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Automated recognition of the pericardium contour on processed CT images
using genetic algorithms
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A B S T R A C T

This work proposes the use of Genetic Algorithms (GA) in tracing and recognizing the pericardium contour of the
human heart using Computed Tomography (CT) images. We assume that each slice of the pericardium can be
modelled by an ellipse, the parameters of which need to be optimally determined. An optimal ellipse would be
one that closely follows the pericardium contour and, consequently, separates appropriately the epicardial and
mediastinal fats of the human heart. Tracing and automatically identifying the pericardium contour aids in
medical diagnosis. Usually, this process is done manually or not done at all due to the effort required. Besides,
detecting the pericardium may improve previously proposed automated methodologies that separate the two
types of fat associated to the human heart. Quantification of these fats provides important health risk marker
information, as they are associated with the development of certain cardiovascular pathologies. Finally, we
conclude that GA offers satisfiable solutions in a feasible amount of processing time.
1. Introduction

An increasing demand for medical diagnosis support systems has been
observed jointly with increases in computing power in recent years.
These systems speed up the tedious and meticulous manual analysis done
by physicians or technicians on patients' medical data, where, in many
cases, a huge amount of data requires processing and, therefore, the data
supporting diagnosis may lack precision and suffer noticeable inter- and
intra-observer variation.

Cardiac epicardial and mediastinal fats are correlated to several car-
diovascular risk factors [1]. At present, three imaging modalities appear
suitable for quantification of these adipose tissues, namely Magnetic
Resonance Imaging (MRI), Echocardiography and Computed Tomogra-
phy. Each of these modalities has been used in several works in the
literature [2–4]. However, Computed Tomography provides a more ac-
curate evaluation of fat tissues due to its higher spatial resolution
compared to ultrasound and MRI. In addition, CT is widely used for
computing the coronary calcium score.

In this work, we propose a simple yet robust method to automati-
cally identify the pericardium contour of processed cardiac CT images.
The pericardium appears as an elliptical object in the CT images of the
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axial-plane. Given images of the ground truth in Ref. [5], we are able to
delineate the pericardium layer and separate the epicardial from
the mediastinal fats. The proposed methodology is based on deter-
mining the parameters of an ellipse using Genetic or Evolutionary
algorithms.

The methodology proposed in this work can (1) improve processing
time for the automated segmentation of the cardiac fats. In a previous
work [5], we proposed a method that automatically segments the
epicardial and mediastinal fats on CT images using machine learning.
However, this processing can take up to 1.8 h for a single patient,
which corresponds to segmenting a total of 44 images on average.
Instead, a single image can be processed by the previously proposed
methodology. Next, the pericardium can be delineated and, thereafter,
the traced ellipse can be propagated to the remaining 43 images,
speeding up segmentation time considerably. The quantification of the
epicardial fat can be performed by counting the amount of voxels in-
side the propagated ellipse. Furthermore, the method proposed in this
work also (2) improves the visualization of the pericardium in the
processed images of [5] and could also improve the accuracy of the
obtained segmentation by disregarding incorrectly segmented epicar-
dial fat.
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2. Literature review

The pericardium is a fibroserous sac that contains the human heart. It
is composed of three concentric layers: (1) the parietal layer, (2) the
serous pericardium and (3) the fibrous pericardium, from the inner sur-
face of the heart to the outermost layer, respectively. The pericardium
separates two types of adipose tissues that are tightly associated to the
human heart. The fat enclosed by the pericardium is usually called
epicardial fat, whilst the outer fat is usually called mediastinal or peri-
cardial fat [5].

A significant amount of studies correlate cardiovascular risk factors or
conditions such as atherosclerosis [6–8], myocardial infarction [9], dia-
stolic filling [10], atrial fibrillation and ablation outcome [11], carotid
stiffness [12], etc [1,9,13–15], to the epicardial fat volume. Furthermore,
the progression of coronary artery calcification is associated to the
epicardial fat volume, as suggested by previous works [9,16]. Chen et al.
[17] associate high coronary artery calcium score to a higher general
cancer incidence.

