
Deep Transfer Learning for Characterizing Chondrocyte Patterns 
in Phase Contrast X-Ray Computed Tomography Images of the 
Human Patellar Cartilage

Anas Z. Abidina,b,*, Botao Dengc, Adora M. DSouzac, Mahesh B. Nagarajand, Paola Coane,f, 
and Axel Wismüllera,b,c,f

aDepartment of Biomedical Engineering, University of Rochester Medical Center, Rochester, New 
York, USA

bDepartment of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, 
USA

cDepartment of Electrical Engineering, University of Rochester Medical Center, Rochester, New 
York, USA

dDepartment of Radiological Sciences, University of California Los Angeles, Los Angeles, U.S.A

eEuropean Synchrotron Radiation Facility, Grenoble, France

fFaculty of Medicine and Institute of Clinical Radiology, Ludwig Maximilians University, Munich 
Germany

Abstract

Phase contrast X-ray computed tomography (PCI-CT) has been demonstrated to be effective for 

visualization of the human cartilage matrix at micrometer resolution, thereby capturing 

osteoarthritis induced changes to chondrocyte organization. This study aims to systematically 

assess the efficacy of deep transfer learning methods for classifying between healthy and diseased 

tissue patterns. We extracted features from two different convolutional neural network 

architectures, CaffeNet and Inception-v3 for characterizing such patterns. These features were 

quantitatively evaluated in a classification task measured by the area (AUC) under the Receiver 

Operating Characteristic (ROC) curve as well as qualitative visualization through a dimension 

reduction approach t-Distributed Stochastic Neighbor Embedding (t-SNE). The best classification 

performance, for CaffeNet, was observed when using features from the last convolutional layer 

and the last fully connected layer (AUCs > 0.91). Meanwhile, off-the-shelf features from 

Inception-v3 produced similar classification performance (AUC > 0.95). Visualization of features 

from these layers further confirmed adequate characterization of chondrocyte patterns for reliably 

distinguishing between healthy and osteoarthritic tissue classes. Such techniques, can be 
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potentially used for detecting the presence of osteoarthritis related changes in the human patellar 

cartilage.
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1. Introduction

Phase-contrast X-ray computed tomography (PCI-CT) is an imaging technique capable of 

visualizing the internal architecture of tissues at micrometer resolution [1]. This acquisition 

methodology exploits the fact that X-rays are not just absorbed when passing through matter 

but also refracted,[2, 3] producing a more pronounced contrast when compared to 

conventional absorption based X-ray imaging modalities[4]. This allows PCI to be effective 

in imaging tissue types where the conventional absorption contrast is either unable to resolve 

the differences between soft tissue types, i.e., breast[5, 6], or is poor/absent, i.e., cartilage[1, 

7, 8]. Although different imaging setups can be used, PCI with computed tomography, using 

the analyzer-based imaging (ABI) scheme [3, 9, 10] has been applied in different ex-vivo 
breast[5, 6], brain[11], and cartilage studies[1, 7]. There is a huge potential for such a 

technique to be used for early detection of degenerative cartilage structural changes 

associated with osteoarthritis (OA) [12], widely recognized as one of the leading causes of 

disability worldwide. The advanced techniques proposed for evaluation of OA, such as 

delayed gadolinium-enhanced MR imaging of cartilage (dGEM-RIC) [13], 23Na MRI [14], 

T1ρ [15], GAG chemical exchange saturation transfer (gagCEST) [16] etc. do not possess 

the capability to visualize cartilage matrix structure at a cellular level. In this context, the 

adept visualization of the cartilage matrix using PCI-CT has been demonstrated previously 

[1]. It was observed that the systematic zonal architecture maintained in the cartilage matrix, 

as known from histology studies [17], was clearly visualized in samples obtained from 

healthy individuals. Specifically in the radial zone - defined based on established 

histopathological standards [18, 19] - the chondrocytes demonstrate an ordered arrangement 

(Fig. 1, top) which is understood to be progressively lost during disease progression and 

hence was not observed in the osteoarthritic samples. Instead, a more generalized clustering 

of cells throughout the matrix was observed (Fig. 1, bottom).

