifier in Table 6, there is

Table 6: Results of sensitivity, specificity, and harmonic mean of sensitivity and
specificity for each of the position’s classifier in experiment 2.

Position p Sen Spe HM Sen Spe HM Sen Spe HM

1 0.763 0.835 0.797 0.698 0.814 0.752 0.749 0.819 0.782

2 0.760 0.834 0.795 0.696 0.815 0.751 0.779 0.804 0.791

3 0.744 0.825 0.782 0.715 0.796 0.753 0.771 0.780 0.775

4 0.750 0.839 0.792 0.708 0.808 0.755 0.784 0.795 0.789

5 0.744 0.803 0.772 0.713 0.810 0.758 0.792 0.773 0.782

6 0.638 0.770 0.698 0.620 0.763 0.684 0.704 0.713 0.708

7 0.715 0.799 0.755 0.684 0.762 0.721 0.740 0.733 0.736

8 0.687 0.744 0.714 0.614 0.732 0.668 0.743 0.683 0.712

Average 0.725 0.806 0.763 0.681 0.788 0.730 0.758 0.763 0.760

Comparative method 7Comparative method 6Proposed method

an average differences of 3.3% between the proposed method
and comparative method 6. There is also an average difference
of 0.3% between the proposed method and comparative method
7. Although MKL is a classifier similar to SVM, there are the
above differences in performance since SVM does not consider
integration of the features. Comparative method 7 is inferior
to the proposed method for a reason similar to that for SVM.
In order to confirm that MKL can consider the importance of
each symptom, we consider the relationship between the value
of βp, f and the symptom focused on by each visual feature. For
example, in one position from which the X-ray images in Fig.
1 are taken, the values of βp, f assigned to ALBP and Gabor
features are 0.2807 and 0.2556, respectively, and these values
are higher than those of the other features. Figure 4 also shows
the locations selected from ALBP and Gabor features by the
mRMR algorithm in order to verify the symptom focused on by
each visual feature. As shown in Fig. 4, the locations selected
by the mRMR algorithm are different between ALBP and Ga-
bor. When we collate Fig. 4 with Fig. 1, it is obvious that ALBP
and Gabor features represent the mucosal surface pattern and
the fold shapes, respectively. Therefore, since the symptoms of
H. pylori infection that are focused on are different according to
the visual feature, MKL can represent the importance of each
symptom by the difference of βp, f . Consequently, the proposed
method improves the performance of each position’s classifier,
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Figure 3: Locations selected with feature values by the mRMR algorithm from
all features shown in Table 3. The frequencies with which the regions are se-
lected by mRMR were scaled to the range [0, 1].
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Figure 4: Locations selected with feature values by the mRMR algorithm: (a)
and (b) were obtained from ALBP and Gabor features, respectively. The fre-
quencies with which the regions are selected by mRMR were scaled to the range
[0, 1].

and the final detection results are more accurate than those of
the comparative methods.

We next verify the results of experiment 3. From the results
shown in Fig. 2 (c) and Table 5, the proposed method outper-
forms comparative methods 8 and 9. From a comparison of
the proposed method and comparative method 9, we can con-
firm the effectiveness of considering the differences in the clas-
sifiers’ performance since majority voting treats all classifiers’
performance as equal. Furthermore, since the results of com-
parative method 8, which uses images taken from only one po-
sition, i.e., decision fusion is not used, are inferior to those of
the other methods in experiment 3, comprehensive evaluation
of X-ray images taken from several positions is important. The
above-described results indicate that it is important to integrate
multiple results for accurate detection of H. pylori infection and
to consider each classifier’s performance in decision fusion.

Finally, we show the results of Welch’s t-test in Table 7. As
shown in Table 7, we confirmed that the harmonic mean of the
proposed method was statistically higher than those of compar-
ative methods 1, 2, 3, 4, 6 and 8 at the 5 percent level. Although
we could not confirm a significant difference between the pro-
posed method and comparative methods 5, 7 and 9, these p-
values did not show that the proposed method is inferior to these
comparative methods. We should propose a new method that
can show a significant difference from all comparative methods
as a future work.

Table 7: Results of Welch’s t-test whose significant level is set as α = 0.05.