Moreover, a 16-year study [18] that assessed a total of 384,597 pa-
tients found a rate of approximately 38.4% of deaths in the subsequent 28
days of individuals that had their first major coronary event. The same
study also concludes that the occurrence of fatalities is slightly less
associated to female individuals. Another study ranks cardiovascular
incidents as the most common cause of sudden natural death [19].
Therefore, the practice of automatically evaluating the amount of fat
related to the heart may contribute to avoid similar outcomes.

Automated quantitative analysis of the epicardial andmediastinal fats
may provide a prognostic value to cardiac CT trials, delivering an
improvement on its cost-effectiveness. Besides, that automation di-
minishes the variability introduced by different observers. In fact,
quantifying these data by direct user interaction is highly prone to inter-
and intra-observer variability. Thus, evaluated samples may not be
associated to a unified sense of segmentation. Iacobellis et al. [20] have
shown that epicardial fat thickness and coronary artery disease correlate
independently of obesity. This evidence supports the independent seg-
mentation and further quantification of adipose tissues rather than
merely estimating their volume based on the overall fat of the patient.

In a previous work [5], we proposed an accurate method for auto-
mated segmentation of epicardial and mediastinal fats in cardiac CT
exams. The technique is based on feature extraction [21], classification
algorithms [22] and image dilation [23]. However, a necessary pre-
processing step is image registration, which is performed prior to feature
extraction. The downside of the approach is its processing time.
Currently, approximately 1.8 h is required to automatically segment the
cardiac fats of a patient, which consists of 44 images on average. How-
ever, no separation using ellipses is actually performed in that work.

We propose the automated identification and elliptical modelling of
the pericardium layer, which separates the epicardial fat from the
mediastinal fat. The identification is done using the ground truth pro-
vided in previous work [5], which can be found at [24]. Once the peri-
cardium is identified in one of the images, it is possible to estimate the
total volume of epicardial fat without segmenting every single image.
This could dramatically reduce current total processing times from
approximately 1.8 h to a fewminutes [25]. We perform the identification
by fitting an ellipse whose parameters are determined using a Genetic
Algorithm [26].

Genetic or Evolutionary Algorithms are a group of computational
optimizers inspired by Darwin's theory of evolution and its features such
as natural selection, mutation, etc [27,28]. The main idea is to evolve a
population of members that has intrinsic characteristics over time, where
the good characteristics of individuals are preserved according to a
fitness function. The characteristics of individuals could be, for instance,
the parameters of a given problem. The solutions obtained with Genetic
Algorithms may not be the best possible but are good enough, in general.
The longer the period of evolution, the better the obtained results [29].
Metaheuristics such as Genetic Algorithms are much faster than brute
force approaches, where all possible parameters must be evaluated.
GAs are stochastic search algorithms. This means that different so-

lutions can be obtained if the seed for the pseudo-numbers generation is
not preserved over different runs, even for the same problem. In its basic
form, the starting point of a GA is a population of bit-strings, which are
either called chromossomes or genotypes. Each bit-string represents a
possible solution, called phenotype. The evolution of this population is
performed over iterations or generations, at which chromossomes that
inherit useful genetic traits are maintained in the population. As the
generations proceed, several genetic operations can be used to simulate
the evolution process, such as recombination of genes, asexual repro-
duction, serendipitous mutation, etc [27]. Eventually, the evolution
process halts, according to the maximum desired number of generations
or a predefined fitness threshold, and the best suited individual is
selected as the result. Although the very first population is usually
generated at random, they can be intelligently created if some charac-
teristics of the solutions are known a priori. However, the evolution,
based on the survival of the fittest, eventually leads to near-optimal so-
lutions, even if the initial population is generated completely at random.
The best fit solutions are granted more reproductive opportunities and,
therefore, are qualified to disseminate their good characteristics to future
generations. Other strategies, such as elitism, retain some of the best fit
individuals to next generations [27].

Fig. 1 shows the generic steps of a GA. Starting from a population,
individuals are selected based on their fitness function value. That is,
individuals that have a greater fitness value will be selected more
frequently. After the selection, genetic operations are applied or the in-
dividual is retained for the next generation. Eventually, a new individual
is generated using genetic operators. In this case, its fitness function is
computed and, based on this value, the algorithm decides whether the
individual should be inserted in the population for future generations.
This process is repeated until convergence is reached.