We have previously [20, 21] shown that PCI-CT images can be characterized effectively 

with 2D or 3D texture features, in a computer aided diagnostics framework. In this study, we 

explore the use of deep learning for characterizing chondrocyte organization of the cartilage 

matrix visualized in these images. Conventionally, features (such as those derived from Grey 

Level Co-occurance Matrices, GLCM [22]) extracted from images were used with a 

classification algorithm such as a support vector machine (SVM) to distinguish between 

classes of subjects. In these analyses, the feature are computed based on heuristic 

characteristics of the images and in general are performed independent of the classification 

algorithm. With the advent of deep learning techniques, focus has shifted from the use of 

traditional, so called “hand-crafted”, features to the use of networks which learn 

representations best suited for a task. There has been a tremendous growth in methods to go 
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along with vast improvements in performance of such systems in various computer vision 

tasks [23, 24, 25]. An increasing number of medical imaging studies [26] are using deep 

learning methods for recognition, classification, and segmentation tasks. As these neural-

networks require large amounts of annotated data, which may often not be available for 

medical imaging, the use of transfer learning has been suggested. Here, networks pre-trained 

on large image databases can be adapted for the specific task at hand.

One approach is to treat Convolutional Neural Network (CNN) like a feature extractor i.e. 
using “off-the-shelf” feature representations from intermediate layers of CNN and use them 

with a commonly used classifier such as a SVM. Such features have shown remarkable 

performance at various visual recognition tasks [23] including image classification, attribute 

detection and image retrieval. In medical imaging, these approaches have been applied for 

the detection of a wide range of chest-related diseases [27] and pulmonary nodule in 

computed tomography scans [28]. A particular question that is not always answered in these 

studies is what level of representation is suited when using a convolutional neural network as 

a feature extractor. Although this issue has been addressed briefly [23, 29] in computer-

vision literature, the conclusions may not be directly applicable to medical images, as their 

network was both trained and tested on natural image datasets. To address such a problem 

with our dataset, we aim to study the characterizations obtained using different internal 

layers of the network for distinguishing healthy and diseased tissue classes.

The other widely used technique for transfer learning, is to fine-tune a pre-trained network 

on a target medical imaging dataset[30]. The method is used to adapt the weights of the 

network based on using new training data. It is based on the accepted idea that in a deep 

learning network, the initial layers capture features that are generic (edges, orientations, 

simple text patterns etc.) and as we go deeper the features tend to get more abstract and tend 

to increase in specificity for the task they are being trained on. To explore this effect in 

detail, we fine-tune the weights of a pre-trained network and test its performance in a 

classification task.

This is one of the first studies exploring the application of deep transfer learning on phase 

contrast imaging data. We aim to investigate the effectiveness of CNNs in characterizing 

degenerative changes occurring due to osteoarthritis in PCI-CT images of the cartilage. We 

also try to address the following, technically relevant, questions in this work:

• How do off-the-shelf features from a CNN perform when classifying PCI-CT 

images acquired from healthy and osteoarthritic cartilage samples?

• In the commonly used architecture, CaffeNet (based on AlexNet); what is the 

adequate representation that can be extracted from the internal layers?

• Can fine-tuning with a small dataset help in improving the performance of 

tranfer learning methods?

• Futhermore, we explore the application of Inception-v3, an advanced CNN 

architecture which is not commonly used in medical imaging and compare its 

performance to CaffeNet.
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• Can visual exploratory analyses shed further light on the descriptors obtained 

from the CNN?

2. Data

The imaging data used in this study is acquired from scans of five ex-vivo specimens of the 

cartilage extracted from the retropatellar joint which is understood to possess significant 

potential for enabling early detection of treatable osteoarthritic changes. Specimens were 

selected for scanning based on the following (inclusion) criteria: age of the donor (< 40 yrs 

of age), visual inspection of specimen (smooth, white and shiny surface present across the 

cartilage surface) and probing of the cartilage surface (prompt resilience to focal 

indentation). IRB was waived by the institutional review board of the Ludwig Maximilians 

University, Munich, Germany. The final sample consisted of five cylindrical osteochondral 

samples extracted within 48 hours postmortem from the patella. Based on histological 

standards [31], one diseased sample was graded as mildly osteoarthritic (grade 3) and two 

were assessed to have advanced OA (grade 4), while two samples did not show any 

osteoarthritic changes.

Details of the imaging setup have been described in detail in previous studies [1, 7]. We 

briefly summarize the process here. Phase contrast imaging was performed using an 

analyzer based imaging (ABI) setup which consists of an analyzer (a perfect crystal) placed 

between a parallel monochromatic X-ray beam source and the detector [32]. The analyzer 

acts as an angular filter of the radiation transmitted through the object, which can be 

modulated by the angle-dependent reflectivity of the crystal. A Si (333) crystal was used an 

analyzer. Highly collimated and Quasimonochromatic X-rays at 26 keV, generated using a 

21-pole wiggler were used to irradiate the samples. The detector used was the Fast Readout 

Low Noise (FReLoN) CCD camera developed in-house [33]. Within this imaging setup, the 

source as well as the detector were kept stationary, with the sample being rotated to acquired 

an angular projection dataset over 360°, in 1° increments. An image volume of dimensions 

1120 × 1124 × 805, with an effective pixel size of 8 × 8µm2 in the imaging plane, was 

obtained for each specimen and subsequently trimmed to eliminate background regions. 