Methods p  value

Comparative method 1 p <0.05

Comparative method 2 p <0.05

Comparative method 3 p <0.05

Comparative method 4 p <0.05

Comparative method 5 p= 0.16

Comparative method 6 p <0.05

Comparative method 7 p =0.34

Comparative method 8 p <0.05

Comparative method 9 p =0.061

Experiment 1

Experiment 2

Experiment 3

6. Conclusions

A fully automatic method for detection of H. pylori infection
from gastric X-ray images is presented in this paper. We focus
on the unique characteristic of gastric X-ray examination. The
accuracy of X-ray examination is influenced by the symptoms
of H. pylori infection focused on and the positions from which
X-ray images are taken. From this characteristic, we employ
MKL and decision fusion: MKL can weight each visual fea-
ture considering its importance, and decision fusion can con-
sider which classifier leads to good detection results from the
relationship between the classifier’s performance and the con-
fidence score obtained in MKL-based classification. Finally,
the effectiveness of the proposed method was evaluated by per-
forming experiments using actual gastric X-ray images from
patients with and those without H. pylori infection. In a future
work, we plan to investigate automatic extraction of the ROI
and to improve the detection performance by re-examining the
features.

Acknowledgements

In this research, we utilized image data and results that were
kindly provided by the Medical Examination Center of Yama-
gata City Medical Association. We would also like to sincerely
thank Katsuhiro Mabe of Hakodate National Hospital, Shigemi
Nakajima of Japan Community Health care Organization Shiga
Hospital, Harufumi Oizumi of Yamagata City Medical Associ-
ation, Kazuya Yoshizawa of the Faculty of Medicine, Yamagata
University, and many others for providing data, images and re-
sults as well as invaluable advice.

This work was partly supported by JSPS KAKENHI Grant
Number JP25280036.

References

[1] N. Uemura, S. Okamoto, S. Yamamoto, N. Matsumura, S. Yamaguchi,
M. Yamakido, K. Taniyama, N. Sasaki, R. J. Schlemper, Helicobacter py-
lori infection and the development of gastric cancer, New England Journal
of Medicine 345 (11) (2001) 784–789.

[2] H. Ohata, S. Kitauchi, N. Yoshimura, K. Mugitani, M. Iwane, H. Naka-
mura, A. Yoshikawa, K. Yanaoka, K. Arii, H. Tamai, Y. Shimizu,
T. Takeshita, O. Mohara, M. Ichinose, Progression of chronic atrophic
gastritis associated with helicobacter pylori infection increases risk of
gastric cancer, Int. Journal of Cancer 109 (1) (2004) 138–143.

10



[3] H. Watabe, T. Mitsushima, Y. Yamaji, M. Okamoto, R. Wada, T. Kokubo,
H. Doi, H. Yoshida, T. Kawabe, M. Omata, Predicting the development of
gastric cancer from combining helicobacter pylori antibodies and serum
pepsinogen status: a prospective endoscopic cohort study, Gut 54 (6)
(2005) 764–768.

[4] J. Parsonnet, G. D. Friedman, D. P. Vandersteen, Y. Chang, J. H. Vogel-
man, N. Orentreich, R. K. Sibley, Helicobacter pylori infection and the
risk of gastric carcinoma, New England Journal of Medicine 325 (16)
(1991) 1127–1131.

[5] J. H. Walsh, W. L. Peterson, The treatment of helicobacter pylori infec-
tion in the management of peptic ulcer disease, New England Journal of
Medicine 333 (15) (1995) 984–991.

[6] K. Fukase, M. Kato, S. Kikuchi, K. Inoue, N. Uemura, S. Okamoto,
S. Terao, K. Amagai, S. Hayashi, M. Asaka, Effect of eradication of he-
licobacter pylori on incidence of metachronous gastric carcinoma after
endoscopic resection of early gastric cancer: an open-label, randomized
controlled trial, The Lancet 372 (9636) (2008) 392 – 397.

[7] L. Fuccio, R. M. Zagari, L. H. Eusebi, L. Laterza, V. Cennamo, L. Ceroni,
D. Grilli, F. Bazzoli, Meta-analysis: Can helicobacter pylori eradication
treatment reduce the risk for gastric cancer?, Annals of Internal Medicine
151 (2) (2009) 121–128.

[8] E. M. El-Omar, I. D. Penman, J. E. Ardill, R. S. Chittajallu, C. Howie,
K. E. McColl, Helicobacter pylori infection and abnormalities of acid se-
cretion in patients with duodenal ulcer disease, Gastroenterology 109 (3)
(1995) 681 – 691.