2.1. Related works

A number of semi-automated segmentation of epicardial fat have
been proposed. Pednekar et al. [30] proposed a method for the seg-
mentation of abdominal adipose tissues. The work of Bandekar et al. [31]
further extended the method of Pednekar et al. to the segmentation of the
epicardial fat. Coppini et al. [32] use a region growing strategy and a
preprocessing step to remove all other thorax structures apart from the
heart. An expert user is required to place control points along the peri-
cardium border. Next, Catmull-Rom cubic spline functions are automat-
ically generated to obtain a smooth pericardial contour. The volume of
epicardial fat is obtained using thresholding. Although Coppini et al. [32]
focus on reducing user intervention, the input of an expert is
still required.

Barbosa et al. [33] further improved the automation of epicardial fat
segmentation. They use the same preprocessing method proposed by Dey
et al. [34] coupled with a high level step for identification of the peri-
cardium. Identification is done by tracing lines originating from the
heart's centroid to the pericardium layer and interpolating them using a
spline curve. Although this approach is interesting, simple and highly
applicable in virtually any of the previously described methods, the re-
ported results demonstrate a low success rate. Only 4 out of 40 images
were correctly segmented in a fully automatic way.

To the best of the authors' knowledge, Shahzad et al. [35] proposed
the first fully automatic method for epicardial fat segmentation. Their
method uses a multi-atlas based approach. This is based on registering
several atlases (eight in this case) to a target patient and fusing these
transformations to obtain the final result. No indication of the overall
processing time is reported.

Ding et al. [36] proposed a similar approach. The pericardium is
segmented using an atlas approach, which consists of minimizing the
errors after applying transformations on the atlas along with an active
contour method. The authors report that the atlases' images were pre-



Fig. 1. Operation sequencing of a generic GA.

Fig. 3. An overview of the proposed methodology.
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aligned to a standard orientation and hence, there is a comparison with
only one of these atlases to speed up the process, which is a limitation.

In a previous work [5], we proposed an automated methodology for
segmentation of epicardial and mediastinal fats based on registration,
classification and mathematical morphology. Although this method
outperforms previously addressed works in terms of accuracy, it suffers
from long processing times. It takes approximately 1.8 h to segment the
CT volume information of a single patient.

The methodology proposed in this contribution provides for a means
of locating the pericardium contour, hence enabling the estimation of the
epicardial fat enclosed within the pericardium. Taking into consideration
the smoothness constraint of the pericardium, the positional estimates of
the pericardium contour on a single slice can be extrapolated to neigh-
bouring slices, thus significantly improving processing times. Further-
more, the proposed pericardium tracing also reduces errors produced by
segmentation methods, such as in Ref. [5], by reducing false positive
epicardial fat voxels that may have been classified outside of the peri-
cardium contour and also by reducing false negative voxels that may
have been misclassified within the pericardium.

3. Materials and methods

The input images used in this work are Computed Tomography fat
ranged images. The acquisition and representation of these images is
explained in Ref. [5]. In theory, the images show just the fat tissues of the
human body, i.e., the information within the �200 to �30 Hounsfield
scale range. All other structures that are not related to fat are represented
as black pixels, as shown in Fig. 2. The flowchart of the proposed
methodology is shown in Fig. 3.

The ground truth [5] contains images of 20 patients, a total of 878
Fig. 2. A fat ranged Computed Tomography image on the axial plane.
images, with the epicardial and mediastinal fats manually segmented. A
single manually segmented image is shown in Fig. 4, where pixels
labelled as red represent epicardial fat, green pixels represent medias-
tinal fat, grey pixels represent the remaining fats and black pixels
represent the background.

Given images such as the one shown in Fig. 4, we aim to trace an
elliptical contour matching with the pericardium, which is represented
by the boundary region between the epicardial and mediastinal fats. The
equation of the ellipse with rotation and displacement parameters is
given by:

Eðθ; xc; yc; a; bÞ ¼ððx� xcÞcosðθÞ þ ðy� ycÞsinðθÞÞ2
a2

þ ððx� xcÞsinðθÞ � ðy� ycÞcosðθÞÞ2
b2

¼ 1

(1)
Fig. 4. A manually segmented image.
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where θ represents the degree of rotation of the ellipse, a and b represent
its major/minor axis, respectively, and ðxc; ycÞ stands for the ellipse
center coordinates. The equation should be equal to 1 or, in the discrete
case, equal to an interval such that ½1� ε; 1þ ε�, where ε controls the size
of the ellipse outline.