Imaging was performed at the Biomedical Beamline (ID17) of the European Synchrotron 

Radiation Facility (ESRF, France).

It was reported in [1] that the osetoarthritic samples showed changes in chondrocyte 

organization in PCI-CT images, particularly in the radial zone. Hence, a total of 842 square 

ROIs (size 101 × 101 pixels, 439 osteoarthritic and 403 healthy), capturing chondrocyte 

patterns in the radial zone of the cartilage matrix, were annotated on the acquired PCI-CT 

images for all specimens. The ground truth was extracted using analysis performed by two 

independent observers using histopathology standards. To ensure a good sampling of the 

matrix and avoid subsequent over-fitting in the machine learning step, additional restrictions 

were imposed for ROI definition. Within a specimen, ROIs were defined atleast 32µm apart, 

this ensured that same cluster of chondrocytes was not captured across multiple ROIs. 

Furthermore, to avoid ambiguous ROI definition and avoid class imbalance, ROIs in the OA 

samples were not defined in regions showing normal patterns of chondrocyte organization.
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Detailed information regarding specimen preparation, imaging setup and ground truth 

extraction is avaliable in our previously published studies[1, 20].

3. Methods

In studies such as ours, where a large dataset is not available for training deep learning 

network from initialization, researchers have often used what is known as “transfer-learning” 

from pre-trained networks. Such models are made publicly available after training on a large 

annotated imaging database. For characterizing the patterns in the cartilage matrix, in this 

study we have used and compared the performance of two different pre-trained 

convolutional neural networks (CNNs): CaffeNet[34] and Inception-v3[35], which were 

trained on the Imagenet database.

3.1. Features from CaffeNet

3.1.1. Off-the-shelf—CaffeNet, an adaptation of the winning architecture AlexNet of 

ILSVRC 2012 [36], is one of the most widely used networks used in transfer learning. Its 

simple architecture, consisting of five convolutional layers (conv) and 3 fully connected 

layers (fc), facilitates easier benchmarking of classification performance for different CNNs. 

The trained network, trained on about 1 million images of the ImageNet database, has been 

made available by Jia et al.[34]. Each ROI from our study was scaled with bilinear 

interpolation to match the size of input layer (227 × 227) and a training set mean was 

subtracted in line with standard practice in deep learning studies [34].

It has been proposed that features in the intermediate layers capture adequate representations 

for transfer-learning studies[23] as these layers are neither too specific to the dataset the 

network was originally trained on, nor too general to not contain any representative 

information from images. To test whether such a rule would apply to our PCI-CT images, 

we extracted features from all layers of the CaffeNet. Henceforth, features from the 5 

convolutional and 3 fully connected layers of the CaffeNet (excluding the normalization 

layer or pooling layers), are denoted as convn (1 ≤ n ≤ 5) or fcn (6 ≤ n ≤ 8), respectively.

Features from the convolutional layers are multidimensional and have a relatively large size 

(e.g. conv2: 27 × 27 × 256, conv4 : 13 × 13 × 348), thereby increasing the computational 

burden. We, therefore, applied Global Average Pooling (GAP) to pool the feature maps for 

converting them to linear feature vectors (e.g. conv1:55×55×96 into a vector 1×1×96). 

Although other strategies to pool features from the convolutional layers can be considered 

[37, 38] GAP has been widely applied in the development of deeper architectures. It also 

enforces correspondance between feature maps [39], does not require additional free 

parameter optimization, and is robust to spatial transformations.

3.1.2. Fine-tuning—To study the effect of fine-tuning, we replaced the final fully 

connected layer (fc8) in the original CaffeNet with a 2 ouput layer corresponding to the 

healthy and osteoarthritic classification. The weights were randomly initialized based on a 

Gaussian distribution. During fine-tuning, we ensured that the errors were back-propagated 

to all layers of the network. The learning rate for the last layer was fixed at 0.001 with 0.9 

momentum as this layer had to be learnt from scratch. However the learning rates for the 
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remaining layers were set at 0.0005 as only fine adjustments from a pre-trained state would 

be needed. The network was trained for 1500 iterations with a batch size of 256. The 

multinomial logistic loss function reached a low plateau after about 1000 training iterations. 

We report results obtained using the two output layer of the CNN.

