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Abstract

We propose a new procedure for clustering nucleotide sequences based
on the “Laplacian Eigenmaps” and Gaussian Mixture modelling. This pro-
posal is then applied to a set of 100 DNA sequences from the mitochondri-
ally encoded NADH dehydrogenase 3 (ND3) gene of a collection of Platy-
helminthes and Nematoda species. The resulting clusters are then shown to
be consistent with the gene phylogenetic tree computed using a maximum
likelihood approach. This comparison shows in particular that the clustering
produced by the methodology combining Laplacian Eigenmaps with Gaus-
sian Mixture models is coherent with the phylogeny as well as with the
NCBI taxonomy. We also developed a Python package for this procedure
which is available online.

Keywords: DNA Clustering, Genomics, Laplacian Eigenmaps, Gaus-
sian mixture model.
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1 Introduction
As the amount of available genetic sequences increases drastically, the need for
scalable methods becomes urgent. A very important tool for dealing with large
amounts of data is clustering. Clustering was successfully used for a large number
of important applications recently. Clustering methods have thus demonstrated
irrefutable efficiency for real-life applications to genetics and have provided ex-
tremely powerful tools to the community. In particular, the huge amount of molec-
ular data available nowadays can help addressing new and essential questions in
genomics if appropriate scalable methods are used. Sequence clustering is a key
element among these tools (Valot et al., 2015). Among the various benefits of
sequence clustering are

• interpretability as for the classification of 16S ARN into OTU (Hao et al.,
2011),

• potential reduction of very large databases, i.e., too large to be processed in
a relatively short time (Rousk et al., 2010), or

• creation of non-redundant protein groups (Suzek et al., 2007)

for instance. Moreover, clustering is also crucial for the discovery of new hidden
variables underpinning the phenomena that are analysed.

However, as noted by a number of researchers from the community of Ma-
chine Learning (ML), clustering may not be very reliable without an appropriate
preliminary embedding of the data samples. The motto often quoted in ML is
that high dimensional data are often too scattered for an off-the-shelf method to
work properly. Several embeddings have been proposed in the literature. Some
of them are better suited for supervised learning, such as the methods based on
neural networks (e.g., auto-encoders) and some other methods are more suitable
for unsupervised learning as is the case in the present work. Among many non-
linear embedding methods, the Laplacian Eigenmap (Belkin and Niyogi, 2001)
approach has been extensively studied from both the theoretical side and the ap-
plication one (Spielman, 2009). Such methods have received a lot of attention
and can be also constrained towards better postprocessing with a view towards
improved clustering as shown in, e.g., (Chrétien et al., 2016).

In the case study, our goal is to show the practical efficiency of a combination
of the plain Laplacian Eigenmap approach with Gaussian Mixture based cluster-
ing. Our choice of this combination is mainly motivated by scalability constraints
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and the fact that both methods are state of the art in the Machine Learning com-
munity. The procedure is extremely natural and can be described as follows

1. Compute a similarity matrix between each couple of sequences. That is to
say, a matrix W of size n×n (where n is the number of studied sequences),
such that Wi, j increases with the similarity of sequences i and j.

2. Apply the Laplacian Eigenmap (Belkin and Niyogi, 2001) method to the
matrix W . This method transforms the sequences in elements leaving in
a given vectorial space, and whose positions in the space reflects well and
illustrates in an richer way the sequence similarities.

3. Apply a clustering method to the points of the yielding space using a Gaus-
sian mixture model (Day, 1969).

Our main contribution is twofold: we propose a ready to use Python package
available online and we demonstrate the efficiency of the approach for the problem
of clustering nucleotide sequences.