Our objective/fitness function is defined as fE , shown in Equation (2).
The objective function is a weighted score of red pixels r, green pixels g,
grey pixels c and black pixels b within the ellipse E. The constants in the
equation were empirically tuned using ground truth data, where qr ¼ 85;
qg ¼ 3; qc ¼ 4; qb ¼ 2:5.

fE ¼ qrr �
�
qggþ qccþ qbb

�
(2)

In detail, let the image I contain pixels p 2 Z2 and R, G, C and B be sets
that contain the red, green, grey and black pixels of the processed image,
respectively. The objective function is then given by:

fE ¼
X
∀p2I

8>>><
>>>:

8>><
>>:

qr; if p 2 R
�qg; if p 2 G
�qc; if p 2 C
�qb; if p 2 B

; if Eðθ; xc; yc; a; bÞ<1

0; otherwise

(3)

The red pixels are positively weighted since they are the ones to be
maximized. In summary, the algorithm searches for ellipses E that
maximize the objective function fE within the image and uses a meta-
heuristic for this purpose.

The results obtained using Genetic Algorithms and other meta-
heuristics are based on random search, and thus will not necessarily
provide the parameters of the optimum ellipse that yields the maximum
of the objective function. However, as long as the Genetic Algorithm is
well constructed and runs for a sufficient amount of time, the results
would be satisfactory and sufficiently near to the optimal solution.
3.1. Genetic algorithm

The ellipse parameters are the orientation, center coordinates and
major/minor axis as previously discussed. Thus, the individuals of the
population contain five parameters encoded in their chromosome. Each
parameter belongs to a predefined range, as given:

0 � θ � 360; 100 � xc � 412; 100 � yc � 412; 80 � a � 300; 80 � b

� 300;

where the input images have a size of 512� 512 pixels. There is,
therefore, an optimal set of parameters that produces an optimal ellipse
for each image or slice of a single patient.

We maintain a population of 20 individuals in every generation. At
each generation, the individuals that are best adapted, i.e., the ones that
have the highest objective function values, remain in the population,
while the remaining are discarded. At first, the 20 individuals are
randomly generated. Starting at second generation, the children are the
result of random crossovers between the individuals in the population
and also mutations, as shown in Fig. 6.

We randomly select two individuals from the top 20. These two in-
dividuals generate a child. Each child inherits parameters from their
parents, which are chosen randomly. At each generation or iteration, the
top 20 individuals produce a total of 40 children, whose objective
functions are evaluated to examine whether they should be inserted in
the group of top 20 individuals. After crossover, random mutations may
also occur, as previously mentioned. Algorithm 1 illustrates how cross-
over and mutation are performed, where the function randomðkÞ gener-
ates an integer number from 0 to k� 1.

The crossover is merely a random pick with equal probability of pa-
rameters of the individual's parents. If parent A has θ ¼ 360 as parameter
and parent B has θ ¼ 56, then there is an equal probability of the child
having either one of them. This is respected for each parameter of the
ellipse. After picking each parameter from one of the parents, the mu-
tations may occur randomly, e.g., if a generated random number exceeds
a given threshold.
Algorithm 1. Genetic algorithm for ellipse parameter selection.

Function varðÞ, in Algorithm 1, is defined in Equation (4), where
randomf ðÞ generates a floating number between 0 and 1 (both inclusive).
In summary, varðÞ essentially generates a random number between�400
and 400 if u ¼ 20, where numbers near 0 are more often generated than
numbers that are closer to�400 or 400. The constantm is used to control
the rate of mutation and cross over. This m constant was empirically set
to 5 and u was set to 20.

varðÞ ¼ ðrandomiðuþ 1Þ � randomfiðÞÞ2

� �
randomjðuþ 1Þ � randomfjðÞ

�2 (4)

Fig. 5 illustrates how the varðÞ function is computed. After generating
a number ra using randomðuþ 1Þ, where the possible values are illustrated
by the two diagonal lines, ra is multiplied by a random floating number,
such that the final value will be� ra, as shown by the dashed vertical line.
Finally, as a remark, the source code of the GA implementation is
available at [37].