3.2. Features from Inception-v3

We also tested the performance of an Inception-v3 network, a contemporary architecture for 

characterizing our images. This network is a scaled-up version of GoogLeNet, and augments 

various heuristic improvisations over CNN architectures such as AlexNet, OverFeat or 

Decaf previously used in medical imaging studies. The pretrained Inception-v3 model was 

obtained from the open source deep learning framework, Lasagne Table 1 shows the 

architecture of Inception-v3 model, the first few layers are similar to traditional CNN, 

including 5 convolutional layers and 2 max pooling layers. These are followed by 11 

inception modules and a Global pooling layer. A softmax layer is used to generalize a score 

for each category.

The core idea of the Inception module is to use filters of multiple sizes with different 

receptive field, this allows for capturing local variablity and hence improved 

characterization. The original naive inception module in GoogLeNet performed convolution 

operations of three sizes, 1 × 1, 3 × 3, 5 × 5, and then combined them together to form a 

single feature matrix which is fed into the subsequent layers. Such operations when 

performed for larger networks quickly increase the amount of computations which can be 

prohibitively expensive. Improvements in the implementation of convolutions as suggested 

by [39], significantly circumvents this problem. These modules also serve to enhance the 

representative power of networks by reducing the correlations in the activations of nearby 

neurons. Further details of the Inception module are discussed elsewhere [40]. Such 

improvements have allowed for significant enhancements in the representative power of 

neural networks as evidenced by the performance of Inception networks in ImageNet 

competition(s).

For each image, the training set mean image was subtracted, and input image is resized to 

match the input layer dimension of Inception-v3. We extracted features from the last 10 

inception modules, in this paper, there are referred to as inceptionn(1 ≤ n ≤ 10).

3.3. Features from Gray-level co-occurrence matrices

“Hand-crafted” features were extracted from Gray-level co-occurence matrices (GLCM) 

[22] constructed using the designated ROIs. GLCMs in the four principal directions were 

constructed and then summed up to obtain a single direction invariant GLCM. A set of 

features [41], i.e. absolute value, entropy, contrast, energy, correlation, and homogeneity, 

computed using the GLCM for each ROI. These features were also concatenated into a high-

dimensional feature vector (referred to as GLCM6D) to be used for classification.

3.4. Classification

Subsequent to feature extraction, we performed a supervised learning step, using support 

vector machines (SVM), where the ROIs were classified as healthy or osteoarthritic. Briefly, 
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a SVM finds a linear separating hyperplane with the maximal margin in the feature space. 

The SVM implementation was taken from the Scikit-learn library[42]. As the performance 

obtained with the features extracted was optimal using the linear kernel, we have not 

explored additional higher dimensional kernels in this study. This also served to reduced the 

number of parameters to be optimized during cross-validation. The penalty term, C for the 

classifier was determined to be 100 based on empirical experiments.

To avoid overfitting we imposed the following restrictions during our data analysis steps. (1) 

We defined non-overlapping ROIs in the radial zone of the cartilage matrix in the PCI-CT 

images for each subject. This avoided overrepresentation of specific patterns from each 

subject. (2) We separated out 1 healthy and 1 diseased subject randomly, in a single iteration 

of the machine-learning step, for testing. The remaining 3 subjects were used for training the 

classifier (or fine-tuning the CaffeNet). In contrast to random splitting of the dataset into a 

training/test sets this ensures that ROIs from the same subject are never used towards 

training as well as testing, thereby preventing overfitting of the classifier and biasing the 

performance evaluation.

Performance of the classifier over the different iterations (training/test split) was evaluated 

using Receiver operating characteristics (ROC) curve. Here the SVM is used to produce 

probability scores for each class, which are calibrated using Platt scaling i.e. logistic 

regression on the SVMs scores, fit by an additional 5-fold cross-validation on the training 

data. These scores are then thresholded systematically to obtain a measure of true-positive 

rate (sensitivity) and false positive rate (1 − specificity), resulting in a ROC curve. The area 

under the ROC curve (AUC) is used as the evaluation metric for a particular feature set.

3.5. Visualization of CNN features

3.5.1. Activation of layers/neurons—Features obtained from CNNs can also be studied 

using appropriate visualization techniques. One such approach, is to visualize the activation 

of neurons during a forward pass through the network. In CNNs, individual neurons act as 

filters applied over the two spatial dimensions of the image, which in turn produces 

activations (or input) for subsequent layers. Such tools have been used previously to identify 

neuron which respond to specific patterns in the images such as text, flowers, faces etc [43]. 

Qualitative visualization of the features can help gain insight into CNNs especially with 

regards to distinguishing patterns of osteoarthritis in the cartilage matrix.