[9] K. E. McColl, A. El-Nujumi, L. Murray, E. El-Omar, D. Gillen, A. Dick-
son, A. Kelman, T. E. Hilditch, The helicobacter pylori breath test: A
surrogate marker for peptic ulcer disease in dyspeptic patients, Gut 40 (3)
(1997) 302 – 306.

[10] T. Kudo, S. Kakizaki, N. Sohara, Y. Onozato, S. Okamura, Y. Inui,
M. Mori, Analysis of abc (d) stratification for screening patients with
gastric cancer, World Journal of Gastroenterology 17 (43) (2011) 4793
– 4798.

[11] K. Miki, Gastric cancer screening by combined assay for serum anti-
Helicobacter pylori IgG antibody and serum pepsinogen levels – ”ABC
method”, in: Proc. the Japan Academy Series B, Physical and Biological
Sciences, 2011, pp. 405–414.

[12] S. Mizuno, I. Miki, T. Ishida, M. Yoshida, M. Onoyama, T. Azuma,
Y. Habu, H. Inokuchi, K. Ozasa, K. Miki, Y. Watanabe, Prescreening of a
high-risk group for gastric cancer by serologically determined helicobac-
ter pylori infection and atrophic gastritis, Digestive Diseases and Sciences
55 (11) (2010) 3132–3137.

[13] M. Asaka, D. Graham, Strategy for eliminating gastric cancer in japan,
Helicobacter 15 (6) (2010) 486–490.

[14] M. Yamaoka, S. Nakajima, Barium X-ray examination is useful for gas-
tric cancer screening and for identifying those at both high and low risk
for gastric cancer, Journal of gastroenterological cancer screening 49 (1)
(2011) 20–31, (in Japanese).

[15] K. Iijima, T. Koike, Y. Abe, N. Ara, K. Uno, A. Imatani, S. Ohara, T. Shi-
mosegawa, Alteration of correlation between serum pepsinogen concen-
trations and gastric acid secretion after h. pylori eradication, Journal of
Gastroenterology 44 (8) (2009) 819–825.

[16] C.-R. Huang, P.-C. Chung, B.-S. Sheu, H.-J. Kuo, P. Mikulas, Helicobac-
ter pylori-related gastric histology classification using support-vector-
machine-based feature selection, IEEE Trans. Information Technology in
Biomedicine 12 (4) (2008) 523–531.

[17] K. Sugano, Screening of gastric cancer in asia, Best Practice & Research
Clinical Gastroenterology 29 (6) (2015) 895 – 905.

[18] M. Kato, M. Asaka, Recent development of gastric cancer prevention,
Japanese Journal of Clinical Oncology 42 (11) (2012) 987–994.

[19] M. Horiguchi, D. Yamauchi, T. Tsukada, N. Takaya, J. Takaya,
M. Takaya, The efficiency of gastric X-ray examination for gastric can-
cer screening : Gastric X-rays image diagnosis of normal gastric mucosa
without helicobacter pylori infection, Health evaluation and promotion
33 (5) (2006) 510–516, (in Japanese).

[20] S. Nakajima, M. Yamaoka, K. Doi, M. Nishimura, A. Matsui, J. Sato,
M. Shimada, Y. Okumura, A new gastric cancer screening method by
barium X-ray examination with diagnosing helicobacter pylori infection,
Journal of gastroenterological cancer screening 46 (4) (2008) 461–471,
(in Japanese).

[21] M. Niemeijer, M. Loog, M. Abramoff, M. Viergever, M. Prokop, B. van

Ginneken, On combining computer-aided detection systems, IEEE Trans.
Medical Imaging 30 (2) (2011) 215–223.

[22] X. Gao, Y. Wang, X. Li, D. Tao, On combining morphological compo-
nent analysis and concentric morphology model for mammographic mass
detection, IEEE Trans. Information Technology in Biomedicine 14 (2)
(2010) 266–273.

[23] L. Hogeweg, C. I. Sanchez, P. Maduskar, R. Philipsen, A. Story, R. Daw-
son, G. Theron, K. Dheda, L. Peters-Bax, B. van Ginneken, Automatic
detection of tuberculosis in chest radiographs using a combination of tex-
tural, focal, and shape abnormality analysis, IEEE Trans. Medical Imag-
ing 34 (12) (2015) 2429–2442.