In particular, we tested the proposed methodology on a sample of one hun-
dred ND3 genes (DNA sequences) from Platyhelminthes and Nematoda species
that have been downloaded on the NCBI website1. The classification produced
by the proposed method has been compared with the phylogenetic tree of these
species obtained by a likelihood maximization method using PhyML (Guindon
et al., 2005). According to this comparison, the clustering is consistent with
both clades appearing in the phylogenetic tree and the NCBI taxonomy. More
specifically, our clustering method perfectly separates the Nematoda and Platy-
helminthes phyla. Among the Nematoda, we obtained a cluster for Trichocephal-
ida order, another one for most of the species of the Spirurida order, and a last
cluster for the remainder.

The plan of the paper is the following. The three stages of the proposed
method are detailed in the next section, while an application example is provided
in Section 3. The whole proposal is discussed in Section 4. Finally, this arti-
cle ends with a conclusion section, in which the contribution is summarized and
intended future work is outlined.

1http://www.ncbi.nlm.nih.gov/
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2 The Clustering Method

2.1 Design of the similarity matrix
The first step in the construction of a good embedding is the creation of a similarity
matrix W . This matrix measures the similarity between every two sequences by
providing a number between 0 and 1, the greater this number is, the most similar
the sequences are.

We introduce here a way to build similarity matrices using the Needleman
Wunsch “distance” (Needleman and Wunsch, 1970). In order to do so, a multiple
global alignment of the DNA sequences is run, for instance using MUSCLE (Mul-
tiple Sequence Comparison by Log-Expectation (Edgar, 2004)) software. Based
on the results of this alignment, we can then define a first matrix M satisfying
the following requirements: for all i, j ∈ [[1,n]], Mi, j is the ”Needleman-Wunsch
distance” between sequence i and sequence j. More precisely, M can be com-
puted, by evaluating the Needleman-Wunsch edit distance between each couple
of aligned sequences, which is the reference distance when considering nucleo-
tidic sequences. In practice, this can be done using the needle command from
EMBOSS package (Rice et al., 2000).

The matrix M is then divided by the largest distance value, so that all its coef-
ficients are between 0 and 1. W can finally be obtained as follows:

∀ i, j ∈ [[1,n]], Wi, j = 1−Mi, j,

in such a way that Wi, j represents the similarity between species i and j.

2.2 Laplacian Eigenmaps on W

The so-called Laplacian Eigenmaps (Belkin and Niyogi, 2001) is an original method
of representation, in a k-dimension vector space, of a given matrix of similarity
between complex objects (here, words on the {A,C,G,T} alphabet). In this space,
points with real coordinates are close when their similarity is large. Indeed, in-
creasing the dimension leads to a richer view of the similarities between different
objects, onto which standard clustering techniques can be applied.

The first step is to create the normalized Laplacian matrix (Chen and Zhang,
2007):

L = D−1/2(D−W )D−1/2,

where W is the similarity matrix defined previously and D is the degree matrix of
W . That is to say, D is the diagonal matrix defined by:
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∀i ∈ [[1,n]], Di,i =
n
∑
j=1

Wi, j .

L being symmetric and real, it is diagonalisable in a basis of pairwise orthogonal
eigenvectors {φ1, ...,φn} associated with eigenvalues 0 = λ1 6 λ2 6 ...6 λn.

The Laplacian Eigenmaps consists in considering the following embedding
function:

ck1(i) =


φ2(i)
φ3(i)

...
φk1+1(i)

 ∈ Rk1,

where ck1(i) is the coordinate vector of the point corresponding to the ith sequence.
In other words, the coordinate vector of the point corresponding to the ith sequence
is constituted by the ith coordinate of each of the k1 first eigenvectors, ordered
according to the size of their eigenvalues. As stated previously, this cloud of
points is a model of the DNA sequences, such that the proximity between two
points increases (considering the Euclidean distance) with the sequence similarity.

The choice of the k1 cutoff is a crucial issue and it is usually made as follows.
The ordered eigenvalues are plotted, and we stop when the increase becomes neg-
ligible: the number of eigenvalues that are not discarded is k1. For instance, in our
program, we have chosen to set k1 as the first time the difference between the kth

and (k+1)th value is lower than 0.01.
Remark that W can be seen as a weighted adjacency matrix of a graph, where

nodes are the DNA sequences while edges are labeled by the degree of affinity
between their adjacent nodes. In the literature, the Laplacian matrix is often de-
scribed as constructed from the weighted adjacency matrix of such a graph rather
than constructed from a similarity matrix. These definitions are equivalent.