4. Results

The proposed methodology was applied to 3 axial plane images for
each patient in the dataset. In total, an ellipse was generated for each of
the 60 images. Besides, we carried out experiments by varying n, which



Fig. 5. Representation of the applied mutations using the var function.
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corresponds to the maximum number of iterations or generations of the
Genetic Algorithm. The indices used for analysis and comparison of the
results were: (1) percentage of red pixels within the ellipse (PR), (2)
percentage of green pixels within the ellipse (PG), (3) percentage of grey
pixels within the ellipse (PC) and (4) percentage of black pixels within
the ellipse (PB).

We also developed an index that measures the fitness of the chosen
ellipse as a whole by aggregating all of the previous indices (PR, PG, PC
and PB). This index is called General Fit (GF) and defined as:

GF ¼ PR
PGþ PC þ PB

(5)

Table 1 shows the obtained indices for 10 generations of the Genetic
Algorithm. In a real world scenario, we would perform pericardium
detection on a single image of each patient, instead of 3 or even 50. The
indices are presented as the mean, median, minimum and maximum
values for all runs for the 20 patients. The last column corresponds to the
processing time of the algorithm in seconds, i.e., for generating an ellipse
in a single image using the GA. It is important to highlight that the al-
gorithm was implemented in Java and was not optimized in regards to
run times.

Table 2 presents the results for 100 generations, where the algorithm
is run again from the start. The processing time increases by up to 10
times. However, the percentage of red pixels within the ellipse increases
Fig. 6. Detailed steps of the pr
as well. The percentages of black, grey and green pixels decrease, which
is a positive result. The percentage of green pixels, in particular,
decreased substantially in comparison.

The red and green fats are located very close to each other and in
some cases they are nearly impossible to separate, even for a human
expert. However, it seems that in 10 generations, the algorithm captures
the epicardial fat fairly well but aggregates a significant amount of
mediastinal fat. The GF also improved substantially from 10 to 100
generations. We can fairly argue that the results improve in general if
more iterations of the evolution are considered. However, there exists a
tradeoff in this regard, this increases the processing time as well.

Finally, Table 3 shows the same indices for 200 generations. In this
case, PR improved slightly when considering the results of Table 2 in
relation to those of Table 1. However, the average processing time almost
doubled. The averaged GF also improved in relation to 100 generations,
but the improvement is not as significant as that from 10 to 100
generations.

Finally, some visual results for n ¼ 10, 100 and 200 generations are
shown in Figs. 7–9. The traced ellipse is represented in blue.

As previously mentioned, it is evident from these images that the
results produced by 100 generations are already acceptable. Fig. 7 con-
tains much more mediastinal and epicardial fat than Figs. 8 and 9. Be-
sides, the area of the heart in this image is larger than the others. The
images in Fig. 7 belong to CT image data obtained by a different CT
scanner manufacturer, compared to the other two. Still, the approach
managed to achieve good results in all occasions.

5. Discussion and future work

In a previous work [5], we proposed an automated process for seg-
mentation of epicardial and mediastinal fats based on registration, clas-
sification algorithms and mathematical morphology. It extracts features
from a pixel neighbourhood and uses this information to label the asso-
ciated pixel. Classification algorithms are used as tools to decide whether
a pixel belongs to the epicardial fat class. Following classification, di-
lations are performed to fill gaps in the segmentation performed by the
classifiers.

Our previous research outperforms the two existing fully automated
methods in the literature [35,36] in terms of accuracy. However, its main
limitation is the processing time required to segment the patients' CT
data. This registration, classification and mathematical morphology
approach may take up to 1.8 h to process the data of a single patient. This
is approximately 3 times faster than a human specialist, however further
improvements are possible in order to achieve a near real-time
oposed Genetic Algorithm.



Fig. 8. Ellipses generated with GA for varying values of n.

Table 3
Results for 200 generations of the GA.

PR PG PC PB GF Time (s)

Mean 99.45 23.53 1.12 16.61 3.37 774.06
Median 99.95 17.59 0.12 11.68 3.02 819.99
Min 92.73 1.63 0 3.51 0.9 334.93
Max 100 100 9.3 47.69 10.54 935.08

Table 2
Results for 100 generations of the GA.