[24] K. Abe, H. Nakagawa, M. Minami, H. Tian, Features for discriminating
normal cases in mass screening for gastric cancer with double contrast X-
ray images of stomach, Journal of Biomedical Engineering and Medical
Imaging 1 (6).

[25] U. G. Mangai, S. Samanta, S. Das, P. R. Chowdhury, A survey of deci-
sion fusion and feature fusion strategies for pattern classification, IETE
Technical Review 27 (4) (2010) 293–307.

[26] S. Bucak, R. Jin, A. Jain, Multiple kernel learning for visual object recog-
nition: A review, IEEE Trans. Pattern Analysis and Machine Intelligence
36 (7) (2014) 1354–1369.

[27] A. Vedaldi, V. Gulshan, M. Varma, A. Zisserman, Multiple kernels for
object detection, in: Proc. IEEE Int. Conf. Computer Vision, 2009, pp.
606–613.

[28] M. R. Alam, M. Bennamoun, R. Togneri, F. Sohel, A confidence-based
late fusion framework for audio-visual biometric identification, Pattern
Recognition Letters 52 (0) (2015) 65 – 71.

[29] B. Topcu, H. Erdogan, Decision fusion for patch-based face recognition,
in: Proc. Int. Conf. Pattern Recognition, 2010, pp. 1348–1351.

[30] S. Nakajima, M. Yamaoka, K. Doi, M. Nishimura, Barium X-ray char-
acteristics of the stomach with or without h. pylori infection and the di-
agnostic value, Japanese Journal of Helicobacter Research 8 (2) (2007)
18–21, (in Japanese).

[31] H. Peng, F. Long, C. Ding, Feature selection based on mutual information
criteria of max-dependency, max-relevance, and min-redundancy, IEEE
Trans. Pattern Analysis and Machine Intelligence 27 (8) (2005) 1226–
1238.

[32] M. Sugiyama, Dimensionality reduction of multimodal labeled data by
local fisher discriminant analysis, Journal of Machine Learning Research
8 (2007) 1027–1061.

[33] V. C. Raykar, S. Yu, L. H. Zhao, A. Jerebko, C. Florin, G. H. Valadez,
L. Bogoni, L. Moy, Supervised learning from multiple experts: Whom
to trust when everyone lies a bit, in: Proc. the 26th Annual Int. Conf.
Machine Learning, 2009, pp. 889–896.

[34] K. Ishihara, T. Ogawa, M. Haseyama, Helicobacter pylori infection detec-
tion from multiple X-ray images based on decision level fusion, in: Proc.
IEEE Int. Conf. Image Processing, 2014, pp. 2769–2773.

[35] K. Ishihara, T. Ogawa, M. Haseyama, Helicobacter pylori infection de-
tection from multiple X-ray images based on combination use of support
vector machine and multiple kernel learning, in: Proc. IEEE Int. Conf.
Image Processing, 2015, pp. 4728–4732.

[36] K. Ishihara, T. Ogawa, M. Haseyama, Classification of gastric cancer risk
from X-ray images based on efficient image features related to serum Hp
antibody level and serum PG levels, ITE Trans. Media Technology and
Applications 4 (4) (2016) 337–348.

[37] R. Haralick, K. Shanmugam, I. Dinstein, Textural features for image clas-
sification, IEEE Trans. Systems, Man and Cybernetics 3 (6) (1973) 610–
621.

[38] C.-H. Lin, C.-W. Liu, H.-Y. Chen, Image retrieval and classification us-
ing adaptive local binary patterns based on texture features, IET Image
Processing 6 (7) (2012) 822–830.

[39] M.-K. Hu, Visual pattern recognition by moment invariants, IRE Trans.
Information Theory 8 (2) (1962) 179–187.

[40] R. O. Duda, P. E. Hart, Use of the hough transformation to detect lines
and curves in pictures, Commun. ACM 15 (1) (1972) 11–15.

[41] N. Dalal, B. Triggs, Histograms of oriented gradients for human detec-
tion, in: Proc. IEEE Computer Society Conf. Computer Vision and Pat-
tern Recognition, Vol. 1, 2005, pp. 886–893.

[42] W. Gao, X. Zhang, L. Yang, H. Liu, An improved sobel edge detection,
in: Proc. IEEE Int. Conf. Computer Science and Information Technology,
Vol. 5, 2010, pp. 67–71.

11
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