3.5.2. Dimension Reduction—We also explored the use of an unsupervised dimension 

reduction technique known as t-Distributed Stochastic Neighbor Embedding (t-SNE) [44], 

for analyzing the representative power of the features for distinguishing between healthy and 

osteoarthritic ROIs.

The central idea of Stochastic Neighbor Embedding (SNE) is to compute conditional 

probabilities representing similarities from Euclidean distances between high-dimensional 

vectors [44]. The mismatch between probabilities, once established in a high as well as low 

dimensional space, need to be minimized to obtain an accurate dimension-reduction. 

Although the technique produces good visualization of high-dimensional datasets, its 

application can be limited by the cost function, which is difficult to optimize, and the so-
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called crowding problem[44]. t-SNE was introduced to overcome these limitations and it 

differs from SNE in two ways: (1) it uses a symmetrized version of the SNE cost function 

with simpler gradients and (2) it uses a Student-t distribution rather than a Gaussian to 

compute the similarity between two points in the low-dimensional space. More details 

pertaining to this algorithm and its cost function minimization can be found in [44], and a 

detailed review of the algorithm is available in[45, 46]. This technique has been shown to be 

particularly applicable for visualization of the high-dimensional data.

4. Results

4.1. Features from CaffeNet

For features extracted from a pre-trained CaffeNet, the best classification performance was 

obtained using the features extracted from the last convolutional layer (conv5, mean 

AUC=0.91) and the last fully connected layer (fc8, mean AUC=0.91). Interestingly, the 

commonly used first fully connected layer in such studies does not perform as well 

(AUC=0.81±0.17). The initial convolutional layers perform poorly at the classification task 

(Fig. 2).

Furthermore, fine-tuning (with appropriate training/test set separation) an improvement in 

classification performance was obtained (AUC 0.96 ± 0.07).

4.2. Features from Inception-v3

The performance of features from the Inception-v3 network are shown in Fig 3. In general 

features from all inception modules can accurately distinguish between the two classes 

(AUC > 0.95), with no significant differences in performance seen through the different 

layers.

4.3. Features from Gray-level co-occurrence matrices

Standard texture features extracted with the ROIs were also evaluated within the same cross 

validation scheme. Most GLCM derived texture features perform poorly (Table 2) with the 

exception of Correlation which produced a high AUC of (0.93±0.07). Interestingly, the 6-

dimensional vector of GLCM features does not perform well at the classification.

4.4. Visualization of CNN features

4.4.1. Activation of layers/neurons—To perform qualitative visualization of the 

features produced by the datast we used the DeepVis toolbox [43] to study activations 

produced by the network. We noticed differential activation in layers that produced high 

classification performance. For example, in conv5 layer we noticed specific neurons that 

mostly produced high activation for diseased samples (Fig. 4, red box). Similarly some 

neurons respond preferentially to healthy samples (Fig. 4, green box). Interestingly, layer fc6 
qualitatively produced similar activations for ROIs from both groups, however fc7 did not 

(Supplementary Figures 1 & 2).

4.4.2. Dimension Reduction—We have also explored the visualization of features from 

both networks using t-SNE (Fig.5). The visualizations produced distinct clustering of 
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healthy and diseased ROIs, in-line with classification performance as obtained in the 

previous sections. We show here visualizations of features exhibiting best performance in 

CaffeNet (with and without fine tuning), namely conv5 and fc8. Given that features from 

Inception-v3 performs equally well, we included the last two inception modules for a 

comparative analysis.

5. Discussion

The applicability of Phase Contrast Imaging with Computed Tomography (PCI-CT) for 

visualizing structural details of the cartilage matrix with micrometer resolution has been 

demonstrated previously [1, 20]. This technique enables the visualization of differences in 

chondrocyte organization between healthy and osteoarthritic cartilage samples. In this study, 

we explored the application of deep transfer learning for characterizing the organizational 

patterns using multiple layers of convolutional neural networks, in a computer-aided 

diagnostics framework. Our results illustrate that features extracted from networks 

pretrained on non-medical imaging datasets can accurately classify chondrocyte patterns as 

normal or osteoarthritic with high accuracy.

Few studies have investigated the utility of machine learning in Phase contrast imaging data 

[47, 20, 21]. In previous works, we demonstrated the application of textural characterization 

of Phase contrast imaging data and its application in a computer aided diagnostic 

framework. We have shown that the use of texture features based on topological [20], 

statistical or geometric properties [48] in combination with machine learning can be used to 

distinguish healthy and osteoarthritic patterns in such images with high accuracy. These 

studies primarily focused on introducing novel texture features for characterizing the 

chondrocyte patterns observed in the PCI-CT images. Over the past few years focus has 

shifted from such “hand-crafted” features to those extracted from pretrained deep 

convolutional neural networks (CNN). In this study we intended to apply such deep learning 

techniques, not applied previously to PCI-CT data, and investigate the fidelity of features 

obtained for classification.