2.3 Gaussian Mixture based clustering
The final step is performed by applying Gaussian Mixture based clustering (GMM,
(Day, 1969)) to point cloud. Gaussian Mixture Models belong to the class of un-
supervised learning schemes (Friedman et al., 2001), and allows to distribute the
data points into different clusters without a priori assumption about the clusters’
interpretation. One of the very useful features of model based clustering is that
the model allows to use information criteria in order to estimate the number of
clusters using AIC (Akaike, 1974), BIC (Schwarz et al., 1978), or ICL (Biernacki
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et al., 2000). The mathematical assumption of a GMM is that the point cloud
follows the distribution:

k2

∑
i=1

δi N (µi,Σi),

where k2 is the number of clusters, δi is the probability for a point to be in cluster
i, and N (µi,Σi) is the normal distribution of mean µi and covariance matrix Σi.
GMM parameters are computed with the Expectation-Maximization (EM) algo-
rithm (McLachlan and Peel, 2004). Notice that the EM algorithm may converge
to singular distributions exponentially fast (Biernacki and Chrétien, 2003). How-
ever, degenerate situations can be easily discarded and consistent estimators can
be easly obtained in practice. Gaussian Mixture models are still a topic of current
extensive research, both from the statistical perspective (Wang et al., 2014) and
the computational perspective (Yi and Caramanis, 2015).

We have chosen to consider the Bayesian Information Criterion (BIC, (Schwarz
et al., 1978)) to determine the number of clusters k2. The BIC, which is a criterion
for model selection, is defined as follows:

BIC =−2ln(L)+ ln(n)p,

where L is the likelihood of the estimated model, n is the number of observations
in the sample, and p is the number of model parameters. This criterion allows us
to select a model whose validity is based on a compromise between the value of
the model likelihood (that we want to maximize) and the number of parameters to
estimate (that we want to minimize). The likelihood of the model increases with
k2 as well as the number of parameters. The selected model will be by default the
one that minimizes this criterion (but, in our software, the user can set manually,
if needed, the desired number of clusters).

2.4 The clustering software
The Python program corresponding to the algorithm described in this section is
freely available online at https://github.com/SergeMOULIN/clustering-tool-for-
nucleotide-sequences-using-Laplacian-Eigenmaps-and-Gaussian-Mixture-Models.
Its main function provides a clustering either from a matrix of distances or a sim-
ilarity matrix. Its prototype meets the following canvas:

clustering = GClust(M, refs, simil = False,

nbClusters = ’BIC’, drawgraphs = True,

delta = 0.01)
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where:

• M is the matrix of distances between the genomic sequences. M can also be
a matrix of similarities between the genomic sequences, by setting

simil = TRUE (see below).

• refs, is the list of species references. Note that M and refs are the only
mandatory arguments.

• simil is an optional Boolean argument. When simil = TRUE, then M is
considered as a matrix of similarities between the DNA sequences. Other-
wise it is a matrix of distances (simil = FALSE by default).

• nbClusters is the number of clusters desired by the user. By default, the
program applies the BIC criterium to determine it.

• drawgraphs is an optional Boolean value to produce some graphics. If
drawgraphs = TRUE, a two dimensional clustering of data is plotted (cf.
Figures 4, 5, and 6), as well as the graphical representation of similarities
(as in Fig. 1).

• delta is the value used to select k1 (i.e., the number of eigenvectors used
in the Laplacian Eigenmaps). k1 is the lowest value such that λk1+1−λk1 <
delta. delta = 0.01 by default.

The output of Glust function, named “clustering” above, is a list of k2 lists.
Each list contains references to the species grouped in a particular cluster.