PR PG PC PB GF Time (s)

Mean 98.85 25.60 1.64 16.43 3.16 378.72
Median 99.94 22.36 0.08 12.03 2.60 417.61
Min 71.81 1.57 0 3.93 0.91 193.38
Max 100 100 36.82 48.27 10.61 472.56

Table 1
Results for 10 generations of the GA.

PR PG PC PB GF Time (s)

Mean 97.31 44.86 6.00 20.47 1.95 38.43
Median 99.35 40.89 2.00 26.90 1.29 42.01
Min 67.70 7.41 0 2.64 0.58 20.51
Max 100 100 47.15 54.47 5.98 50.12
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performance.
In this context, an elliptical contour estimation procedure for the

pericardium boundary is proposed in this work. This results in a per-
formance improvement in our previously proposed framework [5] by, at
first, improving accuracy by reducing false positive voxels outside of the
pericardium contour and false negative epicardial fat voxels present
within the pericardium contour. Furthermore, pericardium estimation
can also speed up execution times.

Knowing the position and size of the pericardium ellipses on a few
slices enables interpolation between them, thus providing an estimate of
Fig. 9. Ellipses generated with GA for varying values of n.

Fig. 7. Ellipses generated with GA for varying values of n.
the epicardial fat within that axial section and improving time efficiency.
That is, it will not be necessary to process every CT slice. For instance, a
third of the CT slices could be processed instead, in which case the time
required to process the cardiac CT examination of a single patient will
reduce to approximately 0.6 h. In a previous work [38], we used
regression algorithms to estimate the amount of mediastinal fat based on
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the epicardial and vice-versa. As such, the parameters of the pericardium
ellipse may be propagated to neighbouring slices using regression algo-
rithms [38], which could provide improved results compared to direct
interpolation.

In the case of regression algorithms, just two or three slices could
suffice for the appropriate estimation of the fat volume regarding the
entire slice spectrum. As observed in Ref. [38], it is possible to predict
fairly accurately the amount of mediastinal fat in the entire cardiac CT
examination, given that the information about the epicardial fat is
known, using regression algorithms. Regression algorithms can be
trained on patient data whose pericardium contour is known for the
entire CT exam. Features such as the index of the slice and the parameters
of the ellipse, including position, size and orientation, can be used in the
regression analysis. The amount of epicardial fat can be the value to be
predicted or the class of the problem. Once the regression algorithm is
trained, the pericardium contours of a limited number of unprocessed CT
images from a single patient can be extracted using the proposed meth-
odology. These values, along with the index of an unprocessed slice, may
be used to predict the volume of epicardial fat present in the respec-
tive slice.

In summary, the total estimation of epicardial fat can be done using
the geometric information of the ellipse on a middle slice and adapting
this to the preceding and following slices and to the information within
so as to estimate the total amount of epicardial fat. Moreover, elliptical
tracing is a visual measurement and a delineator that may assist physi-
cians in detecting the pericardium, which is fairly difficult in some cases.
As future work, we aim to explore the avenues previously described in
this section, which consists of developing a means of estimating the
epicardial fat volume of CT slices, hence reducing the time burden of the
previously proposed segmentation approach.

6. Conclusions

In this work, we proposed the use of Genetic Algorithms to optimally
fit ellipses in pre-processed Computed Tomography images in order to
mathematically delineate the pericardium contour and, consequently, to
separate two fats associated with the human heart, namely epicardial and
mediastinal fats. Manual segmentation of these two fats and the peri-
cardium is time consuming, tedious and generates extra costs. It would
take approximately half a day to manually segment these two fats for a
single patient. Due to these facts, quantification is commonly disregarded
in usual medical practice.

The obtained results show that GA can find good solutions, i.e.,
closely trace the pericardium contour in a relatively fair amount of time.
The algorithm can be further optimized in several ways and the pro-
cessing time can be substantially reduced. For the experiments with 10,
100 and 200 generations, we achieved an average of 97.31%, 98.82%
and 99.45% of epicardial fat being engulfed by the ellipse and fairly high
GFs of 1.95, 3.16 and 3.37, respectively. For 200 generations ðn ¼ 200Þ,
we have visually confirmed accurate ellipse tracing for all of the 60
evaluated images.
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