The current popularity of deep learning techniques stems from the ability of such networks 

to accurately capture patterns within images and hence produce high performance at various 

different tasks [24, 25, 39]. This is further emphasized through the application of transfer 

learning methods, wherein networks trained in a different setting can be adapted for a new 

task[29, 23]. These methods have recently gained popularity in medical imaging 

applications [49, 26, 50], where, networks trained on the ImageNet dataset have been used 

for the classification and detection of diseases [27, 28, 51, 52], often with improved level of 

performance over traditional, “hand-crafted”, features. We investigated the applicability of 

such methods on a dataset comprising of ROIs extracted from images of healthy and 

osteoarthritic cartilage acquired using PCI-CT.

It is widely accepted that in a deep learning network, the initial layers capture features that 

are generic (low-level features such as edges, wavelet filters etc.) and as we go deeper they 

get more specific for the task they are being trained on. Yosinski et al. [29] explored this 

aspect of transfer learning and noted that features from all layers are not easily transferable, 
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especially if, the datasets for two tasks are significantly different, which is the case in our 

study. We observe that the choice of layer from which specific features are extracted affects 

the overall results significantly. It is noteworthy that features extracted from the first fully 

connected layer (fc6) of CaffeNet [34], which has been widely used in transfer learning 

studies does not perform as well as other layers. In fact, pooled features from the last 

convolutional layer (conv5) and the last fully connected layer (fc8) perform the best 

indicating adequate characterization of chondrocyte patterns through the high-level, 

“abstract” features captured in these (Fig. 2). The poor performance of features from the first 

convolutional layer (conv1) before and after fine-tuning indicating that patterns of 

degeneration in osteoarthritic cartilage cannot be captured by the use of low-level features. 

This re-affirms that the choice of layer from CaffeNet for transfer learning should be made 

in a principled manner based on the target application, or in the case of using a smaller 

network such as CaffeNet should be reported for all layers as previously suggested [26]. 

When the CaffeNet was fine-tuned with our dataset, a significant improvement in 

performance was obtained (AUC (0.96 ± 0.07)). Hence, a significant improvement in the 

performance of convolutional neural networks can be obtained with a small amount of fine-

tuning when the parameters (learning rate, momentum, initialization scheme etc.) are 

appropriately chosen. Post-fine tuning very high AUC values are obtained, indicating that 

some of the representations learnt, accurately capture changes in chondrocyte patterns 

during osteoarthritis.

Interestingly, the features from the inception modules of the Inception-v3 network [39, 53], 

all exhibit high classification performance (Fig. 3). Layers of this network, outperformed the 

CaffeNet suggesting that a more state-of-the art network provides an enhanced 

characterization and hence may not require fine-tuning of the network parameters for 

classification tasks. As performance obtained was fairly high (AUCs > 0.94) for all layers, 

we have not performed fine-tuning for this network. Although, variants of the AlexNet are 

still popular and continue to be widely used, it can be advocated that modern architectures 

such as Inception Networks or ResNets [54] could enhance performance of transfer learning 

methods.

It is worthwhile to mention here that although such high classification performances (AUC > 

0.95) are atypical for traditional computer aided diagnostics studies, it is becoming more 

common place with the advent of deep learning [55, 47]. Applications of deep learning (as 

well as transfer-learning) based methods have in fact produced close to human performance 

across different domains of medical imaging [53, 56, 26]. This indicates that an exceptional 

characterization of images using CNNs which can substantially enhance computer aided-

diagnostics. Researchers in computer vision have suggested the use of transfer learning to 

serve as potential benchmarks for evaluating newer methods [23]. To test this aspect and also 

compare the results obtained here with our prior work [20, 48] investigating textural 

characterization of phase contrast imaging data, we also computed “hand-crafted” features, 

derived from GLCM [22], on our dataset. Neither the individual features nor the 6 

dimensional vector of features, however, perform as well as CNN features on the 

classification task (Table 2). This suggests the potential of CNN based methods for 

developing novel imaging based biomarkers for osteoarthritis with high-resolution imaging.
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A common criticism of deep learning methods is the low interpretability of the 

representation(s) learned by the networks (beyond the first few layers) [29, 57]. Exploratory 

visualization techniques provide an alternative strategy to explore applicability of such 

features and ehance their representation [44, 58]. Hence apart from quantitative analysis of 

the characterization power of deep learning features through classification, we also have also 

applied two different visualization techniques for CNNs in a medical imaging setting. An 

interesting tool for visualization developed by Yosinski et. al. [43] has been used to show 

that when working with non-medical datasets, specific neurons within layers elicit 

preferential response to high-level features such as text, flower or faces. As the ROIs used in 

this study were annotated specifically in the radial zone of the matrix, such high-level 

features are not present. Using the DeepVis toolbox, we were however, able to identify 

neurons which tend to pick up clustered/checkered patterns (in the ImageNet dataset) seem 

to respond more to ROIs extracted from normal subjects compared to those from OA (Fig 4). 