3 Illustration example on genomic data
The proposed method has been applied to a sample of 100 DNA sequences from
the mitochondrial gene ND3 taken from various species of both Platyhelminthes
and Nematoda. Figure 1 graphically displays the similarity matrix that has been
obtained as described previously. As might be expected, the largest similarities are
obtained on the diagonal, that is, when the sequences are compared to themselves.
However, blocks seem to appear too in this representation, justifying the need to
further investigate such similarities by applying our clustering method on these
sequences.
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Figure 1: Similarity matrix

Figure 2 displays the 14 first ascending eigenvalues, labeled λi, and satisfying
0 = λ1 ≤ λ2 ≤ ...≤ λ14. According to the proposed methodology, we have chosen
k1 as the minimal index k such that λk+1−λk is lower than or equal to 0.01. In
this case study, we found k1 = 4.

Figure 2: Curve representing the first 14 eigenvalues

Figure 3 shows the Bayesian Information Criterion of the Gaussian Mixture
Models for various number of clusters. One can see that this BIC reaches its
minimum for k2 = 4. Thus, the program automatically achieves the sequence
partition in four clusters.
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Figure 3: Bayesian Information Criterion of the Gaussian Mixture Models

Figures 4, 5, and 6 represent the point cloud divided in 4 clusters. This cloud
point is projected into the plane formed by the first and second eigenvectors in
Figure 4, to the one formed by the first and third eigenvectors in Figure 5, and
to the plane formed by the second and the third eigenvectors in Figure 6. In
these graphs, clusters 0, 1, 2, and 3 are represented in red, cyan, blue, and yellow
respectively.

Figure 4: GMM clustering in the plane formed by the eigenvectors 1 and 2

A FASTA file has then be written, in which each nucleotide sequence has been
labeled according to its taxonomy and its cluster number. The taxonomies have
been found thanks to the efetch function (sub-package Entrez2, Python pack-

2A package that provides code to access NCBI over the world wide web.
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Figure 5: GMM clustering in the plane formed by the eigenvectors 1 and 3

Figure 6: GMM clustering in the plane formed by the eigenvectors 2 and 3

age Bio). We then have used the online software PhyML (maximum likelihood
method method for phylogenetic tree reconstruction) with default options (Guin-
don et al., 2005), to build a tree based on the same mitochondrial ND3 gene that
we have used during clustering. The tree, whose leaves contain taxa names and
cluster id, has been displayed using FigTree software (Morariu et al., 2008). This
tree is depicted in Figures 7 and 8.

The efetch function provides 8 taxonomic levels for each species in our
sample. In Figures 7 and 8, for readability reasons, we only show the taxon-
omy between levels 4 and 6. Note first that this clustering perfectly separates
Platyhelminthes and Nematoda phyla. Indeed Trematoda and Cestoda are two
classes of Platyhelminthes. Cluster 1 corresponds exactly to the Platyhelminthes,
while Clusters 0, 2, and 3 represent the Nematoda. Cluster 0 is only composed of
Spirurida, it contains 10 of the 12 members of this taxon. More precisely, when
considering the seventh taxonomic level, we found that Cluster 0 contains nine
Filarioidea and one Thelazioidea, while the Spirurida that are not in this cluster
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Figure 7: First part of the phylogenetic tree (Platyhelminthes)

are a Dracunculoidea and a Physalopteroidea. Cluster 3, for its part, corresponds
exactly with the Trichocephalida taxon.

Finally, in addition to recover taxonomy, the clustering agrees very well with
the tree obtained via PhyML, as shown in Figures 7 and 8. Note that the taxonomy,
based on morphology and nuclear genome, fully agrees with the PhyML tree and
our clustering, which are both based on the mitochondrial genome. This fact
suggests that this mitochondrial gene evolves like the nuclear genome.

4 Discussion
Various options are possible to perform the analysis we have presented previously,
some of them being listed hereafter.