The visualization of activations in such a manner gives an intuitive understanding of the 

patterns picked up by CNNs can improve the interpretability of features. It can provide 

valuable insights for transfer learning studies to better apply and adapt networks trained on 

non-medical datasets and also be used to motivate exact the choice of features in a medical 

imaging task. For example, neurons responding to checkered patterns are more applicable 

for classifying PCI-CT data than say a neuron that responds to text. We anticipate the use of 

such a visualization technique could potentially contribute further in more complicated tasks 

such as organ segmentation, lesion detection etc. as larger medical imaging datasets become 

available.

We also visualized the features using a dimension reduction technique, t-SNE [44], which 

has been shown to be effective in visualizations of high-dimensional data. For features from 

off-the-shelf CaffeNet we notice the a slight overlap between the healthy and diseased 

subject groups, which is interestingly reduced post fine-tuning (Fig. 5). Similar to our 

quantitative analysis, features from the subject groups, Inception-v3 network, cluster 

together although some overlap is seen in features from some layers. We would however like 

to point out that classification performance using SVMs and cluster separation in using t-

SNE need not always produce perfect agreement. It should also be noted that t-SNE is an 

unsupervised dimension reduction approach that can provide valuable insight regarding the 

separability of the the data. We see that reducing the dimension of features using t-SNE 

produces a good separation of the two groups, with most features (Supplementary Figure 3). 

This is indicative of the possibility of achieving good classification results, though a one to 

one correspondence between the two techniques cannot be expected in all scenarios, 

especially as the SVM is a supervised learning algorithm that uses training examples as 

support vectors for defining the decision boundary. Such a discrepancy can be observed, in 

the t-SNE visualizations obtained for features from inception4, inception6, & inception7, 

wherein the clusters are not separable however using the features with SVM still produces a 

high classification accuracy.

Although our results are promising, we would like to acknowledge a few limitations of this 

study, in the current form. Firstly, the specimens used for imaging were obtained from a 

small number (five) of patients. Thereby, to avoid overfitting, we have introduced an 

additional restriction for ensuring strict separation of training and testing data, by randomly 
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assigning all ROIs extracted from one healthy and osteoarthritic case to testing set in each 

iteration. It, however, remains a possibility that the ROIs extracted from the two classes 

(healthy and osteoarthritic) could be over-represented due to the limited variations of 

patterns found in these subjects. Additionally, although OA related degeneration is 

progressive, we have not defined any healthy ROIs in the diseased samples to primarily 

avoid ambiguous ROI definition and prevent class imbalance. In future studies as the 

availability of PCI-CT systems increases, we aim to include more patients to perform a more 

robust evaluation of the methods proposed here, considering a full segmentation of a sample 

into healthy and diseased regions. The methodology followed in this study however allows 

the analysis of chondrocyte patterns at an unprecedented resolution for imaging studies. It 

has also enabled us to perform a detailed investigation into the feature sets obtained from 

different layers of CNNs and study their applicability in a computer-aided diagnostics task. 

Secondly, we also note a practical limitation with the imaging setup used in this study 

concerning the reliance of the imaging technique on synchrotron radiation. The use of a 

stationary radiation source restricts PCI-CT imaging to ex-vivo specimens, thereby further 

restricting the amount of imaging data which could be acquired. In this regard, ongoing 

research investigating alternatives strategies for improving of PCI methods show significant 

promise for enabling in-vivo and clinical imaging.

6. Conclusion

This study shows the applicability of deep transfer learning techniques to classify healthy 

and osteoarthritic chondrcyte patterns acquired from PCI-CT imaging of the human patellar 

cartilage. We explored the utility of feature representations extracted from two different 

convolutional networks: a simpler and widely used network, CaffeNet, as well as a network 

with more advanced architecture, Inception-v3. Our results show that, features extracted 

from the last convolutional layer and last fully connected layer of CaffeNet perform 

significantly better than other layers, suggesting that an informed choice regarding selection 

of layer for feature extraction is critical for achieving good performance. Although, we have 

used a smaller dataset for this study, we have shown that fine-tuning, when applied 

appropriately, can aid in improving the performance of such networks. Features extracted 

from the modules of the Inception-v3 network produce excellent classification performance 

even without fine-tuning. Thus, there is a potential for using such deep-transfer learning 

approaches, for detecting the presence osteoarthritis, in a computer-aided diagnosis 

framework. However, larger studies need to be conducted in order to further validate the 

clinical plausibility of such methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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• Phase Contrast Imaging allows visualization of osteoarthritic changes in the 

patellar cartilage

• Features from pre-trained CNNs can be used characterize healthy and 

diseased patterns

• Features from Inception-v3 perform better than CaffeNet and GLCM at the 

classification task

• Fine-tuning with a small dataset can improve classifier performance

• Visualization techniques can help further substantiate the characterization 

obtained
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Figure 1. Cross-sectional view of single slice of articular cartilage as obtained using PCI-CT
The presence of an orderly zonal architecture (tangential, transitional and radial) can be 

clearly visualized via PCI-CT imaging, particularly in healthy samples (Top). This zone-

specific organization of chondrocytes gradually degrades during osteoarthritis (Bottom) and 

is instead replaced by a more generalized clustering of cells throughout the matrix 

accompanied by a loss of clear zonal separation. The black boxes indicate an example ROI 

definition in the radial zone extracted from both the groups. Sample ROIs from both the 

classes, used for the analysis, are magnified and shown on the right.

Abidin et al. Page 18

Comput Biol Med. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Comparison of classification performance for features extracted from different layers 
of a pre-trained CaffeNet
(Left) Boxplots representing the performance of features from different layers over multiple 

iterations. Each of the colored regions indicates the 25th and the 75th percentiles and the 

central line corresponds to the median AUC value across different test/train splits. Whiskers 

extend up to 1.5 times the interquartile range and the small circles, when seen, represents 

statistical outliers. Some AUC values for the first few layers were < 0.5, which representing 

reversal in class estimation. (Right) The corresponding mean ROC curves generated with 

features from different layers. Representations extracted from the last convolutional as well 

as the last fully connected layer perform best at the classification task.
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Figure 3. Comparison of classification performance for features extracted from different 
inception modules of a pre-trained Inception-v3 network
(Left) Boxplots representing the performance of features from different layers over multiple 

iterations. Each of the colored regions indicates the 25th and the 75th percentiles and the 

central line corresponds to the median AUC value across different test/train splits. Whiskers 

extend up to 1.5 times the interquartile range and the small circles, when seen, represents 

statistical outliers. (Right) The corresponding mean ROC curves generated with features 

from different modules. Features from all modules perform well at the classification task.
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Figure 4. Differential activation of neurons to healthy (left) and osteoarthritic (right) samples in 
all 256 neurons in the conv5 layer of CaffeNet visualized using the DeepVis toolbox
It was noticed that neuron 150 (red box) generally produced high activation in response to 

OA samples. In contrast neuron 221 (green box) produced an opposite response. Many 

neurons produced similar responses in this layer, for ex. neuron 36 (yellow box). 

Exploratory visualization techniques can motivate the choice of specific layers for extraction 

of CNN features. These visualizations have been adapted from the DeepVis toolbox.[43]
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Figure 5. Visualization of high-dimensional features obtained using t-SNE dimension reduction
The visualizations of the features, that performed best at the classification task, are 

compared. We notice a clear distinction between healthy (red) and diseased (blue) clusters 

re-iterating that such features capture adequate information for distinguishing between the 

two classes.
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Table 1

The architecture of Inception-v3 Network. The three dimensions of “input size” are channel dimension, width 

and height respectively. Features were extracted from the final 10 inception modules.

Type of Layer patch size / stride input size

conv 3 × 3/2 3 × 299 × 299

conv_1 3 × 3/1 32 × 149 × 149

conv_2 3 × 3/1 32 × 147 × 147

pool 3 × 3/2 64 × 147 × 147

conv_3 1 × 1/1 64 × 73 × 73

conv_4 3 × 3/1 80 × 73 × 73

pool_1 3 × 3/2 192 × 71 × 71

3× inceptionA Figure 5 of [35] 192 × 35 × 35

inceptionB Figure 10 of [35] 288 × 35 × 35

4× inceptionC Figure 6 of [35] 768 × 17 × 17

inceptionD Figure 10* of [35] 768 × 17 × 17

2×inceptionE Figure 7 of [35] 1280 × 8 × 8

Global pool — 2048 × 8 × 8

fc (Softmax) — 2048 × 1 × 1
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