4.1 Similarity matrix
The multiple global alignment step can be achieved using other software than
MUSCLE. Among the most extensively used methods, we could have chosen
MAFFT (Katoh and Standley, 2013) for instance, as well as ClustalW or ClustalX
(Larkin et al., 2007). It is also possible to apply a pairwise alignment method like
the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970). Moreover,
we have chosen EDNAFULL scoring matrix, but other matrices are available to

11



Figure 8: Second part of the phylogenetic tree (Nematoda)

produce a score between two aligned sequences, like PAM or BLOSUM. Finally,
instead of defining the similarity matrix W as Wi, j = 1−Mi, j, it could be possible
to consider Wi, j =

1
Mi, j

or Wi, j = e−Mi, j .
To find the best option among these possible choices, one can either test them

on reference sequences on which the clusters to obtain are perfectly known, for
instance by producing a laboratory-generated phylogeny. Another option can be
to use a well-established phylogeny based on fossils morphology and molecular
data. Finally, a third option can be to compute simulations of a set of species
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having a common ancestor. These three approaches have already been imple-
mented to compare phylogenetic tree reconstruction tools. The first approach, for
instance, has been applied in (Hillis et al., 1992) on the bacteriophage T7 evolved
in a laboratory. The second approach, for its part, has been applied in (Cummings
et al., 1995), (Russo et al., 1996), and (Zardoya and Meyer, 1996), who used
mammalian or vertebrate phylogeny to perform these comparisons. The last one
was considered a lot of time, and summarised in (Felsenstein, 1988), (Huelsen-
beck, 1995), and (Nei, 1996).

4.2 Number of considered eigenvectors
The number of eigenvectors to keep is another point to investigate. As explained
in Part 2.2, it is usually advised to check graphically when the increase of eigen-
values is reducing. In this article, we have chosen to consider k1 such that δ =
λk1+1−λk1 < 0.01. This criterion has led to k = 4 in the case study, which seems
acceptable according to the considered taxonomy.

Some authors in the literature proposed to compute k1 as the logarithm of
n (Matias, 2015). It is also possible to consider a criterion related to the second
derivative instead of the first one, by replacing the computation of δ by:

δ = (λk1−λk1−1)− (λk1+1−λk1).

The latter may be a good representative of the notion of inflection. Other approach
can be considered to solve this problem, which is still an open one.

4.3 Number of clusters
We have chosen to consider the BIC (Schwarz et al., 1978) to determine the op-
timal number of clusters, which is a common choice for this type of problem.
An alternative may be to use the Akaike Information Criterion (AIC, (Akaike,
1974)). The principle of calculating the AIC is the same as the BIC, since the goal
is to maximize log-likelihood penalized by the number of parameters (or more
precisely, to minimize the number of parameters to which the log-likelihood is
subtracted). AIC formula is the following:

AIC =−2ln(L)+2× p,

where L is the likelihood of the estimated model and p the number of model
parameters.
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Indeed, BIC is “more conservative” than AIC. That is to say, the number of
clusters obtained by BIC is lower or equal to the one obtained by AIC. In other
words, BIC penalization is more important, and the choice between these two
criteria can be dependent on how stringent the clustering is desired.

4.4 Conclusion
In this work, we have proposed a new method of nucleotide sequence clustering.
This clustering is produced by a methodology combining Laplacian Eigenmaps
with Gaussian Mixture models, while the number of clusters is set according to
the Bayesian Information Criterion. This methodology has been applied on 100
sequences of mitochondrially encoded NADH dehydrogenase 3. Obtained clus-
ters are coherent with the phylogeny (gene tree obtained with PhyML) as well as
with the NCBI taxonomy.

One possible extension for future work can be to investigate more deeply the
impact of parameters in the obtained clusters. The effects of a modification in the
similarity distance, in the manner to set the dimension of the space in Laplacian
Eigenmaps, or in the number of desired clusters, will be systematically investi-
gated. This clustering method will be applied in concrete problems related to
genomics, for instance on coding sequences predicted on a set of bacteria, to de-
termine the size of their core (AlKindy et al., 2014) and pan genome.
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